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Abstract

A two-dimensional nonlinear inverse fluid-structure interaction problem for a curvi-
linear elastic hydrofoil is considered. A cavity formed behind the foil is modeled accord-
ing to the single-spiral-vortex model by Tulin. The fluid-structure problem is decoupled
by the method of successive approximations. For the cavitation problem, the foil is
modeled as a polygon. The method of conformal mappings and the Riemann-Hilbert
problem is employed at this stage. The classical detachment mechanism for a smooth
arc is satisfied for the polygon approximately. The deformation of the smooth foil is
described by the governing equations of the thin shell theory with the clamped-clamped
boundary conditions. The loading acting on the middle surface of the foil is prescribed
as the difference between the fluid and vapor pressure computed in the fluid problem.
Numerical results include those for the cavity profile, the drag coefficient, the pressure
distribution, the speed, and the displacements of the elastic foil.

1 Introduction

Cavitation in fluids is the vaporization of the liquid when pressure drops below the sat-
uration pressure of the liquid. Many engineering machineries deal with appearance and
disappearance of cavitation that causes noise, vibrations and erosion. Finite cavity flow
has attracted much mathematical interest and provided valuable information for many
naval engineering applications including the design and analysis of propellers and hydrofoil
systems [11], [8]. Extensive review of the literature may be found in [9], [17], [33], [29], [18],
[10], [6], [15].

Mathematical methods used in the cavitation theory include the complex variables
technique [18], the boundary integral method [22], the panel method [19] and the Reynolds
Average Navier-Stokes (RANS) code. In spite of the fact that many effects due to vis-
cosity are neglected in the free-streamline theory, methods developed for this theory ac-
curately predict drag, lift and the profile of the cavity behind a hydrofoil. The complex
variable methods are computationally efficient, which makes them attractive to optimiza-
tion based design problems arising in the study of cavitating flow. To distinguish any
flow in a liquid involving a trailing gas-filled cavity from partial cavitating flow when a
cavity is closed on the boundary of a hydrofoil, in 1944 Posdunin (see for example [32])
proposed to call the former flow as supercavitatng flow. Models of supercavitating flow
include the Kirchhoff-Joukowsky open wake model, the Riabouchinsky image model, the
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Efros-Gilbarg-Rock-Kreisel re-entrant jet model [33], and the two spiral-vortex models by
Tulin [32]. The Kirchhoff-Joukowsky open wake model and the Schwarz-Christoffel map-
ping for the analysis of wake flow past a polygonal obstacle were used in [13]. The Tulin
double-spiral-vortex model was applied for the analysis of a cavitating foil beneath a free
surface in [24], and in a plane in [7]. This Tulin model was also employed for the design
of a numerical scheme for an arbitrary shape cavitating foil in [16]. For simply-connected
flow domains, the Tulin nonlinear single-spiral-vortex model was applied in [25], [18] and
[2]. Recently, this nonlinear model by Tulin and the method of conformal mappings were
generalized for the case of multiply connected free boundary domains in [1], [3], [4], [5].
For these purposes, the method based on the theory of Riemann surfaces and automorphic
functions was developed.

If the cavitating hydrofoil is not a polygon, except for the case when the velocity module
is prescribed in the foil as a function of the arc length [28], the hodograph method does
not give the exact profile of the cavity. For a circular rigid hydrofoil cavitating according
to the Kirchhoff-Joukowsky open wake model, a nonlinear integral equation was derived in
[23]. The Tulin single-spiral-vortex model problem was analyzed for a cambered rigid foil
in [25] and for a circular rigid arc in [18], [30], where a conformal mapping of the interior
of a semi-circle into the flow domain was constructed in a series-form, and the coefficients
of the series were found by the collocation method and an iterative procedure.

Only a few results on the analysis of cavitating elastic hydrofoils are available in the lit-
erature. They include approximate solutions of the Kirchhoff-Joukowsky open wake model
problems for an elastic plate and an elastic shell with clamped-free edges in a polygonal
tunnel [20], [21]. The boundary integral method developed in [34] for supercavitating and
surface-piercing rigid propellers was recently generalized for the elastic case [35].

In this paper we aim to approximately solve the model problem on supercavitating flow
past a curvilinear elastic hydrofoil. The Tulin single-spiral-vortex closure mechanism is
adopted. The deformation of the hydrofoil is governed by the thin shell theory equations
[27]. The method to be proposed is based on the idea of successive approximations. First,
the curvilinear hydrofoil is approximated by a rigid polygon. The problem of the cavitation
theory is solved by the method of conformal mappings by generalizing the solution for a
straight hydrofoil [3] to a polygon. Next, by increasing the number of polygon vertices, an
approximate solution for an arc is found, and fluid pressure on the foil is computed. The
difference between the external and internal pressure acting on the foil defines the loading
on the elastic foil. By deriving the Green’s function for the clamped edges of the elastic shell
we derive the solution to the elastic problem. This solution defines the deformed profile
of the foil, and the cavitation problem is solved for a new polygon that approximates the
deformed foil.

