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We argue that quantum coherence is maintained by two-dimensional target-space black
holes in string theory thanks to an infinite set of conserved quantum numbers. These
are associated with discrete solitonic string states of high spin, and may be interpreted as
infinite-dimensional discrete gauge ‘hair’, analogous to that provided by massive axion-like
fields in four dimensional theories.
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One of the key problems in theoretical physics is to reconcile quantum mechanics
with general relativity. This problem may be considered as arising at two levels.
The comparatively simple level of the problem is that of doing reliable perturbative
calculations in a second quantised theory in a manner consistent with general coor-
dinate invariance. This aspect of the problem seems to be solved by string theory,
which incorporates general relativity and provides finite answers in perturbation
theory. The more profound level of the problem is that of treating non perturbative
quantum fluctuations in the topology of space-time. This aspect of the problem may
also be resolved in string theory, but here our understanding is more incomplete.

There have been serious doubts raised whether conventional quantum mechanics
and quantum field theory even remain valid in the presence of quantum fluctuations
in the topology of space-time. Here the basic concern is that information is in
general lost across event horizons, which may appear microscopically as well as
macroscopically. In the macroscopic case there is a well-developed thermodynamics
of black holes, according to which they have very large entropy and emit radiation
thermally [1]. Macroscopic black holes forget about non-gauged quantum numbers,
only have a finite set of hair in any conventional local renormalisable field theory,
and achieve their large entropy by being in a mixed state. If this situation persists
for microscopic fluctuations in space-time topology, one could expect pure states
to evolve into mixed states [1]. This could occur only if the conventional S-matrix
description of scattering broke down, and the conventional Hamiltonian evolution of
the density matrix were modified. Heuristic proposals going in this direction have
been made [2], which bear a passing resemblance to phenomenoclogical ideas about
the transition between quantum mechanics for small systems and classical mechanics
for large systems and the quantum-mechanical collapse of the wave-function [3].

It may well be that the apparent conflict between the large entropy of the black
holes and the finite number of gauge degrees of freedom in any local renormalisable
field theory can be avoided if local point-like fields are replaced by extended objects
such as strings. Indeed, strings offer many more types of hair, including discrete
gauge symmetries [4], dualities [5], and axionic hair [6]. However, it is not yet clear
whether any of these are sufficiently numerous to accommodate the large entropy
associated with macroscopic black holes. Moreover, there has so far been no ex-
plicit discussion of the maintenance (or otherwise) of quantum coherence in string
scattering in the presence of stringy black holes.

There are at least three string laboratories now available for addressing this ques-
tion of quantum coherence. One is provided by the matrix models [7] that contain
complete non-perturbative solutions, in a certain limit, of two-dimensional quantum
gravity (with matter) coupled to a Liouville mode. Another is provided by the two-
dimensional target space black holes that can be described as ﬁg(i—fl Wess-Zumino
models {8]. The third is provided by time-dependent string models [9] that may be in-
terpreted as throats of wormholes [10]. The matrix models and the two-dimensional




string black holes are closely related, and in both cases the conventional S-matrix
description appears to be adequate. In this paper we provide possible answers to the
following questions: is quantum coherence indeed maintained by two-dimensional
string black holes? if so, why? is it because of discrete gauge symmetries, dualities
ot generalised axionic hair?

Our approach starts from the observation [8] that the last stage of the black
hole evaporation is described by the c=1 matrix model, which is known to be a
completely integrable theory with an infinite set of conserved quantities associated
with currents of high spin [11]. In the presence of singular configurations of space-
time metrics, symmetries do not imply the existence of conserved quantities [2, 12]
unless the symmetries are gauged by coupling the corresponding currents to long
range fields [13]. In this paper we argue that this is just what happens in the case
of two-dimensional string black holes and that, as a result, quantum coherence is
maintained. We illustrate our arguments by exhibiting a conserved current that
couples to a massive topological ‘Q-graviton’ state, and showing that this is the last
phase of black hole evaporation. This is reminiscent of axionic hair, whereas duality
seems to play no role.

