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ABSTRACT

The first cosmological results from the ESSENCE supernova survey (Wood-Vasey and coworkers) are extended to
a wider range of cosmological models including dynamical dark energy and nonstandard cosmological models. We
fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess
and coworkers), as well as several complementary cosmological probes. Model comparison statistics such as the
Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that
give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmo-
logical constant model, where the expansion history of the universe can be adequately described with only one free
parameter describing the energy content of the universe. Among the more exotic models that provide good fits to the
data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.

Subject headinggs: cosmology: observations — supernovae: general

Online material: color figures

1. INTRODUCTION

Ever since Type Ia supernova (SN Ia) measurements first in-
dicated an accelerating expansion of the universe (Riess et al.
1998; Perlmutter et al. 1999), the focus of cosmology has shifted
dramatically. Over the last several years, the primary aim of many
cosmological observations has been to discover the reason for this
accelerated expansion. The name we often give to the unknown

cause of the acceleration is ‘‘dark energy.’’ In this context, dark
energy represents not only the possibility of a hitherto undis-
covered component of the energy density of the universe but also
the possibility that the standard models of gravity and/or particle
physics require revision.
The ESSENCE (Equation of State: SupErNovae trace Cosmic

Expansion) supernova survey is an ongoing project that aims
to measure the equation-of-state parameter of dark energy to
better than 10% (Krisciunas et al. 2005; Sollerman et al. 2006;
Miknaitis et al. 2007). In this paper we use the first cosmo-
logical results paper from the ESSENCE supernova survey
(Wood-Vasey et al. 2007, hereafter WV07), where distances
and redshifts for a large sample of newly discovered high-redshift
SNe Ia are reported. Moreover, WV07 performed consistent light-
curve fitting of not only the ESSENCE sample of supernovae but
also the local sample (Hamuy et al. 1996; Riess et al. 1999; Jha
et al. 2006), as well as the SN Ia data released by the Supernova
Legacy Survey (SNLS; Astier et al. 2006). Combining this with
constraints from baryon acoustic oscillations (BAOs; Eisenstein
et al. 2005),WV07 placed constraints on the dark energy equation-
of-state parameter of w ¼ �1:07 � 0:09 (statistical 1 �) � 0:13
(systematic) and on the matter density of �m ¼ 0:267þ0:028

�0:018 (sta-
tistical 1 �) for a flat universe.
To extend the analysis presented byWV07, we have (1) added

the 30 SNe Ia detected at 0:216 � z � 1:755 by the Hubble
Space Telescope (HST ) as reported by Riess et al. (2007); (2) in-
cluded further constraints from a wider range of complementary
observations; (3) allowed for more complex cosmological mod-
els by both relaxing the assumption of a flat universe and testing
nonstandard models inspired by new fundamental physics; and
(4) applied model comparison statistics to decide on the model
best preferred by the current data.
Today’s SN Ia results are accommodated in what has become

the concordance cosmology (Spergel et al. 2003), flanked by
constraints on the matter density,�m, from large-scale structure
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measurements and on the flatness of space from cosmic micro-
wave background (CMB)measurements (Spergel et al. 2007). The
concordance cosmology is dominated by dark energy, �x � 0:7,
with present evidence being consistent with Einstein’s cosmolog-
ical constant, � (Einstein 1917; Zel’dovich 1967; Padmanabhan
2003). We refer to the model with a cosmological constant as the
standard model, or � model.

However, uncertainty remains over whether the cosmologi-
cal constant is indeed the complete description of dark energy
or whether the dark energy might have more complex behavior.
This question is motivated by the enormous discrepancy between
the theoretical prediction for the cosmological constant and its
measured value (Weinberg 1989). That we apparently live in an
era when�� and�m are almost equal, known as the ‘‘coincidence
problem,’’ also suggests that we may have an incomplete cos-
mological model. Thus, a variety of suggestions for new physics
have emerged.

Some of these suggestions take the form of variations of the
equations of general relativity (e.g., the Dvali-Gabadadze-Porrati
[DGP] model; Dvali et al. 2000), while others invoke more
complex and evolving forms of dark energy (e.g., quintessence;
Caldwell et al. 1998). A basic way to explore more complex mod-
els is to parameterize the dark energy by an equation-of-state
parameter w, relating the dark energy pressure, p, to its density,
�, via p ¼ w�c2. (Hereafter we set c ¼ 1.) This parameter may
be time variable and characterizes how the energy density evolves
with the scale factor, a: � / a�3( 1þw).

This paper is organized as follows. In x 2 we discuss infor-
mation criteria in the context of cosmological model selection.
Section 3 details the data sets used, their individual systematics
and assumptions, and our method of combining them. Section 4
describes each model in turn and assesses which is preferred by
the data, the results of which are discussed in x 5.

2. MODEL SELECTION VERSUS FITTING PARAMETERS

Parameter fitting and goodness-of-fit (GoF)20 tests alone are
not effective ways to decide between possible models. These
statistical measures are based on the assumption that the underly-
ing model is the correct one. The �2 statistic can test the validity
of a particular model, but comparing relative likelihoods based
on the �2 values of different models does not properly account
for the structural differences between them.