2 A thin flexible hydrofoil of an arbitrary shape

2.1 Formulation

An elastic thin curvilinear hydrofoil and a cavity behind are shown in the physical z =
(x1, x2)-plane of Figure 1. The wetted surface of the foil is B1Bn and a cavity is formed by
two curves B1C+ and BnC−. The flow is two-dimensional, incompressible and irrotational,
and the gravity is neglected. As x1 = −∞, the velocity of the flow is prescribed, V =
(V∞, 0). It is assumed that the flow branches at a stagnation point A of the wetted part
of the foil. The upper and lower branches of the same streamline smoothly separate from
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Figure 1: A supercavitating elastic curvilinear hydrofoil.

the foil at some points B1 and Bn to be determined. The upper and lower streamlines
spiral at the points C+ and C−. All the five points, A, B1, Bn, C+, and C−, are unknown
a priori. The cavity closure mechanism is that described by the Tulin single-spiral-vortex
model. Mathematically, it leads to the following asymptotics of logarithm of the conjugate
complex velocity dw/dz = V1 − iV2 [32]

log
dw

dz
∼ −K((w − w(C))−1/2), z → C, −π ≤ arg[w(z) − w(C)] ≤ π. (2.1)

Here, V = (V1, V2) is the velocity vector, K is a positive constant, w(z) = φ(z) + iψ(z),
φ is the velocity potential, and ψ is the stream function. The function w(z), the complex
velocity potential of the flow, is analytic in the flow domain D̃. The point C is a point (say,
the midpoint) in the segment C+C−. The presence of the two partial cavities BrB1 and
BqBn in Figure 1 is confirmed by numerical tests: it turns out that in the segments BrB1

and BqBn, pressure is lower than the vapor pressure in the cavity, while the speed V in is
greater than the speed in the cavity boundary.

The cavity pressure pc and the speed on the boundary of the cavity, Vc, are constant
and prescribed: Vc =

√
σ + 1V∞, where σ = 2(p∞ − pc)(ρV

2
∞)−1 is the cavitation number,

ρ is the liquid density, and p∞ is the pressure as x1 = −∞. In the boundary of the foil and
the cavity, the function w(z) satisfies the following boundary conditions:

Imw(z) = K0, z ∈ L, K0 = const,
∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

= Vc, z ∈ B1C+ ∪BnC−, arg
dw

dz
= β(z), z ∈ B1Bn, (2.2)

where L comprises the wetted boundary of the foil B1Bn and the boundary of the cavity
B1C+ ∪BnC−, and β(z) is an unknown function to be determined.

The hydrofoil is assumed to be elastic, and the ratios h/l and h/R are small in compari-
son with unity. Here h is the thickness of the foil, l is its length, and R is the principal radius
of curvature of the middle surface x1 = f1(α), x2 = f2(α) (0 ≤ α ≤ α∗), −∞ < x3 < ∞ of
the foil. In what follows we shall be content to prescribe the deformation of the hydrofoil
by the equations of thin cylindrical shells [27]

T ′

A +
N

R
= 0,

N ′

A − T

R
+ qn − pc = 0,

M ′

A −N = 0, (2.3)
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where f ′ = df
dα , A = ds/dα is the Lamé parameter, that is the increase of the arc length s

along the line x1 = f1(α), x2 = f2(α), 0 < α < α∗. The function T is the extensional force,
N is the transverse shear force, M is the bending moment, qn is the water pressure on the
foil, and qn − pc is the external force per unit length acting on the middle surface of the
foil. The force T and the moment M are expressed through the strain ε and the change κ
of curvature of the middle surface by T = λ0ε, M = λ1κ. Here,

λ0 =
Eh

1− ν2
, λ1 =

Eh3

12(1 − ν2)
,

ε =
u′τ
A +

un
R
, κ =

ϕ′

A , ϕ = −u
′
n

A +
uτ
R
, (2.4)

E is Young’s modulus, ν is the Poisson ratio, uτ and un are the tangential and normal
displacements, respectively, and ϕ is the angle of rotation. It will be convenient to rewrite
the governing equations in terms of the two displacements

(

u′τ
A +

un
R

)′

− λ1
λ0R

[

1

A

(

u′n
A − uτ

R

)′
]′

= 0,

{

1

A

[

1

A

(

u′n
A − uτ

R

)′
]′}′

+
λ0A
λ1R

(

u′τ
A +

un
R

)

=
A(qn − pc)

λ1
, 0 < α < α∗ (2.5)

If the edges α = 0 and α = α∗ are clamped, then both displacements uτ and un and the
angle of rotation ϕ vanish at the edges. This implies the following boundary conditions

uτ = un = u′n = 0, α = 0, α∗. (2.6)

The problem is nonlinear for several reasons. First, it is a free boundary problem
since the boundary of the cavity is unknown. Second, the angle β(z) is unknown, and the
boundary of the foil is defined by the solution of the elastic problem (2.5), (2.6). On the
other hand, the pressure qn is unknown either and should be recovered from the solution
of the fluid mechanics problem (2.1), (2.2). Finally, the singular points A, B1, C+, C−,
and Bn are unknown. They should be determined through the solution of the coupled
fluid-solid interaction problem.

