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THE RECTILINEAR STEINER ARBORESCENCE PROBLEM IS
NP-COMPLETE∗

WEIPING SHI† AND CHEN SU‡

Abstract. Given a set of points in the first quadrant, a rectilinear Steiner arborescence (RSA)
is a directed tree rooted at the origin, containing all points, and composed solely of horizontal and
vertical edges oriented from left to right, or from bottom to top. The complexity of finding an
RSA with the minimum total edge length for general planar point sets has been a well-known open
problem in algorithm design and VLSI routing. In this paper, we prove the problem is NP-complete
in the strong sense.
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1. Introduction. Let P = {p1, p2, . . . , pn} be a set of points in the first quadrant
of E2, where pi = (xi, yi). A rectilinear Steiner arborescence (RSA) for P is a directed
Steiner tree T rooted at the origin, containing all points in P , and composed solely
of horizontal and vertical line segments oriented from left to right, or from bottom
to top. A rectilinear Steiner minimum arborescence (RSMA) for P is an RSA for P
that has the shortest possible total edge length.

The difference between an RSA and the traditional rectilinear Steiner tree is that
an RSA is also a shortest distance tree with respect to the origin. Figure 1.1 shows
a Steiner minimum arborescence, a Steiner minimum tree, and a minimum spanning
tree for the same set of points with p1 being the origin. For an introduction on Steiner
trees, see the book by Hwang, Richards, and Winter [9].
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Fig. 1.1. A rectilinear Steiner arborescence (a), a rectilinear Steiner tree (b), and a rectilinear
spanning tree (c).

The rectilinear Steiner arborescence problem was first studied by Nastansky,
Selkow, and Stewart [13] in 1974. They proposed an integer programming formula-
tion, which has exponential time complexity. In 1979 Laderia de Matos [10] proposed
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an exponential time dynamic programming algorithm. In 1985, Trubin [15] claimed
the RSA problem can be solved in polynomial time. In 1992, Rao, Sadayappan,
Hwang, and Shor [14] showed that Trubin’s algorithm is incorrect and presented an
O(n log n) time approximation algorithm that produces an RSA of length at most
2 times the optimal [14]. In 1994, Córdova and Lee [6] extended the heuristic to
points in all four quadrants with the same time complexity. In 1997, Cho [3] again
claimed that the RSA problem can be solved in polynomial time using a min-cost
max-flow approach. Soon after, Erzin and Kahng showed Cho’s claim is wrong [7].
In 2000, Lu and Ruan [12], motivated by the polynomial time approximation scheme
(PTAS) of Arora [2], designed a PTAS for the RSA problem. Their PTAS runs in
time O(nO(c) log n) and produces an RSA of length at most (1 + 1/c) times the opti-
mal. However, whether there exists a polynomial time algorithm for the RSA problem
remains open.

Because an RSMA is a shortest distance tree of minimum total length, it has
important applications in VLSI routing. Cong, Leung, and Zhou [5] showed that
routing trees based on RSMAs may have significantly less delay than those based
on the traditional Steiner trees. Many researchers proposed efficient heuristics and
exponential time exact algorithms for the RSA problem [1, 4].

2. NP-completeness.

2.1. Overall strategy. We assume that readers have the general knowledge of
NP-completeness [8]. The decision version of the RSA problem is as follows:

Instance: A set of points P = {p1, p2, . . . , pn} in the plane, and
a positive integer k.

Question: Is there an RSA of total edge length k or less?
The proof is a reduction from planar 3SAT, which was proven to be NP-complete

in the strong sense by Lichtenstein [11]:
Instance: A set of variables V = {v1, v2, . . . , vn} and a set of

clauses C = {c1, c2, . . . , cm}. Each clause contains at most 3 literals.
Furthermore, the bipartite graph G = (V ∪ C,E) is planar, where
E = {(vi, cj) | vi ∈ cj or vi ∈ cj}.

Question: Is there an assignment for the variables so that all
clauses are satisfied?