It is instructive to review first the relevant parts of the formalism developed for the
c=1 matrix models. The infinite set of conservation laws has been first discovered
by Gross and Klebanov [11] in the fermionic representation of the model. In this
language the infinite set of conserved quantum numbers of the fermions is a natural
consequence of the fact that the fermions are free fields. The conserved quantities
have been determined for arbitrary matrix model potentials. For illustrative pur-
poses we restrict ourselves to the harmonic case, although our considerations are
qualitatively insensitive to this. For harmonic potentials the corresponding charges
read

L= [ day!(08 + %) (1)

The fermionic theory can be bosonised [14] and factorised in a left-right chiral form
[15, 16]. The charges may be represented in the bosonic language as
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where p, (p_) is the upper (lower) fermi momentum satisfying Euler’s equation

Oip = & — pdyp (3)

The fermi levels p can be used to define normalised tachyonic fields of a two-
dimensional target space ¢-model with action
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where XM = (¢, ¢) is a two-dimensional Minkowskian coordinate with t timelike and
q spacelike, and @ is the ‘anomaly’, related to the subcritical number of space-time

dimensions [17], @ = /%52 = 24/2 (for c=1) . The coordinate q is related to x via
T = —e X (5)
while the tachyonic field T is defined in terms of the p’s as
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from which the conserved quantities can be expressed in terms of the field T. In
Polchinski’s work [15] the quantity ¢ has been assumed to be a constant, though
this may not be true in the full non-perturbative regime of the theory.

In two target space dimensions massive string states (gravitons, dilatons and in
general higher rank states) are non-propagating, and one is tempted to conclude
that the tachyon field is the only fully-fledged field of the theory. Indeed, the matrix
model representation of the theory presented so far seems to be entirely described
by this degree of freedom. However, this is not correct. There are rerunants of the
higher string states in two dimensions which show up already in the computation
of tachyonic scattering amplitudes as an infinite set of poles with definite energy
and momentum. These special states have been seen in oth the continuum [18]
and matrix model approaches [19], and have been interpreted by Polyakov [20] as
being associated with the higher spin quasi-topological modes of the two dimensional
string. They play a key role in our subsequent arguments.

To account for these higher-spin string levels one should probably go beyond
the Das-Jevicki field-theoretic model [14], and consider a full closed string field
theory in a non-trivial background. If such a formalism is adopted it is conceivable
that the form of the conserved currents may be modified and additional stringy
gauge symmetries could in principle arise. For example, it is not clear whether the
constant ¢ in (6) remains a constant or becomes a complicated (even non-local)
function of derivatives d,, as seems necessary to account for the extra poles of the
tachyonic scattering amplitudes. In such a case, some of the conserved currents may
be expressed as non-local functions of the various o-model fields in target space-time.

At present it is not known how in the continuous formalism to get in a closed
form the fully non-perturbative two-dimensional string effective action including
the summation over genera. For illustrative purposes we therefore assume that a
consistent truncation of the o-model at genus zero and up to a certain spin level
can be made. It is evident that in this way one loses symmetries of the full quantum
effective theory. In the present case some of them may be attributed to the two-
dimensionality of space-time (e.g. it is known [21] that the charges described above

! Throughout this work we shall use units where o = 2.



form a Cartan subalgebra of a W, algebra [22]). However, there arc other gauge
symmetries that survive the truncation, which are generic, in some sense, of the
stringy character of the model, and usually persist even for critical strings living in
higher dimensional space-times.