3 A rigid polygonal supercavitating hydrofoil: a cavitation

problem

In this section we shall construct an exact solution to the Tulin single-spiral-vortex model
for a polygonal rigid hydrofoil. If the number of vertices is large enough, then the solution
approximates the exact solution of the problem for a rigid arc. This solution will be used
in the next section as the initial approximation in the method of successive approximations
for an elastic circular hydrofoil.

Consider a cavitating hydrofoil in the shape of a convex (with respect to the cavity)
m-polygon D1D2 . . . Dm. Assume that the wetted part of the foil is B1B2 . . . Bn, where
Bj = Dm′+j, j = 1, 2, . . . , n, 1 ≤ m′ + 1 < m′ + n ≤ m. The points B1 and Bn are to
be determined from the conditions which guarantee the smooth separation of the jets from
the hydrofoil. This model admits integrable singularities of the velocity at the vertices Bj
(j = 2, . . . , n − 1) of the wetted part of the polygonal foil.
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Let the stagnation point A lie in the segment BkBk+1, where k (1 ≤ k ≤ n − 1) is to
be determined. Then β(z) = arg dw/dz in (2.2) is a piece-wise constant function given by

β(z) =

{

−βj z ∈ BjBj+1, j = 1, . . . , k − 1,
π − βj , z ∈ BjBj+1, j = k + 1, . . . , n − 1,

(3.1)

and

β(z) =

{

−βk, z ∈ BkA,
π − βk z ∈ ABk+1,

(3.2)

where 0 < βj < π and

βj =











tan−1(yj+1 − yj)/(xj+1 − xj), xj+1 < xj ,
π + tan−1(yj+1 − yj)/(xj+1 − xj), xj+1 > xj ,

π/2, xj+1 = xj ,
j = 1, 2, . . . , n − 1. (3.3)

We do not consider the case −π < βj < 0 because it is physically infeasible.
To solve the problem, we employ the method of conformal mappings. Let z = f(ζ) be a

conformal mapping of the exterior of the unit circle, |ζ| > 1, onto the flow domain such that
the circle C = {ζ : |ζ| = 1} is mapped onto the contour L = W ∪ B1CBn which comprises
the wetted part of the polygonal hydrofoil, W = BnBn−1 . . . B1 and the boundary of the
cavity B1C+CC−Bn. The positive direction is chosen such that the flow domain is on the
left. We shall reconstruct this mapping assuming that the infinite point of the parametric
ζ-plane is mapped into the infinite point z = ∞ of the physical plane. Assume also that
the points Bj , A, and C are the images of some points bj, a, and c in the unit circle C. The
points in the circle C follow each other in the same order as their images are located in the
contour L. The preimages of the points C+ and C− are the left and the right limit points
of the point c. As in most two-dimensional free boundary problems, we seek the conformal
mapping in the form

df

dζ
= V −1

∞ ω0(ζ)e
−ω1(ζ), (3.4)

where ω0(ζ) = dw/dζ, V∞e
ω1(ζ) = dw/dz. The function ω0(ζ) is independent of the points

bj . It is analytic in the domain |ζ| > 1 and has to have simple zeros at the points a and c.
On the unit circle, it satisfies the boundary condition

ω0(ζ) = − 1

ζ2
ω0(ζ), ζ = ξ ∈ C. (3.5)

The solution of this problem is the following rational function [3]:

ω0(ζ) =
iN(ζ − a)(ζ − c)√

acζ2
. (3.6)

Here, N is an arbitrary real constant, and
√
ac is the value of a fixed branch of the square

root.
Now we determine the second function ω1(ζ). This function is also analytic in the

exterior of the unit circle C. On the circle itself, it satisfies the Hilbert boundary conditions

Reω1(ζ) =
1

2
ln(σ + 1), ζ ∈ b1cbn,

Imω1(ζ) = g0(ζ), ζ ∈ bnbn−1 . . . b1, (3.7)
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where

g0(ζ) =



















−βj , ζ ∈ bjbj+1, j = 1, . . . , k − 1,
−βk, ζ ∈ bka,
π − βk, ζ ∈ abk+1,
π − βj, ζ ∈ bjbj+1, j = k + 1, . . . , n− 1.