For example, Figure 2.1 is the graph of a planar 3SAT instance c1 = v1 ∨ v2 ∨ v3

and c2 = v1 ∨ v4. We will use this example throughout the paper.
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Fig. 2.1. Graph G of a planar 3SAT instance.

The reduction is through component design. For a given planar 3SAT instance,
we first convert its planar graph G to a planar graph H. Then we embed H in a grid
and let the embedded graph be R. Finally we replace each vertex of R by a tile. We
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will use basic tiles to represent variables, NOT tiles to negate variables, OR tiles to
compute the OR of two variables, and clause tiles to check if the clauses are satisfied.
The length of the RSMA for the set of points so constructed will tell us whether the
planar 3SAT has a satisfying solution.

2.2. Embedding. We first convert G of the given planar 3SAT instance to a
planar graph H with maximum degree 3.

For each variable vi in G, let d(vi) be the degree of vi. Replace vi by a path of d(vi)
variable vertices for vi in H: ui1, . . . , uid(vi) and edges (ui1, ui2), . . . , (uid(vi)−1, uid(vi)).
See Figure 2.2 for an example. Each variable vertex will be connected to a clause
vertex defined next.
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Fig. 2.2. Vertex vi of degree 4 is replaced by a path of 4 vertices.

For each clause cj in G that contains two variables, if cj = vi ∨ vk, then H will
contain a clause vertex cj and two edges (cj , ui) and (cj , uk), where ui and uk are
variable vertices for vi and vk, respectively. Since the transformation in Figure 2.2
produced d(vi) variable vertices for each vi, we make each edge connect to a unique
variable vertex. If cj is not in the right form, say, cj = vi ∨ vk, then in H we insert
a NOT vertex wij between cj and the variable vertex for vi. In other words, we will
have a new vertex wij and edges (cj , wij), (wij , ui), and (cj , uk).

For each clause cj in G that contains three variables, let cj = vi ∨ vk ∨ vl =
(vi ∨ vk)∨ vl = c′j ∨ vl. In H, there will be an OR vertex c′j that connects the variable
vertices for vi and vk, and a clause vertex cj that connects c′j and the variable vertex
for vl. Similarly, if cj is not in the right form, we will insert NOT vertices as needed.

Now H is a planar graph with maximum degree 3. Figure 2.3 shows the converted
planar graph H.
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Fig. 2.3. Planar graph H converted from G.

Valiant [16] showed that any planar graph G = (V,E) of maximum degree 3 has
a planar embedding in a rectilinear grid of area O(|V |2). Therefore, graph H can be
embedded in a rectilinear grid of area of O((n+m)2), where n and m are the number
of variables and clauses. We further require the following in the grid embedding.

(1) Vertices share an edge if and only if they are distance 1 apart.
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(2) For each clause vertex cj = vi ∨ vk, or cj = c′j ∨ vk, the path from vi, or c′j ,
enters from the left, and the path from vk enters from below.

(3) Each OR vertex c′j = vi ∨ vk occupies two horizontally adjacent vertices in
the embedding, the path from vi enters from the left, the path from vk enters from
below, and the path leading to cj exits to the right.

These requirements can be satisfied by locally rearranging the grid embedding,
increasing the size of the grid by a constant factor, and adding additional vertices
and edges. For requirement (2), since vi, cj , and vk is a path with no connection
to other vertices in planar graph H, it is always possible to swirl the path to any
direction. Figure 2.4 shows the embedding of an example clause vertex cj = vi ∨ vk.
For requirement (3), the same idea can be used. For an OR vertex c′j = vi ∨ vk, we
first swirl the path to cj to the right. Then if vk and vi are in clockwise order from
the path to cj , then vk and vi can be swirled into proper positions. If vk and vi are in
counterclockwise order from the path to cj , then a crossing may occur. To avoid the
crossing, note that vi ∨ vk = vk ∨ vi. Therefore we can add NOT vertices to paths for
vi and vk and then route vk to enter from the left and vi to enter from below, thereby
maintaining the planarity.
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Fig. 2.4. A clause vertex with incoming paths (a). Requirement (2) is satisfied by swirling (b).