In other words, �2 statistics are good at finding the best pa-
rameters in a model but are insufficient for deciding whether the
model itself is the best one. One might be tempted to prefer the
model that gives the best fit to the data, defined as the lowest �2.
However, this does not account for the relative complexity of
the models. To give a blatant example, a 10th-order polynomial
will always give an equal or better fit than a straight line to any
data set, but this does not mean that any of the extra eight co-
efficients have any significance. It just means that a model with
more parameters will generally give an improved fit (always, if
the simpler model is a subclass of the more complex one).

Moreover, even though many cosmological models can be
expressed in terms of a ‘‘w’’ that describes the dynamical be-
havior of dark energy, the different functional parameterizations
used by different models mean that they are not referring to the
same thing. Consequently, the value of w that the data prefer is

integrally related to the model used in a fit (e.g., Zhao et al.
2007). This difficulty makes it unwise to compare different
models by simply considering likelihood contours or best-fit
parameters. For example, the constant, w, that appears in the
standard dark energy model (x 4.1.4) is not the same parameter
as the constant,w0, that appears in the w(a) parameterization of
the variable dark energy model (x 4.2.1). So if the best-fit value
of w0 drifts away from �1, it does not rule out w ¼ �1.

Instead, we turn to information criteria ( IC) to assess the
strength of models. These statistics favor models that give a
good fit with fewer parameters. In this paper we use the Bayesian
information criterion (BIC; Schwarz 1978) and the Akaike in-
formation criterion (AIC; Akaike 1974) to select the best-fit
models. Liddle (2004) examines the use of information criteria
in the context of cosmological observations, and we follow his
prescription here. Previous explorations into AIC and BIC in a
cosmological context include Godyowski & Szydyowski (2005),
Szydyowski & Godyowski (2006), Szydyowski et al. (2006),
Magueijo & Sorkin (2007), Mukherjee et al. (2006), and Biesiada
(2007).

The BIC (also known as the Schwarz information criterion;
Schwarz 1978) is given by

BIC ¼ �2 lnLþ k ln N ; ð1Þ

where L is the maximum likelihood, k is the number of pa-
rameters, and N is the number of data points used in the fit. Note
that for Gaussian errors, �2 ¼ �2 lnL, and the difference in
BIC can be simplified to�BIC ¼ ��2 þ�k ln N . A difference
in BIC (�BIC) of 2 is considered positive evidence against the
model with the higher BIC, while a �BIC of 6 is considered
strong evidence (Liddle 2004).

The AIC (Akaike 1974),

AIC ¼ �2 ln Lþ 2k; ð2Þ

gives results similar to the BIC approach, although the AIC is
more lenient on models with extra parameters for any reason-
ably sized data set ( lnN > 2). As mentioned in Liddle (2007),
Sugiura (1978) give a version of the AIC corrected for small
sample sizes, AICc ¼ AICþ 2k(k � 1)/(N � k � 1), which is
important when N /kP 40 (Burnham & Anderson 2002, 2004).
The correction is negligible in our case (�0.06).

Both tests can be applied to unrelated models (the simpler
model need not be nested in the more complex model). These
criteria make an attempt to quantify Occam’s razor. When two
models fit the data equally well, the simpler model (the one with
fewer free parameters) is preferred.

A poor information criterion result can arise in two ways:
(1) when the model is a poor fit to the data, regardless of the
number of free parameters; in this case a large reduced �2 value
indicates that the model does not explain the data; and (2) when
the data are too poor to constrain the extra parameters in the
model; such a model would be disfavored by information crite-
ria if a simpler model is available, but it may well be that with
improved data the more complex model becomes preferred.21

Thus, information criteria alone can at most say that a more com-
plex model is not necessary to explain the data. In this paper we

20 Defined as GoF ¼ �(�/2; �2/2) /�(�/2), where �(�/2; �2/2) is the incom-
plete gamma function and � is the number of degrees of freedom. It gives the
probability of obtaining data that are a worse fit to the model, assuming that the
model is correct.

21 For example, general relativity would fail to rival Newtonian gravity if
the only experiment available were dropping balls from the leaning tower of
Pisa, but general relativity would become necessary when data on the precession
of Mercury’s orbit became available.
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find this to be the current situation for dynamical dark energy
models.

The simple prescription for information criteria above is lim-
ited. A more in-depth analysis of the improvement gained by
more complex models would not simply count parameters, but
would consider how much the allowed volume in data space
increases due to the addition of extra parameters (i.e., how much
more flexible the model becomes), as well as any correlations
between the parameters. Bayesian model selection is a technique
that takes this into account using Bayesian evidence, i.e., the av-
erage likelihood of a model over its prior parameter ranges.
Saini et al. (2004) pioneered the use of Bayesian evidence in
cosmology, and Liddle et al. (2006) analyze a variety of dif-
ferent parameterizations of dark energy, w, finding that the
standard cosmological constant remains the favored model. Other
studies include Elgarøy & Multamäki (2006). For this paper, we
have used the first approximation provided by the IC without
calculating the full Bayesian evidence. This simpler version is
sufficient for our purposes, and when systematic errors dominate
the uncertainty in the data (as has now become true for SN data
sets), further statistical analysis becomes unwarranted. Informa-
tion criteria also require no assumptions for the prior or the metric
on the space of model parameters.

3. DATA

In order to test the different models, we have used observa-
tional data from a variety of sources described below.