(3.8)

By using the Schwarz symmetry principle, we extend the definition of the function ω1(ζ)
to the whole ζ-plane:

ω1(ζ) = ω1(1/ζ̄), ζ ∈ int C. (3.9)

This enables us to rewrite the Hilbert problem (3.7) as the Riemann-Hilbert problem

ω+
1 (ξ) = G(ξ)ω−

1 (ξ) + g(ξ), ξ ∈ C, (3.10)

subject to the symmetry condition (3.9). Here, ω+
1 (ξ) is the limiting value of the function

ω1(ζ) as ζ → ξ ∈ C and |ζ| > 1, and ω−
1 (ξ) = ω+

1 (ξ),

G(ξ) =
{

−1, ξ ∈ b1cbn,
1, ξ ∈ bnab1,

g(ξ) =

{

ln(σ + 1), ξ ∈ b1cbn,
2ig0(ξ), ξ ∈ bnab1,

(3.11)

Due to the Tulin model (2.1), the function ω1(ζ) has a simple pole at the point z = c. At
the points b2, b3, . . . , bn−1, this function has logarithmic singularities. At the infinite point
of the ζ-plane, it vanishes.

A closed-form solution to the symmetric Riemann-Hilbert problem (3.9) to (3.11) can
be constructed by following the technique [3]. It has the form

ω1(ζ) = χ(ζ)







ln(σ + 1)

4πi

∫

b1cbn

ξ + ζ

ξ − ζ

dξ

ξχ+(ξ)
+

1

2π

∫

bnab1

ξ + ζ

ξ − ζ

g0(ξ)dξ

ξχ(ξ)






, (3.12)

where χ(ζ) is a solution to the factorization problem G(ξ) = χ+(ξ)/χ−(ξ), ξ ∈ C,

χ(ζ) =

(

c2

b1bn

)1/4
[(ζ − b1)(ζ − bn)]

1/2

ζ − c
. (3.13)

Here, χ(ζ) is the branch of the square root chosen by the condition [(ζ−b1)(ζ−bn)]1/2 ∼ ζ,
ζ → ∞. It is a single-valued analytic function in the ζ-plane cut along the arc bncb1 of the
circle C. Analysis of the function ω1(ζ) shows that it vanishes at the points ζ = b1 and bn,
has logarithmic singularities at the point b2, . . . , bn−1 and a simple pole at the point ζ = c.

It will be convenient to represent the function df/dζ in the form

df

dζ
=

N

V∞
F(ζ), (3.14)

where

F(ζ) =
i(ζ − a)(ζ − c)√

acζ2
e−ω1(ζ). (3.15)

The expression (3.14) possesses n + 3 unknown parameters. They are the real coefficient
N and n + 2 points a, c, b1, b2, . . . , bn in the unit circle C. In the simply connected case
a conformal mapping is defined up to three arbitrary real parameters. We have fixed two
parameters (the infinite point of the parametric plane is mapped into the infinite point of
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the physical plane). Therefore, one of the points in the circle C can be chosen arbitrarily.
Let a = −1. Determine next the conditions for the determination of the other parameters.
The function ω1(ζ) must vanish at the infinite point. This is guaranteed if

ln(σ + 1)

2i

∫

b1cbn

dξ

ξχ+(ξ)
+

∫

bnab1

g0(ξ)dξ

ξχ(ξ)
= 0. (3.16)

Since the function χ(ζ) is pure imaginary on the arc bncb1 and real on the arc b1abn, the
condition (3.16) is a real equation. On account of continuity of the flow domain,

∫

C′

F(ζ)dζ = 0, (3.17)

where C′ is an arbitrary simple closed contour such that the unit circle C lies in its interior.
Choose C′ as a circle |ζ| = r′, r′ > 1. The complex equation (3.17) brings two extra real
equations. The remaining n− 1 equations are the following geometric conditions:

N

V∞
Im

∫

bjbj+1

F(ξ)dξ = λ sin βj , j = 1, 2, . . . , n− 1. (3.18)

The solution will not be completed if we do not determine the detachment points B1 and
Bn. Because the wetted side of the foil is a part of a polygon, the flow separates at two
vertices of the hydrofoil D1D2 . . . Dm. To define these two vertices, we apply the Brillouin-
Villat separation condition [9], [10]. For a smooth hydrofoil, at the detachment points the
curvatures of the hydrofoil and the cavity are the same. Equivalently, based on formula
(3.4) and the analysis of the Cauchy integral (3.12) we conclude that for a smooth hydrofoil
the detachment points B1 and Bn can be determined from the conditions

ω′
1(ζ) = O(1), z → B1 and z → Bn. (3.19)

Here, z approaches the detachment points along the cavity boundary. In the case of a
polygonal hydrofoil, in general, these conditions cannot be achieved. Instead,

ω′
1(ζ) ∼ −

iN±
j

2
(z −D±

j )
−1/2, z → D±

j , j = 1, 2, . . . ,m, (3.20)

where N±
j are some real, in general non-zero, constants, and D+

j and D−
j are possible

upper and lower detachment points. Therefore, the detachment points B1 = D+
s and

Bn = D−
t can be determined by finding the minimum element Mst among all possible

numbers Mkj =
√

(N+
k )2 + (N−

j )2, k, j = 1, 2, . . . ,m.