Let us give therefore a glance at the spectrum of the c=1 matter theory coupled
to two-dimensional gravity. The lagrangian of the theory is described by a usual
o-model action with background fields g that are generically coupled to vertex oper-
ators V;. The latter are polynomials of arbitrary degree in 8,X(z,7) and 9,X(z,%).
Conformal invariance requires the V; to be (1, 1) operators, which determines the
on-shell conditions. The theory necessarily has a non-trivial dilaton field, which in
Liouville theory (4) is a linear function of the Liouville mode (space-like coordinate
for ¢ < 1). The existence of a non-trivial dilaton is necessitated by the fact that
the dimension of target space-time is two, while the string theory is critical, in the
sense that the total central charge is 26 to compensate the ghost contribution ?.

The lowest lying energy level is called a ‘tachyon’, although in two target space
dimensions it is actually massless. In a weak field expansion around flat target space-
time, the requirement that the tachyonic emission vertex T'(k) = exp(—3(k)q + ikt)
be an operator with conformal dimension (1,1) leads to the on-shell condition [17]

Y (pm + Qur) = —2 (7)

where pyr = (—¢8(k), k) and Qa = (iQ,0) 3. The Q-term arises because of the
anomaly in the expression for the world-sheet stress tensor whose operator product
with the emission vertex determines the conformal properties of the latter. One can
define a ‘two-momentum’ (for all levels) as

b= 24y ®)

The on-shell condition (7) translates into

kmEM =0 (9)

implying the masslessness of the level-0 string states.

2 Alternative descriptions of the model as non-critical string theory in one dimension exist [15],
but for our purposes we shall concentrate on the critical string point of view.

3Notice that the Liouville ‘energies’ are imaginary for central charge ¢ < 25, This has important
consequences such as the non-existence of a one-to-one mapping between states and operators [23] -
which implies subtleties concerning the kind of states that propagate in intermediate channels [24]-
and the possibility of Liouville energy non-conservation in the corresponding amplitudes [20]. In
addition, two-dimensional quantum gravity probably is not described entirely by free field methods
due to boundaries in Liouville-mode space [20, 25]. For our purposes we need not take into account
these effects, though they may prove essential in other issues.




The level-1 string multiplet consists of the graviton, a dilaton and an antisymmet-
ric tensor. However, the usual gauge symmetry associated with the antisymmetric
tensor field implies that only the field strength Hpynp = O B p) enters the effective
action. In two space dimensions H = 0, so this field can be gauged away. This is also
consistent with Witten’s approach to the o model through a Wess-Zumino gauge
action [8]. The graviton vertex, describing perturbations around flat space-time, can
be represented (in Fourier space) as usual by dXM3X N ezp(iqar X™). Requiring this
to be a (1,1) field implies the following conditions,

gm(g" + QM) = knk™ —2=0 (10)

and
M
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where hyy is the graviton-dilaton polarisation tensor. The constraint (11) when
combined with the two-dimensionality implies the absence of transverse degrees of
freedom for the graviton provided its two-momentum is not equal to — QTM However,
for this discrete value there appears to be a ‘jump’ in the degrees of freedom of
the system [20], in that (11) is satisfied for any hasy. We argue below that such
topological modes of high spin are important for black hole physics. It should be
understood that the two-dimensional string theory has an infinity of such modes with
definite energy and momenta corresponding to higher-rank string states. This can
be seen readily by extending the above analysis appropriately for each mass-level.

It is worth noting that (11) is the on-shell restriction of certain recursion relations
for the corresponding string amplitudes. In ordinary string theories such relations
can be understood as Ward identities stemming from ‘hidden’ stringy gauge sym-
metries associated with various spin levels [26]. A similar thing happens in our
case. For instance, consider a tree level amplitude involving one graviton and N-1
tachyons. The corresponding Ward identity which follows from target space-time
general coordinate (canonical) transformations reads [26]

M
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In ordinary string theory the above identity holds even ‘off-shell’. To recover ¢ = 1
Liouville theory we have to restrict ourselves to on-shell states. In that case the
right-hand side of (12) vanishes. This is the usual ‘cancelled propagator argument’
in string theory. The only formal difference is the existence of the anomaly term Q,
which from an effective field theory point of view indicates the non-triviality of the
dilaton in two dimensions seen below.