3.1. Type Ia Supernovae (SNe Ia)

As mentioned in the introduction, one of the prime new data
sets in this work is the SN Ia data from the ESSENCE pro-
ject. The ESSENCE project is a ground-based survey designed
to detect and monitor about 200 SNe Ia in the redshift range
z ¼ 0:2Y0:8.

The strategy and implementation of this project are described
by Miknaitis et al. (2007), and the goal of the completed survey
is to constrain w with a precision of �10%. With the recent re-
lease of the first 4 years of data and their cosmological impli-
cations (WV07), we are now in an excellent position to probe
further cosmological models.

Another large, high-quality supernova search, the SNLS, re-
cently published an extensive and homogeneous first-year data
set (Astier et al. 2006). In combining the two data sets, we have
leaned on the light-curve fitting performed byWV07, who fit all
SNe from these different data sets with the same light-curve fitter,
MCLS2k2 (Jha et al. 2007). Following WV07, the uncertainty
added due to the intrinsic diversity of SNe Ia is 0.10 mag (as-
suming a peculiar velocity uncertainty of 400 km s�1). We have
used the data from Table 9 in WV07, including only those SNe
for which the light-curve fits passed the quality cuts. That in-
cludes 60 ESSENCE supernovae, 57 SNLS supernovae, and 45
nearby supernovae.

We also incorporate the new data release of 30 SNe Ia, at
0:216 � z � 1:755 detected by HST and classified as ‘‘gold’’
supernovae by Riess et al. (2007). Such high-z data are par-
ticularly useful for this analysis because the SN Ia constraints
on the evolution of w are improved as the range of redshifts is
extended. We adopted the local supernovae that these samples
had in common in order to normalize the luminosity distances
of the samples, and we included the uncertainty in this normal-
ization in the distance errors for the HST SNe Ia.

Ideally these two data sets should both be generated using the
same light-curve fitter, in which case no normalization would be

required. This is in progress, and in the interim we provide the
combined data set as used in this paper.22

We note that any statistical analysis of the type we perform
here may be limited by systematic errors in the data. Possible
sources of systematic error in the supernova data include local
velocity structures (Jha et al. 2007; Zehavi et al. 1998) and the
treatment of dust (WV07; Astier et al. 2006). WV07 concentrate
much of their discussion on the analysis of systematic errors
and how to minimize them. They calculate that the systematic
error in supernova data gives a maximum uncertainty in w of
0.13 for the flat, constant-w model when combined with BAO
constraints.

3.2. Cosmic Microwave Background

The characteristic angular scale of the first peak in the CMB
anisotropy spectrum is given by

�A � rs zlsð Þ
DA zlsð Þ ; ð3Þ

where rs(zls) is the comoving size of the sound horizon at last
scattering [roughly proportional to (�mH

2
0 )

�1/2] and DA(zls) is
the comoving angular distance to the last scattering surface.
Following the prescription given by Doran & Lilley (2002)

and Page et al. (2003), we have converted theWMAP three-year
result (Spergel et al. 2007) on the location of the first peak to a
reduced distance to the last scattering surface,

R ¼

ffiffiffiffiffiffiffiffiffi
�m

�kj j

s
Sk H0

ffiffiffiffiffiffiffiffi
�kj j

p Z zls

0

dz

H zð Þ

� �
¼ 1:71 � 0:03; ð4Þ

where Sk(x) ¼ sin x, x, and sinh x for k ¼ þ1, 0, and �1,
respectively.23

The value of this parameter is somewhat model dependent.
For example, it changes slightly when massive neutrinos are in-
cluded (Elgarøy &Multamäki 2007), and it is weakly dependent
on the density of the dark energy at the last scattering surface
(through the �̄�

ls term; see Doran & Lilley 2002). Using R ¼
1:71 therefore artificially excludes some models with, for exam-
ple, strongly varying dark energy. However, constraints from big
bang nucleosynthesis (BBN) rule outmodels with vastly different
expansion dynamics from the standardmodel at the time of nucleo-
synthesis (Carroll & Kaplinghat 2002; Steigman 2006; Wright
2007), so this is not an unreasonable exclusion. The BBN results
may change if not only gravitational dynamics but also particle
physics processes changed in any of the models.
The robustness of the shift parameter is tested in Elgarøy &

Multamäki (2007) compared to fitting the full CMB power spec-
trum, and they confirm that it is an accurate measure for non-
standard cosmologies such as those tested here. Degeneracies that
arise fromusingR rather than fitting the full CMBpower spectrum
are well constrained by other data such as BAOs and SNe.

22 The data are available at http://www.dark-cosmology.dk /archive/SN, http://
braeburn.pha.jhu.edu /~ariess/R06, and http://www.ctio.noao.edu /essence.When
used, please cite WV07, Riess et al. (2007), and Astier et al. (2006) in addition
to this paper. TheseWeb sites will be updatedwhen the self-consistent light-curve
fitting is complete.