As a numerical experiment, we consider a regular polygonal hydrofoil inscribed in a
circular arc passing through the origin (0, 0) with the ending points D1 = (1, 1) and Dm =
(1,−1). We choose the number of vertices to be even, m = 2l. The zero-angle-of-attack
assumption enforces the stagnation point A to be the midpoint of the segment DlDl+1 and
N1 = N2l. Figure 2 shows the results of computations for three different choices of the
pairs of detachment points in the case when m = 12, V∞ = 1, and σ = 0.5. From the
symmetry of the hydrofoil it follows that N+

j = N−
j = Nj . The solid line corresponds to

the pair (D2,D11) which meets the criterion for the choice of the detachment points (the
coefficient N2 is the smallest among all the numbers Nj (j = 1, 2, . . . , 6)). The other two
lines, lines 1 and 3, corresponds to the pairs (D1,D12) and (D3,D10). It is seen that the
finding of the detachment points is crucial for the definition of the cavity profile.
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Figure 2: The cavity profile (the solid line) for a rigid polygonal hydrofoil and mock
boundaries (lines 1 and 3) when m = 12, V∞ = 1, and σ = 0.5.
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Figure 3: The cavity profile for different approximations of a rigid circular arc by polygonal
hydrofoils (V∞ = 1, σ = 0.5).
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m Separation points CX ±βc Cavity length

8 D1, D8 0.600881 ±0.5π 11.711497

12 D2, D11 0.740330 ±0.590509π 14.682922

16 D2, D15 0.684192 ±0.566667π 13.499925

20 D3, D18 0.735119 ±0.60526π 14.574629

24 D3, D22 0.704260 ±0.586956π 13.924080

30 D4, D27 0. 723234 ±0.603448π 14.323796

Table 1: The drag coefficient CX , the angles of detachment ±βc, and the cavity length for
some numbers of the hydrofoil vertices (V∞ = 1, σ = 0.5).

The possibility of reconstruction of the cavity profile for a circular arc has also been
investigated. Figure 3 shows the cavity shape for the polygonal hydrofoils with different
number of the vertices. This was accomplished by computing the cavity profile for m =
8, 12, 16, 20, 24, and 30 (the lines 1, 6, 2, 5, 3 and 4, respectively). By increasing further
the number of points it is possible to achieve the convergence, and the actual profile of the
cavity behind the circular arc is expected to be between the lines 3 and 4. The detachment
points, the drag coefficient

CX = Re







i

2R

∫

L

(1 + σ − e2Reω1(ζ))e−ω1(ζ)ω0(ζ)dζ







, (3.21)

the cavity length, the polar coordinates of the detachment points, and the cavity length
for some numbers of the vertices are shown in Table 1. In (3.21), the contour L = bnb1 is
the preimage of the wetted part of the hydrofoil.

The nonlinear system of equations (3.16) to (3.18) has been solved numerically by the
Newton method. To remove the natural constrains for the unknowns we introduce the
variables [31]

t1 = ln
θ2 − θ1
θ1 − θc

, tn = ln
θc − θn
θn − θn−1

,

tj = ln
θj+1 − θj
θj − θj−1

, 2 ≤ j ≤ k − 1, k + 2 ≤ j ≤ n− 1,

tk = ln
π − θk

θk − θk−1
, tk+1 = ln

θk+2 − θk+1

θk+1 + π
,

tc = ln
θ1 − θc
θc − θn

, (3.22)

where bj = eiθj , j = 1, 2, . . . , n, c = eiθc and the polar angles θj and θc are chosen so that

−π < θk+1 < . . . < θn−1 < θn < θc < θ1 < . . . < θk−1 < θk < π. (3.23)

Having solved the system (3.16) to (3.18) we can find the polar angles as

θc = π∆0(1 + etk+1 + etk+1+tk+2 + . . .+ etk+1+...+tn − etc+tk+1+...+tn

−et1+tc+tk+1+...+tn − . . .− et1+...+tk+tc+tk+1+...+tn),

θj = π∆0(1 + etk+1 + etk+1+tk+2 + . . .+ etk+1+...+tn + etc+tk+1+...+tn

9



+et1+tc+tk+1+...+tn + . . . + et1+...+tj−1+tc+tk+1+...+tn − et1+...+tj+tc+tk+1+...+tn

− . . .− et1+...+tk+tc+tk+1+...+tn), 1 ≤ j ≤ k,

θj+k = π∆0(1 + etk+1 + . . . + etk+1+...+tk+j−1 − etk+1+...+tk+j − . . .− etk+1+...+tn

−etc+tk+1+...+tn − . . .− et1+...+tk+tc+tk+1+...+tn), 1 ≤ j ≤ n− k, (3.24)

where

∆0 = (1+etk+1 + . . .+etk+1+...+tn +etc+tk+1+...+tn + . . .+et1+...+tk+tc+tk+1+...+tn)−1. (3.25)