Figure 2.5 shows the grid embedding R. There are two auxiliary vertices t1 and
t2 introduced in order to meet the above requirements.

2.3. Component design. The most important building block of our design is
the quadruped in Figure 2.6. A quadruped consists of 4 white points q1, . . . , q4, and
4 black points b1, . . . , b4. The distances between the points are given in Figure 2.6,
where α, β, δ1, δ2 > 0. In addition, β + δ1 > α, meaning that the Y-coordinate of
q3 is less than the Y-coordinate of q4, and α > δ1 + δ2, meaning that the rectilinear
distance between q2 and q4 is β − δ2 + α − δ1 > β. There is no other point on or
inside the region enclosed by the solid, dashed, and dotted lines, i.e., three triangles
and one rectangle. We call the region the forbidden region.

Definition 2.1. For a set of points Q that contains white points and black
points, a minimum forest of Q is a set of RSAs that contains all white points in Q.
Furthermore, the root of each RSA is a black point in Q, and the total edge length is
minimum.

Lemma 2.2. For a quadruped, there are only two minimum forests, shown as
solid edges and dashed edges in Figure 2.6. The edge length of both minimum forests
is 2(α + β).
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Fig. 2.5. Embedded graph R.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�b1

b2

b3
b4

q4
q3

q2

q1

α

α

α

α

β

β

β

β

δ1

δ2

Fig. 2.6. A quadruped and its forbidden region. The two minimum forests both have total edge
length 2α + 2β.

Proof. To connect q4, we need a path of length at least α. To connect q1, we
also need a path of length at least α, even with the help of the path for q4. Similarly,
to connect q2 and q3, we need two paths each of length at least β. Hence, the lower
bound is 2(α + β).

On the other hand, to connect q1, q2, . . . , q4 with the minimum edge length 2(α+
β), each point must use a path that equals the lower bound. Starting with q2, we can
use either the horizontal edge or the vertical edge, both of length β. If we use the
vertical edge, then we must connect q3 with the horizontal edge, q4 with the vertical
edge, and q1 with the horizontal edge. This gives a total length of 2(α+ β) shown as
the solid edges. If we use the horizontal edge for q2, we will end up with the dashed
edges, also of length 2(α + β).

We are now ready to define the tiles. The height and width of all tiles, except for
the OR tile, are both 96. The height of the OR tile is 96, and the width is 192, twice
the width of other tiles.

A basic tile is made of overlapping quadrupeds as shown in Figure 2.7.
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Fig. 2.7. A basic tile made of overlapping quadrupeds, where α = β = 20 and δ1 = δ2 = 4.

Lemma 2.3. There are only two minimum forests for a basic tile, one shown as
dashed edges and one shown as solid edges.

Proof. Since the basic tile consists of overlapping quadrupeds, from Lemma 2.2,
the minimum forest for one quadruped will force the minimum forests for the rest of
the quadrupeds.

Define the parity π of a minimum forest of a basic tile to be 1 if the rightmost
white point is connected by a horizontal edge, and 0 otherwise. In Figure 2.7, since
the rightmost white point q is connected by a solid horizontal edge, the minimum
forest that uses all solid edges has parity 1, and the minimum forest that uses all
dashed edges has parity 0.

A set of overlapping quadrupeds such as a basic tile has the important property
that once we choose the connection of any point to be solid or dashed, then the entire
minimum forest must be solid or dashed. Therefore, if we insist on the connection
being a minimum forest, then our choice of any point is propagated left, right, top,
and bottom, by overlapping quadrupeds such as basic tiles.

Figure 2.8 shows how to place two horizontally adjacent basic tiles by deleting b1
and b2 of the right tile. To place two vertically adjacent basic tiles, we delete b3 and
b4 of the top tile. Clearly, we have the following result.