23 Other calculations of the shift parameter include Wang & Mukherjee
(2006), who find R ¼ 1:70 � 0:03, and this is used by, for example, Alam et al.
(2007) and Liddle et al. (2006). Elgarøy & Multamäki (2007) find R ¼ 1:71 �
0:03.We calculated the value independently. In a new paperWang &Mukherjee
(2007) find R ¼ 1:71� 0:03 when allowing nonzero cosmic curvature. The small
difference has a negligible effect on the results.
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3.3. Baryon Acoustic Oscillations

Similar to the use of the angular scale of the first peak in the
CMB spectrum, we can use the measurement of the peak at
�100 h�1 Mpc of the large-scale correlation function of lumi-
nous red galaxies in the Sloan Digital Sky Survey (Eisenstein
et al. 2005) to further constrain cosmological parameters.

The large-scale correlation function is a combination of the
correlations measured in the radial (redshift space) and the trans-
verse (angular space) direction, and thus the relevant distance
measure is the so-called dilation scale,

DV zð Þ ¼ DA zð Þ2z=H zð Þ
h i1=3

; ð5Þ

at the typical redshift of the galaxy sample, z ¼ 0:35. The absolute
scale of the BAO is given by the sound horizon at last scattering,
and the dimensionless combination A(z) ¼ DV (z)(�mH

2
0 )

1/2/z is
well constrained by the BAO data to be

A 0:35ð Þ ¼ DV 0:35ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�mH

2
0

p
0:35

¼ 0:469 � 0:017: ð6Þ

3.4. Not Used

There are additional sources of observations, which are po-
tentially important for constraining cosmological parameters,
that we have not included in this analysis. We have, for exam-
ple, chosen to omit any information from distant gamma-ray
bursts (Ghirlanda et al. 2004) since such data are rather contro-
versial (Mörtsell & Sollerman 2005; Friedman & Bloom 2005).
We have also not used the constraints fromX-ray data on relaxed
galaxy clusters (Allen et al. 2004), although this method may
well become important in the future. The weak-lensing data from
theCanada-France-Hawaii Telescope (CFHT;Hoekstra et al. 2006)
are an additional source of data that we have omitted here. At least
some of these additional sources of information will become in-
creasingly important as the data improve.

Apart from geometrical probes, as a consistency check we
have used large-scale structure constraints on the growth factor
as measured by the Two Degree Field Galaxy Redshift Survey.
The constraints on the models from the growth factor are similar,
but weak, compared to the BAO constraints. Since the computa-
tion of the growth factor in modified gravity models is potentially
very complicated, we have chosen not to include those constraints
in the final analysis.

3.5. Combining the Constraints

Both the distance to the last scattering surface derived from
the CMB and the BAO constraints depend on the baryon den-
sity (�bh

2) and its uncertainty, and for this we use the value ob-
tained fromWMAP. However, the dependence of BAOon baryon
density is weak [/(�bh

2)�0:08; Eisenstein et al. 2005], and for
distance-related parameters, BAOs and CMB are independent.
Since the SNe Ia, CMB, and BAOs are effectively independent
measurements, we can combine our results by simply multiplying
the likelihood functions.

4. MODELS

Hitherto, all measurements of w have been consistent with
a cosmological constant, w ¼ �1 (e.g., Garnavich et al. 1998;
Tonry et al. 2003; Knop et al. 2003; Hannestad & Mörtsell

2004; Eisenstein et al. 2005; Astier et al. 2006; Spergel et al.
2007; Riess et al. 2007; WV07). However, as discussed in the
introduction, this is not an unproblematic conclusion. Given
the theoretical difficulties in predicting a cosmological constant
with the right vacuum energy density, a variety of suggestions for
other new physics have emerged. Many models use evolving
scalar fields: so-called quintessence models, which allow a time-
varying equation of state to track thematter density. In suchmod-
els, the time-averaged absolute value of w is likely to differ from
unity. Many of these have been tested by other authors; for ex-
ample, Wilson et al. (2006) show that one specific version of
quintessence, the inverse power-law potential (Peebles & Ratra
1988), has a best-fit solution consistent with the cosmological
constant model. Many other models including all kinds of ex-
otica have been proposed, such as k-essence, domain walls, frus-
trated topological defects, and extra dimensions. Padmanabhan
(2003) gives a review of dark energy and its alternatives.

Models can be broadly classed into two groups: (1) those that
invoke some form of extra component to the composition of the
universe (such as dark energy or quintessence), or (2) those that
invoke a variation in the equations governing gravity. In some
cases the two are interchangeable descriptions of a single theory.

Here we choose several of the most popular models discussed
in the literature and examine whether they are consistent with the
data currently available to us:

1. Standard dark energy models, including varying w.
2. Dvali-Gabadadze-Porrati (DGP) brane world model.
3. Cardassian expansion.
4. Chaplygin gas.

In the following sections we outline the basic equations gov-
erning the evolution of the expansion of the universe in each of
the different models, calculate the best-fit values of their param-
eters, and find their�AIC and�BIC values. The models used
and the parameters that describe each model are summarized
in Table 1. For some relevant models we plot the likelihood
contours of their parameters (see Figs. 1Y6). We show how the
magnitude-redshift evolution of eachmodel compares to the super-
nova data in Figure 7 and how their best fits match the value of
R measured from the CMB data and the value of A measured
from the BAO data in Figure 8. The information criteria results
are summarized in Table 2 and shown in Figure 9.