To complete the description of the numerical procedure, we need to write down the
the singularity coefficient used in the criterion for the definition of the detachment points.
This coefficient is obtained by separating singular and regular parts of the integrals in the
formula (3.12). In the symmetric case, the coefficient associated with the vertex B1 has
the form

N1 =

∣

∣

∣

∣

df

dζ

∣

∣

∣

∣

−1/2






− ln(κ+ 1)

4πi





∫ θ1

θn





4

√

c2

b1bn

√
b1 − bn
b1 − c

eiϕ + eiψ

eiϕ − eiψ
idϕ

χ+
ω (eiϕ)

− 2√
−ieiθ1

dϕ

(ϕ− ψ)
√
θ1 − ϕ

)

− 4√
−ieiθ1

1√
θ1 − θn

]

+
β1
2π

∫ θ2

θ1





4

√

c2

b1bn

√
b1 − bn
b1 − c

eiϕ + eiψ

eiϕ − eiψ
idϕ

χ+
ω (eiϕ)

− 2√
ieiθ1

dϕ

(ϕ− ψ)
√
ϕ− θ1





− 2β1

π
√
ieiθ1

1√
θ2 − θ1

+ 4

√

c2

b1bn

√
b1 − bn
b1 − c

∫

bnbn−1...b2
g0(ξ)

ξ + ζ

ξ − ζ

dξ

ξχ+
ω (ξ)







, (3.26)

where all the branches of the square roots are chosen in the same way as in the function
χω(ζ), and the last integral is taken along the arc of the unit circle bnbn−1 . . . b2.

Figure 4 shows the results of calculations of the drag coefficient CX for different posi-
tions of the detachment angle βc. The curves practically coincide with those presented in
[18], p. 209. The location of the detachment points found is indicated in Figure 4 by the
arrows.

The drag coefficient CX increases with the cavitation number σ. For a rigid hydrofoil,
our results (Figure 5) for a polygonal foil with m = 12 coincide with the ones for a circular
foil obtained in the framework of the Kirchhoff-Joukowsky open wake model by Roshko
when σ ∈ (0.1, 0.5) and by Efros when σ ∈ (0.1, 0.75) [14].

4 A thin circular elastic foil with clamped ends: an elastic

problem

Let the foil be a thin infinite cylindrical shell whose middle surface is x1 = r cos(α + α◦),
x2 = r sin(α + α◦), −∞ < x3 < +∞, where r = R, 0 < α < α∗. In this case the Lamé
coefficient A = R, and the governing equations (2.5) become

(1 + λ∗)u
′′ + w′ − λ∗w

′′′ = 0,

λ∗(w
′′′′ − u′′′) + u′ + w =

R2

λ0
(qn − pc), (4.1)
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where u = uτ and w = un are the tangential and the normal components of the displacement
vector, and λ∗ =

1
12(h/R)

2. These equations reduce to the fourth order differential equation
for the displacement w

w
′′′′

+ 2w′′ + w =

(

1 +
1

λ∗

)(

−C0 +
qn − pc
λ0

R2
)

. (4.2)

and the following equation for the displacement u:

u′ =
λ∗w

′′ − w

1 + λ∗
+ C0. (4.3)

Here, C0 is an arbitrary constant.
Assume that the edges of the foil are clamped to rigid plates α = 0 and α = α∗,

−∞ < x3 <∞, fixed in the flow domain. Then the boundary conditions are

w(0) = w(α∗) = 0, w′(0) = w′(α∗) = 0, (4.4)

and
u(0) = u(α∗) = 0. (4.5)

The function w can be determined by constructing the Green’s function, G(α, β), of the
boundary value problem (4.2) and (4.4). On using the method [26] we find for 0 ≤ α ≤ β

G(α, β) =
1

∆
{cos β[−α(1 + 2βα∗ − 2α2

∗) cosα+ (1− βα+ 2βα∗ − 2α2
∗) sinα]

+ sinα[(−1 + βα) cos(β − 2α∗) + (β − 2βαα∗ + 2α∗(−1 + αα∗)) sin β

−β sin(β − 2α∗)] + α cosα[cos(β − 2α∗)− (β − 2α∗) sin β + β sin(β − 2α∗)]}. (4.6)

If β ≤ α ≤ α∗, then the Green’s function is given by

G(α, β) =
1

∆
{cosα[α cos(β − 2α∗) + (1− βα+ 2αα∗ − 2α2

∗ − cos 2α∗) sin β

+βα sin(β − 2α∗)] + cos β[− cosα(β + 2βαα∗ − 2βα2
∗)− (α− β) cosα cos 2α∗

+β sinα(−α+ 2α∗ + sin 2α∗)] + sinα[βα cos(β − 2α∗)