Lemma 2.4. For two horizontally or vertically adjacent basic tiles, their minimum
forests must have the same parity.

Now we explain the NOT tile, which is used to change the parity. A horizontal
NOT tile is shown in Figure 2.9. It is easy to check that a horizontal NOT tile can be
placed between two basic tiles, according to the dimension specified in the figure. A
vertical NOT tile is symmetric and can be obtained by reflecting a horizontal NOT tile
with respect to line y = x. The parity of a minimum forest of a horizontal (vertical,
respectively) NOT tile is 1 if the rightmost white point is connected by a horizontal
(vertical, respectively) edge, and 0 otherwise. In Figure 2.9, since the rightmost white
point q is connected by a solid vertical edge, the minimum forest that uses all solid
edges has parity 0.

Lemma 2.5. If a horizontal NOT tile is placed between two basic tiles in a row
(see Figure 2.10), then in the minimum forest, the parities of the two basic tiles must



RECTILINEAR STEINER ARBORESCENCE 735

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

+++++++++++++++++++++++++

+++++++ +
+
+
+
+
+
+
+
+
+
+
+

++++++++++++

+
+
+
+
+
+
+

+++++++++++++++++++++++++

+++++++ +
+
+
+
+
+
+
+
+
+
+
+

++++++++++++

+
+
+
+
+
+
+

Fig. 2.8. Two adjacent basic tiles have the same parity.
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Fig. 2.9. A horizontal NOT tile, where α = β = 25, δ1 = 5, and δ2 = 4.

be different. The same is true for the vertical case.
Proof. By observation, see Figures 2.9 and 2.10. It is easy to check that the

interfaces between the basic tiles and the NOT tile satisfy the requirements of the
quadruped.

A clause tile is shown in Figure 2.11. It has the same interface to the left and
below as a basic tile.

Lemma 2.6. The length of the minimum forest of a clause tile is 108, which is
achievable only if the tile to the left has parity 1, or the tile below has parity 0.

Proof. Note that q1, q2, q3, and q4 each requires an edge of length α = 20. There
are two ways to connect q5 and q6: through edge (q2, q5) and edge (q3, q6) of length
20 + 20 = 40 (shown as dashed edges in Figure 2.11) or through a Steiner point of
length 24 + 4 = 28 (shown as solid edges in Figure 2.11).
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Fig. 2.10. The parity of the left basic tile is different from the parity of the right basic tile due
to the NOT tile in the middle.
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Fig. 2.11. A clause tile, where α = β = 20 and δ1 = δ2 = 4, unless marked otherwise.

Therefore, the minimum forest has length 108, which is achievable only if q2 or
q3 is connected by a solid edge. This in turn requires q1 or q4 to be connected by a
solid edge. In order for q1 to be connected by a solid edge, the parity of the forest on
the left must be 1. In order for q4 to be connected by a solid edge, the parity of the
forest below must be 0.

Finally, we show the OR tile in Figure 2.12. There are two parts in the OR tile:
The left part acts like a clause tile, and the right part adjusts the total width to 192.
The parity of a minimum forest of a OR tile is 1 if the rightmost white point q is
connected by a horizontal edge, and 0 otherwise.

Note that an OR tile can always have a minimum forest of parity 0. In Figure 2.12,
all white points starting with q5 and q6 to the right can be connected by dashed edges,
regardless of what happens to the left and below. However, for the OR tile to have
a minimum forest of parity 1, either q1 or q4 must be connected by the solid edge.
Since the right side of an OR tile is always a clause tile, the OR tile will try to have
parity 1 if possible in order to reduce the cost of the clause tile on the right.
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Fig. 2.12. An OR tile, where α = β = 20, δ1 = 1, and δ2 = 4, unless marked otherwise.

Lemma 2.7. If the parity of a minimum forest of an OR tile is 1, then either the
minimum forest to the left has parity 1 or the minimum forest below has parity 0. On
the other hand, if either the minimum forest to the left has parity 1 or the minimum
forest below has parity 0, then the parity of the OR tile can be 1.