TABLE 1

Summary of Models

Model Abbreviationa Parametersb Section

Flat cosmological constant ........... F� �m 4.1.1

Cosmological constant .................. � �m, �� 4.1.2

Flat constant w .............................. Fw �m, w 4.1.3

Constant w .................................... w �m, �k, w 4.1.4

Flat w(a) ....................................... Fwa �m, w0, wa 4.2.1

DGP............................................... DGP �k , �rc 4.3.1

Flat DGP ....................................... FDGP �rc 4.3.2

Cardassian ..................................... Ca �m, q, n 4.4

Flat general Chaplygin ................. FGCh A, � 4.5.1

General Chaplygin ........................ GCh �k, A, � 4.5.1

Flat Chaplygin .............................. FCh A 4.5.2

Chaplygin...................................... Ch �k, A 4.5.2

a The abbreviations used in Fig. 9.
b The free parameters in each model. Note that when fitting the SN Ia data we

also fit an additional parameter,M, for the normalization of SN magnitudes. We
include this in the number of degrees of freedom and in k but have not listed it here
as a parameter in each model.
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All the contours in Figures 1Y6 represent two-parameter con-
fidence intervals, and the uncertainties quoted in the text are the
95% confidence level for one parameter.

4.1. Dark Energy Models with Constant Equation of State

The dark energy models with a constant equation-of-state
parameter, w, are described by the following equation relating
Hubble’s constant to the scale factor, a:

H 2

H 2
0

¼ �m

a3
þ �k

a2
þ �x

a3 1þwð Þ ; ð7Þ

where �m is the current value of the normalized matter density,
the curvature of the universe is given by �k ¼ 1� �x � �m,
and �x is the current value of the normalized dark energy
density.

4.1.1. Flat, Cosmological Constant Model (Flat �)

The standard cosmological model is the�CDMmodel, which
invokes w ¼ �1 at all times, in the form of a cosmological
constant,�x ¼ ��. The simplest version of thismodel assumes a
flat universe (�� ¼ 1� �m), so

H 2

H 2
0

¼ �m

a3
þ 1� �mð Þ; ð8Þ

Fig. 1.—Flat dark energymodel: a flat universe with constantw (x 4.1.3). The
constraint from each of the observational probes is shown by shaded contours
(according to the legend). These are all 95% confidence intervals for two pa-
rameters. The combined contours (95% and 99.9% confidence intervals) are
overlayed in black. The complementarity of the different observational probes
is clearly demonstrated in the differing angles of the overlapping contours. The
combined data form a clear preference around the cosmological constant model
(w ¼ �1). Despite the extra freedom afforded by allowing the dark energy to
have an equation-of-state parameter that differs from �1, the data do not show
any indication that this freedom is required. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 2.—Flat, variable w(a) model (x 4.2.1). The contours are the same as in
Fig. 1. The parameters of this model are very poorly constrained by the current
data. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—General DGPmodel (x 4.3.1). The dashed line shows the flat model.
Here the contours from the different observational constraints disagree and the
model is thus strongly disfavored. [See the electronic edition of the Journal for a
color version of this figure.]

Fig. 4.—Cardassian expansion (x 4.4). The dotted line shows the param-
eters that would agree with the flat, constant-w model (for a wide range of
w-values). The cross marks the parameters that match the flat � model. This is
a model with three free parameters (�m is not shown), and it is not very well
constrained by the current data. [See the electronic edition of the Journal for a
color version of this figure.]

DAVIS ET AL.720 Vol. 666



which only depends on one parameter. Our best-fit value is

�m ¼ 0:27 � 0:04:

This has the lowest AIC and BIC of all models tested, so�AIC
and �BIC are measured with respect to this model (Table 2).

4.1.2. The Cosmological Constant Model (�)

Allowing for deviations from flatness allows one extra de-
gree of freedom,

H 2

H 2
0

¼ �m

a3
þ �k

a2
þ �� ð9Þ

(recalling �k ¼ 1� �� � �m).

4.1.3. The Flat Dark Energy Model (Flat Constant w)

Allowing instead for different values of w, but maintaining
the constraint of flatness, we have

H 2

H 2
0

¼ �m

a3
þ �x

a3 1þwð Þ ; ð10Þ

where�x ¼ 1� �m.We plot the likelihood contours in Figure 1.
The best-fit parameters are

�m ¼ 0:27 � 0:04; w ¼ �1:01 � 0:15:

Fig. 5.—Flat generalized Chaplygin gas (x 4.5.1). The cross at � ¼ 0,
A ¼ 0:72 marks the parameters that match the best-fit flat � model, while the
dotted line shows the parameters that match the � model (with �m ¼ 1� A).
Again, despite the flexibility of this model, the best fit is achieved for parameters
that are consistent with the flat � model. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 6.—Standard Chaplygin gas (x 4.5.2). The dashed line shows the flat
version of the model. Clearly this model is a very poor fit to the data. The sub-
tleties of information criteria are not required to determine that this model is
disfavored. [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 7.—Best fit for each model, determined using supernova, BAO, and
CMB data, plotted against the supernova data. Distance modulus is shown with
respect to the empty model. Here you can see that the models that provide good
fits to the data (lines in the upper legend ) are all essentially identical fits, while
the models that could not mimic a cosmological constant fit poorly (lines in the
lower legend). The gray points in the background are all the raw supernova data
used in the fits, while for illustrative purposes only we show the binned data as
large black filled circles with two-dimensional error bars. Following Riess et al.
(2007), we use bins of n�z ¼ 6, where n is the number of points in the bin and
�z is the redshift range. Distance modulus error bars are the quadrature sum of
the distance modulus uncertainties in the bin, while redshift error bars show the
standard deviation of the redshifts in the bin. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 8.—Best-fit values of the CMB R parameter and the BAO A parameter
for each model. The solid lines and gray shaded regions show the measurement
and 1 � uncertainty for these parameters as measured using CMB or BAOs. [See
the electronic edition of the Journal for a color version of this figure.]
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4.1.4. The Standard Dark Energy Model (Constant w)

Relaxing the constraint of flatness, we fit the most general
form of constant equation-of-state dark energy using all three
independent parameters of equation (7).