+ sin β(α− 2α∗ − 2βαα∗ + 2βα2
∗ − α cos 2α∗ − sin 2α∗)]}. (4.7)

Here,
∆ = 4(α2

∗ − sinα2
∗) (4.8)

Employing this function furnishes the resulting formula for the displacement w

w(α) = −C1g(α) + λ2

α∗
∫

0

G(α, β)[qn(β) − pc]dβ, (4.9)

where

C1 =

(

1 +
1

λ∗

)

C0, λ2 =
R2

λ0

(

1 +
1

λ∗

)

,

g(α) =

λ∗
∫

0

G(α, β)dβ. (4.10)
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Once the normal displacement w is found, the tangential displacement u is defined from
equation (4.3) by integration. On satisfying the boundary conditions (4.5) we define

u(α) =
1

1 + α∗







λ∗w
′ + C1g

◦(α) − λ2

α∗
∫

0

G◦(α, β)[qn(β)− pc]dβ







, (4.11)

where

g◦(α) =

α∗
∫

0

G◦(α, β)dβ, G◦(α, β) =

α
∫

0

G(α1, β)dα1,

C1 =
λ2

g◦(α∗)

α∗
∫

0

G◦(α∗, β)[qn(β) − pc]dβ. (4.12)

5 An elastic circular supercavitating hydrofoil: a fluid-structure

interaction problem

On using the two exact solutions presented in the previous sections for a regular rigid
cavitating polygon and a circular elastic shell we can develop an approximate procedure
for an elastic circular supercavitating hydrofoil. It is assumed that both edges of the foil are
clamped. First, we approximately replace the arc by a regular polygon D1D2 . . . Dm, where
m is the number of vertices chosen. By the method described in Section 3, we reconstruct
the conformal mapping from the exterior of the unit circle C into the exterior of the domain
whose boundary comprises the hydrofoil surface and the cavity boundary. After that we
determine the detachment points B1 and Bn and, therefore, the wetted part, B1B2 . . . Bn
of the foil.

This makes possible to compute the speed V everywhere in the liquid

V 2 =
dw

dz

dw

dz
= V 2

∞

(

e2Reω1(ζ)
)

. (5.1)

On employing the Bernoulli formula

q(s) +
ρ

2
V 2 = p∞ +

ρ

2
V 2
∞, (5.2)

we determine fluid pressure

q(s) = p∞ − ρV 2
∞

2

(

e2Reω1(ζ) − 1
)

. (5.3)

Here, s is the length of a segment Bjz, z ∈ BjBj+1, and

s =

ζ
∫

bj

∣

∣

∣

∣

df

dζ

∣

∣

∣

∣

|dζ|, ζ ∈ bjbj+1, . . . j = 1, 2, . . . , n− 1. (5.4)

Next, we use the function q(s) as an approximation of the normal loading qn in equation
(4.1). The normal and tangential displacements of any point in the middle surface of
the foil are given by the exact formulas (4.8) to (4.11). What we need, however, is the
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Figure 6: The deformed profile of the cavitating hydrofoil.

displacement vector at the points B1, B2, . . . , Bn only. On knowing this vector, we can
correct the positions of the vertices of the polygon.

The third step of the procedure is the solution of the cavitation problem for a new rigid
polygon. It will be convenient to introduce new notations, D′

j = Bj , j = 1, 2, . . . , n. The
wetted part of the foil does not necessarily coincide with that obtained in the first step of
the solution. The new detachment points say, B′

1 and B′
n′ , are determined in the same way

as the points B1 and Bn. On the ground of the solution to this new cavitation problem we
determine a new approximation of fluid pressure on the external side of the polygon. In the
framework of linear theory of thin shells we can assume that the shell is circular and use
equations (4.2) and (4.3) again. It is assumed that the iterative process described reaches
sufficient accuracy, ε, if

max
s∈W

|1− ||u(m)||/||u(m−1) ||| < ε, (5.5)

where W is the wetted part of the foil, u = (u,w), u(m−1) and u
(m) are two successive

approximations of the displacement vector u, and ||u|| =
√
u2 + w2.

The deformed profile of the elastic semi-arc is shown in Figure 6. It is seen that the
largest deformation occurs at the center of the foil. For the test, we chose the Young’s
modulus as E = 6 × 107, Poisson ratio ν as 0.33, the thickness h of the foil as 0.002, and
the other parameters as σ = 0.5, V∞ = 1, and ρ = 1. To approximate a half of the circular
foil, 12 points were employed, and the cavity started at the tenth point. It is seen that the
differences between the profiles obtained in steps 4, 5 and 6 of the approximate method
described become invisible.

The dimensionless normal and tangential displacements w/r and u/r for the same data
as in Figure 6 are presented in Figure 7. Here,

r =
R2ρV 2

∞

2λ0
105, R = 1, (5.6)

and curves j (j = 1, 2, . . . , 6) correspond to the jth step of the method. The tangential
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displacement u is always nonnegative and vanishes at the center of the arc (θ = π) and its
ending points. The normal displacement w attains its maximum at the point θ = π (at
the center of the foil), decreases in the interval (θ∗, π), attains its minimum, w∗ < 0, and
vanishes at the clamped ends.