Proof. The proof is similar to the proof for the clause tile. In order for the OR tile
to have parity 1, q5 and q6 cannot be connected by the dashed edges, which requires
q1 or q4 to be connected by solid edges. Therefore, the minimum forest on the left
must have parity 1 or the minimum forest below must have parity 0.

2.4. Main theorem. We construct an RSA instance from the 3SAT instance
as follows. Each variable vertex and auxiliary vertex is replaced by a basic tile, each
NOT vertex is replaced by a NOT tile, each pair of OR vertices is replaced by an OR
tile, and each clause vertex is replaced by a clause tile.

To connect the black points without affecting any minimum forests for the white
points, we need to add additional points. From Definition 2.1 and Lemma 2.2, if there
is no point in the forbidden regions, then the properties of all tiles discussed above
will not be affected. Therefore we add additional black points as follows: For each
black point bi in a basic, NOT, OR, or clause tile, we add a trial of additional black
points distance 1 apart to connect bi to the nearest black/white points to the left or
below, provided that the trial does not enter any forbidden region. Such a trial always
exists since any forbidden region must have a white point at the upper right corner.
Figure 2.13 shows how to add trials of black points to connect some black points in a
basic tile.

Since the newly added black points are not in any forbidden region, these black
points will not affect the minimum forests for the quadrupeds. Furthermore, since the
black points have exactly one closest neighbor to the left and below, of distance 1, all
black points will be connected with a fixed edge length independent of how the white
points are connected. Figure 2.14 shows the RSA instance from Figure 2.5.
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Fig. 2.13. Trials of additional black points are added. The additional points are distance 1
apart and are not in any forbidden region. Therefore the black points will not affect how white points
are connected.

Some readers may wonder if graph G, H, or R contains a cycle, then whether the
corresponding construction and connection will also contain a cycle. From Figure 2.13,
it is easy to see that a cycle in G, H, or R does not correspond to a cycle in the
connection. In the figure, the effect of the connection for q is propagated to b1, but q
is not directly connected to b1 in the Steiner tree in this tile.

Theorem 2.8. The RSA problem is NP-complete in the strong sense.
Proof. It was shown in [14] that the RSA problem has the Hanan property; hence

it is in NP.
For the transformed RSA instance, let L be the sum of minimum edge lengths for

connecting all black points, and for the minimum forest of each basic tile, OR tile,
and NOT tile. Then we claim that the set of points has an RSA of length L + 108m
if and only if the planar 3SAT instance has a satisfying assignment, where m is the
number of clauses.

If the 3SAT is satisfiable, then for each variable vi we make the minimum forest
for the basic tiles corresponding to vi have parity 1 if vi = 1, or parity 0 if vi = 0.
From Lemmas 2.3 and 2.4, the parities of the basic tiles will force the parity of other
tiles. Since all clauses are satisfied, from Lemmas 2.5 and 2.6, we can use the correct
minimum forest for each OR tile and clause tile. Since every clause tile has edge
length 108, we will have an RSA of total edge length L + 108m.

On the other hand, assume there is an RSA of total edge length L+108m. From
Lemmas 2.2, 2.3, 2.4, and 2.5, each tile must use either the dashed edges or the
solid edges, the parities of adjacent tiles must match, and all clause tiles must have
length 108. From Lemma 2.6, at least one variable in each clause is true. Therefore
the RSA corresponds to a true assignment.

The RSA problem is strongly NP-complete because the planar 3SAT problem is
strongly NP-complete, and the coordinates used in our construction are of polynomial
size.
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π(t2) = 0

π(u41) = 0

c2

π(u21) = 1

π(w21) = 0

π(w12) = 1

π(u12) = 1

π(u11) = 1 π(t1) = 1 π(c′1) = 1 c1

π(u31) = 0
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Fig. 2.14. The transformed RSA instance, its solution, and parities of the tiles.
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