The AIC and BIC for these four models suggest that the
simplest model adequately explains the data, and there is little
evidence supporting the inclusion of extra parameters.

4.2. Dark Energy Models with Variable Equation of State

Allowing the dark energy equation-of-state parameter to vary
as the universe evolves adds additional degrees of freedom to
the model. The Friedmann equation for a varying w is given by
equation (7) with the following replacement:

a3 1þwð Þ ! exp 3

Z 1

a

1þ w a0ð Þ
a0

da0
� �

: ð11Þ

Below we discuss one possible parameterization of w, which is
linear in scale factor. However, it is important to note that the time
variation ofw can be parameterized inmanyways (e.g., Hannestad
&Mörtsell 2004; Barnes et al. 2005; Calvo&Maroto 2006;Huterer
& Peiris 2007; Riess et al. 2007), and choosing a particular pa-
rameterization enforces a particular form of time evolution on
themodel, whichmay not be appropriate. Giving an analytic form
to the time evolution of w can act like a strong prior and may give
misleading results (for further discussion see Bassett et al. 2004;
Riess et al. 2007). In what follows, we consider what has become
the most common parameterization of w but caution that a non-
parametric approach could be preferred. Promising nonparametric
techniques include a type of principal component analysis that
allows the reconstruction of cosmological features such as �(z),
w(z), and their derivatives, as a function of redshift (e.g., Linder
& Huterer 2005; Huterer & Cooray 2005; Huterer & Peiris 2007;
Riess et al. 2007).

4.2.1. Standard Parameterization (Flat wa)

Using the parameterizationw(a) ¼ w0 þ wa(1� a) (Chevallier
& Polarski 2001; Linder 2003), equation (11) simplifies to

a3 1þw0ð Þ ! a3 1þw0þwað Þe3wa 1�að Þ: ð12Þ

When we fit for this model, we assume a flat universe, although
loosening this constraint does not change the results consider-
ably. The best-fit parameters are

�m ¼ 0:27 � 0:04; w0 ¼ �1:1þ0:4
�0:3; wa ¼ 0:8þ0:8

�2:4:

The large flexibility of this model means that it is poorly con-
strained by current data (see Fig. 2).
This is also the model that is used in the Dark Energy Task

Force (DETF) figure of merit (FoM; Albrecht et al. 2006). The
FoM is given by the inverse of the area of the 95% confidence
interval in the w0-wa plane. The smaller the area (thus the larger
the FoM), the better the discriminating ability of the experiment.
We calculate that the data sets used here have an FoM of �1.

4.3. The DGP Models

The DGP models (Dvali et al. 2000) arise from a class of
brane-related theories in which gravity leaks out into the bulk
at large distances, resulting in the possibility of accelerated
expansion.
Notably, this theory provides for an accelerating universe

without adding any extra parameters, two parameters being suf-
ficient to define the model. Lue (2006) shows how the growth of
large-scale structure proceeds in the DGPmodel, but the position
of the BAO peak is not expected to be influenced by this mod-
ification (Yamamoto et al. 2006).

4.3.1. DGP Model

The general DGP model is governed by the equation

H 2

H 2
0

¼ �k

a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m

a3
þ �rc

r
þ

ffiffiffiffiffiffiffi
�rc

p !2

; ð13Þ

where�m ¼ 1� �k � 2(�rc )
1/2(1� �k )

1/2. The parameter rc is
the length scale beyond which gravity leaks out into the bulk,
and �rc is related to this length scale by �rc ¼ 1/(4r 2c H

2
0 ).

TABLE 2

Summary of the Information Criteria Results

Model �2/dof

GoF

(%) �AIC �BIC

Flat cosmological constant ............. 194.5/192 43.7 0 0

Flat general Chaplygin ................... 193.9/191 42.7 1 5

Cosmological constant .................... 194.3/191 42.0 2 5

Flat constant w ................................ 194.5/191 41.7 2 5

Flat w (a) ......................................... 193.8/190 41.0 3 10

Constant w ...................................... 193.9/190 40.8 3 10

General Chaplygin .......................... 193.9/190 40.7 3 10

Cardassian ....................................... 194.1/190 40.4 4 10

DGP................................................. 207.4/191 19.8 15 18

Flat DGP ......................................... 210.1/192 17.6 16 16

Chaplygin........................................ 220.4/191 7.1 28 30

Flat Chaplygin ................................ 301.0/192 0.0 30 30

Notes.—The flat cosmological constant (flat �) model is preferred by both
the AIC and the BIC. The �AIC and �BIC values for all other models in the
table are then measured with respect to these lowest values. The goodness of
fit (GoF ) approximates the probability of finding a worse fit to the data. The
models are given in order of increasing �AIC.