Very often in the theory of potential flow, instead of the parametric ζ-plane, the plane
(V,Θ), where V = |dw/dz| and Θ = arg dw/dz, is used. In Figure 8, some streamlines
around an elastic hydrofoil and their images in the plane (V,Θ) are given. The image of
the streamline which defines the boundary of the cavity is the vertical line V = Vc in the
plane (V,Θ). Since arg dw/dz is a piecewise constant function, the image of the polygonal
boundary of the hydrofoil is also a discontinuous function (the images of the cavity and the
foil boundaries are not shown in Figure 8).

The external force qn − pc per unit length acting on the middle surface of a regular
polygonal hydrofoil is shown in Figure 9. The following parameters were employed: E =
6 × 107, ν = 0.33, h = 0.002, σ = 0.5, V∞ = 1, ρ = 1, and n = 30. Our computations
showed that the detachment points are D4 and D27. As it was expected, the maximum of
the loading function is attained at the stagnation point. The curve is not smooth. This
is explained by the polygonal shape of the foil: at each vertex of the hydrofoil pressure of
liquid drops. The increase of the number of vertices leads to the decrease of the amplitudes
of the spikes. Another interesting observation to be made is that there are two zones at
the ends of the wetted hydrofoil where the liquid pressure drops below the vapor pressure
in the cavity. A possible explanation of this phenomenon could be the presence of two thin
partial cavities formed by the jets before they break away from the hydrofoil and form the
supercavity. The solid line in Figure 9 shows an approximation of the difference qn− pc for
a rigid and an elastic circular arcs. It is seen that the predicted partial cavities are longer
for the elastic hydrofoil. Computations made for the speed V along the boundary of the
hydrofoil (rigid and elastic) (Figure 10, the data are the same as in Figure 9) also show
that there are two partial cavities close to the point where the jets break away and form a
supercavity: the speed V in these zones is greater than the speed Vc in cavity boundary.

Finally, we discuss the effect of elasticity on the drag coefficient, length and width of
the supercavity. It turns out that drag coefficient CX is less for an elastic foil than for
the rigid one (Figure 5, the data are the same as in Figure 9). Figures 11 and 12 show
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the results of some calculations of the drag coefficient CX , the cavity length and width
versus E. The coefficient CX , the length and width simultaneously grow when the Young’s
modulus E grows. The values of E smaller than those used give rise to large deformations
and have not been considered.

Conclusions

We have analyzed flow past a supercavitating curvilinear foil. To describe the flow in the
rear part of the cavity, the Tulin single-spiral-vortex model was used. The hydrofoil was
assumed to be elastic, and the Novozhilov equations of the theory of thin cylindrical shells
were employed to model the deformation of the curvilinear foil. To solve the problem,
first, we analyzed the single-spiral-vortex model for a rigid polygonal supercavitating hy-
drofoil. For its solution, we constructed the conformal mapping from the exterior of the
unit circle into the flow domain. On applying the Schwarz symmetry principle, the deriva-
tive of the mapping function was expressed through the solutions of two Riemann-Hilbert
problems. To identify the vertices of the polygon where the jets break away from the foil,
we employed the Brillouin-Villat separation condition. The unknown parameters of the
conformal mapping were computed on solving approximately by the Newton method a sys-
tem of transcendental equations. Next, by increasing the number of vertices of a regular
N -polygon we approximately solved the cavitation problem for a circular arc and defined
pressure qn on the foil and, therefore, the resulting force per unit length, qn−pc (pc is vapor
pressure), acting on the middle surface of the foil. This was needed to state a boundary-
value problem for a thin shell subject to normal loading qn − pc. The elastic problem has
been solved exactly for an arc with the clamped-clamped boundary conditions. Then we
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defined the displacements of the foil, reconstructed its new profile and stated a new cav-
itation problem for the deformed foil. It turns out that the fourth step of the method of
successive approximations gives a good accuracy for the displacements and the profile of
the deformed foil.

The numerical experiments, among other interesting phenomena, reveal the possible
presence of two partial cavities. We have made this prediction on the ground of the existence
of two zones, BrB1 and BqBn (Figure 1), close to the ends of the foil where, first, pressure
drops below the vapor pressure pc and, second, the speed is greater than the constant
speed Vc in the cavity boundary. The method presented cannot be directly applied to the
nonlinear model problem on a supercavitating circular hydrofoil with two partial cavities.
It is feasible, however, to generalize the method by [12] for an elastic hydrofoil and model
the partial cavities and the supercavity by using the Efros-Gilbarg-Rock-Kreisel re-entrant
jet model and the Kirchhoff-Joukowsky open wake model, respectively.
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