Fig. 9.—Graphical representation of the results in Table 2. �AIC is rep-
resented by the light gray bars, �BIC by the dark gray bars. The order of
models from left to right is the same as the order in Table 2, which is listed in
order of increasing �AIC. The crosses mark the number of free parameters in
each model (right-hand ordinate). The AIC and BIC qualitatively agree on the
ranking of models, but the BIC is harsher than the AIC on models with more
parameters. The primary increase in�IC for the first seven models (after flat �)
is due to the larger number of parameters, whereas the last four models suffer
because they are poor fits to the data. A �BIC of more than 2 (or 6) is con-
sidered positive (or strong) evidence against a model (Liddle 2004). We express
this as ‘‘unsupported’’ (or ‘‘strongly unsupported’’) by the data.
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As is evident from Figure 3, the overlapping region that is
preferred by the supernova and BAO data seems to be inconsis-
tent with the CMB data. This concurs with the analysis of the
DGP model by Fairbairn & Goobar (2006). However, it should
be noted that the model cannot be ruled out based on this ob-
servation alone since the GoF is�0.2; that is, assuming that the
underlying model is indeed DGP, the probability of finding an
even worse fit is �20%.

4.3.2. Flat DGP Model

The flat DGP model can be considered a more constrained
version of the general DGP model. It has only one parameter
to fit, �rc , and serves as an illustrative example of the power of
information criterion tests. The model gives a best-fit �2 value
of 210 for 192 degrees of freedom (dof ). The GoF of this is 18%.
The flat cosmological constant model has a best-fit �2 value of
195 for the same number of dof, giving a GoF of 44% (Table 2).
Thus, comparing the GoF for the models may not seem to war-
rant a strong preference for one model over the other. However,
since the models have the same number of fitted parameters, the
difference in the BIC is equal to the difference in the�2,�BIC �
14 (see Table 2 and Fig. 9), indicating a strong preference for the
flat cosmological constant model.

In order to assess the significance of the IC results, we have
performedMonteCarlo tests with 1000 simulated data sets where
the underlying cosmology is given by the flat DGP. We fitted
flat DGP and flat �models to each simulated data set and then
compared the BIC for the two fits. The �BIC obtained24 is
roughly Gaussian with�BIC ¼ �19 � 9. So if the underlying
universe genuinely followed the DGPmodel, we would expect
our measured�BIC to be negative. Instead, we find a�BIC of
+14. The highest value we obtain from our 1000 simulated
DGP data sets is �BIC ¼ 7, still far from the value of 14 we
obtain for the real data. When the underlying cosmology is as-
sumed to be flat�, our simulated data sets give�BIC ¼ 18 � 8,
fully compatible with the measured value. From this we con-
clude that a large difference in the IC of different models indeed
points to a very strong statistical preference for the model with
the lower value of the IC.

4.4. Cardassian Expansion

Cardassian models (Freese & Lewis 2002) involve a mod-
ification of the Friedmann equation that allows for accelera-
tion in a flat, matter-dominated universe. The reason for the
modification could be the self-interaction of dark matter, or
the embedding of our observable three-dimensional brane in a
higher dimensional universe. Wang et al. (2003) calculated
that a Cardassian model could be discriminated from a generic
quintessence model or a cosmological constant given expected
future data sets, such as the Supernova/Acceleration Probe
(SNAP; Aldering et al. 2004), one possible manifestation of the
Joint Dark Energy Mission. We now employ the interim data
sets that have become available to see what current data can
determine.

Note that we have assumed that any nonstandard modifica-
tions to the location of the CMB and BAO peaks are negligible.

The original power-law Cardassian model has

H 2

H 2
0

¼ �m

a3
þ �k

a2
þ 1� �m � �kð Þ

a3n
; ð14Þ

where n is a dimensionless parameter related to w. The original
Cardassian model is equivalent to the standard dark energy
model (x 4.1.4) forw ¼ n� 1, so there is no need to additionally
fit that model. However, other incarnations of Cardassian ex-
pansion do not match any standard dark energy model. One
example is ‘‘modified polytropic Cardassian’’ expansion, which
follows

H 2

H 2
0

¼ �m

a3
1þ

��q
m � 1

� �
a3q n�1ð Þ

� �1=q
: ð15Þ

For q ¼ 1, this collapses to the flat dark energy model with
w ¼ n� 1.

Cardassian expansion fits the data well. This is due to its
close phenomenological similarity with standard dark energy
models. In particular, we note that the best-fit Cardassian ex-
pansion parameters are consistent with (within 1 � of ) those that
make the Cardassian expansion collapse to one of the standard
dark energy models (see Fig. 4). However, it suffers in AIC and
BIC tests because of its larger number of parameters (three).

4.5. Chaplygin Gas

Chaplygin gas models (Kamenshchik et al. 2001) invoke a
background fluid with p / ��� . They are motivated by brane
world scenarios (Bento et al. 2002 and references therein) and
may be able to unify dark matter and dark energy (Bilić et al.
2002). We consider both the generalized and standard (� ¼ 1)
Chaplygin gas models, with and without flatness constraints.

4.5.1. Generalized Chaplygin Gas

The generalized Chaplygin gas has an equation of state gov-
erned by p ¼ �A/�� (with � > 0 and A being a positive con-
stant) and obeys

H 2

H 2
0

¼ �k

a2
þ 1� �kð Þ Aþ 1� Að Þ

a3 1þ�ð Þ

� �1= 1þ�ð Þ
; ð16Þ

where the standard cosmological constant model is recovered for
� ¼ 0 and �m ¼ (1� �k)(1� A). The reduced distance to the
last scattering surface has been calculated as

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �kð Þ 1� Að Þ

�kj j

s
Sk H0

ffiffiffiffiffiffiffiffi
�kj j

p Z zls

0

dz

H zð Þ

� �
: ð17Þ

No modifications for the location of the BAO peak have been
made. The flat version requires �k ¼ 0.

Out of all the nonstandard cosmological models that we con-
sider, Chaplygin gas models fare the best under the information
criteria tests (see Table 2), with the flat version slightly preferred
(Fig. 5). This is not unexpected, as the best-fit parameters are
again close to flat � (as also found in, e.g., Bean & Doré 2003).

4.5.2. Standard Chaplygin Gas

The standard Chaplygin gas (� ¼ 1) has

H 2

H 2
0

¼ �k

a2
þ 1� �kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aþ 1� Að Þ

a6

r
: ð18Þ

Again we also test the flat version, which requires�k ¼ 0. These
standard Chaplygin gas models may be the most basic models
arising from d-brane theory, but they are not good fits to the data
(Fig. 6; see also Bean & Doré 2003; Zhu 2004).24 �BIC ¼ BICCat � � BICCat DGP.
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5. DISCUSSION AND SUMMARY

We have tested a variety of nonstandard cosmological models
against the latest cosmological data. This includes new data of
SNe Ia from the ESSENCE, SNLS, and Higher-z collaborations.
We have also included the reduced distance to the last scattering
surface from the CMB and the constraints from BAOs. Based on
information criteria, both AIC and BIC, the simplest model of a
flat universe with a cosmological constant remains the best model
to explain the current data.

Information criteria provide a valuable way to get a relative
ranking of the viability of scenarios, using a statistical analysis
that gives strong weight to the most simplistic model that fits the
observations. This does not mean that the simplest model is al-
ways correct, rather that more complex and flexible models are
not (yet) necessary. A poor information criteria result will arise
when the data are not good enough to adequately constrain the
model. In order to falsify a model, one should look for contradic-
tions in the data, such as when multiple data sets measure incon-
sistent values for the parameters of the model. This occurs, for
example, in the standard Chaplygin gas model (Fig. 6).

We provide a graphical representation of the IC results in
Figure 9. This shows not only the�AIC and�BIC, but also the
number of parameters in each model (crosses and right-hand
ordinate). Given the current data, the flat cosmological constant
model is clearly preferred by these tests. It almost achieves the
best fit of all the models despite its economy of parameters.

Following it are a series of models that give comparably good
fits but havemore free parameters. They are flat general Chaplygin
gas, cosmological constant, and flat constantw, which all have two
free parameters; and general Chaplygin gas, flatw(a), Cardassian
expansion, and standard dark energy (constant w), which have
three free parameters.We showhow their magnitude-redshift evo-
lution compares to the supernova data in Figure 7 (lines in the
upper legend) and how well they fit the CMB and BAO data in
Figure 8. Any of these models could eventually prove to be the
best description of our universe, but for the moment the data are
not sharp enough to demonstrate the value of the extra com-
plexity. Nevertheless, it seems suggestive that these models can
all reduce to flat � and their best-fit parameters do so (to within
1 �). The flat general Chaplyginmodel, for example, reduces to the
flat cosmological constant model when � ¼ 0 and A ¼ 1� �m.
The actual values of the best fit are � ¼ 0:03 � 0:10 and A ¼
0:73 � 0:04 (corresponding to �m ¼ 0:27 � 0:04).

Clearly new and better data are still needed to discriminate
between these models. The advanced cosmological probes being
planned for the next decade and beyond (Albrecht et al. 2006;
Peacock et al. 2006) will improve considerably on current con-
straints and will be able to vigorously test the � model. If the
results of these future experiments remain consistent with �, it
would raise an interesting question. Is there a point at which we
should accept � and abandon our scrutiny of more complex
models? This is particularly problematic when alternative mod-
els are able to match the � model to arbitrary precision.
The answer is likely to be twofold. Observers will continue to

improve on current techniques andmay discover new techniques
that could break the degeneracy for some of these models. Al-
ternatively, theoretical considerations, such as the discovery of a
quantum theory of gravity that makes accurate predictions in
other realms of physics, may indicate a preference for a particular
model.
The last four models we tested, flat DGP, DGP, standard

Chaplygin, and flat standard Chaplygin, are clearly disfavored.
They have fewer parameters than models like flat w(a), but
they score poorly because they are unable to provide a good fit
to the data. They do not reduce to flat � for any values of their
parameters.
In summary, given the current quality of the data, information

criteria indicate that there is no reason to prefer any more com-
plex model over the concordance cosmology, the flat cosmo-
logical constant. It will be exciting to see whether future data
sets change this conclusion.
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