More complicated Ward indentities exist for higher spin levels, which actually
lead to level mixing, as discussed by Kubota and Veneziano [27]. All these sym-
metries are stringy gauge symmetries associated with conserved quantities if there
are no enomalies (as could be expected in certain string theories, especially in the
case of two-dimensional target space-times). Following the collective first-quantised
notation of Ichinose and Sakita (28], one can represent the collective string field
describing arbitrary backgrounds by ¥ and the corresponding world-sheet vertex
operator by V(z,Z,¥). The various stringy off-shell symmetries correspond to shift-
ing the field ¥ by a BRST-like gauge variation QgrsrA and demanding symmetry
of the effective action (amplitudes). In the language of conformal field theory this
amounts to introducing a Q) ppgr-exact state in a given amplitude. This yields Ward
identites of the form [27]

< IA/—(.ZI,ZI, QA)Hz':l,...V(zh Z—‘i: \Il) >=
az1 < 5_1V(21,Z, A)Hi=1,...f/(za'1 2_2'7 lIJ) > =
_(821 - 6ﬂaﬁ - b—l) (13)

where V is the modified vertex according to the ghost insertion rule of [29, 27].
Upon choosing appropriate gauge functions A one can recover for level one the
identity (12). In this language target space-time covariance appears as one of the
stringy gauge symmetries associated with the spin-two level, which in the present
two-dimensional conformal theory is massive due to the anomaly Q. As already
mentioned, at higher string levels one can get a mixing of levels in the corresponding
Ward identities [27]. For instance, rank four tensor amplitudes are mixed with
rank three and two (graviton-dilaton) amplitudes. Consequently, the form of the
conservation laws becomes more involved.

Now we come to our main point. In the presence of singular space-time back-
grounds such as black holes, such conservation laws do not in general lead to
conserved quantities (generalised charges), and this results in the problems men-
tioned in the introduction concerning the loss of quantum coherence and the non-
factorisability of the scattering matrix when topological fluctuations of the space-
time metric are encountered. In Euclidean target-space formulations of the present
theory, one can imagine the formation of baby-universe-like configurations which
could contribute to the loss of quantum coherence in the presence of fluctuations
around a black hole classical solution. We shall now argue that the enormous stringy
symmetries (which are enhanced in our case due to the two-dimensionality) suppress
any such loss of information, since the conserved currents are coupled to the stringy
quasi-topological discrefe modes and remain conserved even during the Hawking
proccess of black hole evaporation. Unfortunately, we cannot formally prove our
arguments due to the non-existence, as yet, of a satisfactory string field theory in
curved background space-times. However, we shall illustrate our mechanism by re-
stricting our attention to the first massive level, at genus zero. As we have seen,
the gauge symmetry associated with this level incarnates target space general coor-




dinate invariance, which implies the conservation of a spin-two current, the stress
tensor.

We shall restrict ourselves to one o-model loop order, and comment briefly on
the extension to higher orders, which is facilitated enormously with the help of field
redefinitions, due to the particular dimensionality of space-time. In terms of the
coset conformal fleld theory considered by Witten [8], working to first order in o’
amounts to taking the large k£ limit, where % is the coefficient of the Wess-Zumino
term in the ancestor gauge conformal field theory. It is in this limit that the black
hole solution has been analysed [8]. It might be possible to find exact solutions
which could still maintain the basic features of the black hole, but the situation is
not clear®. The effective field theory truncated to the first massive level and to order
@ (second order in derivatives) reads [31]

/ LavV/Ge(R+ GIV$V 6 + GIVIVT + A+ V(T)) + ... (14)

where A is a (target space) cosmological constant originating from the non-critical
dimensionality of space-time. A few comments are in order concerning the non-
trivial scale factor in front of the Einstein term and its special role in two space-time
dimensions. Usually in higher dimensional field theories such factors can be absorbed
by suitable conformal transformations of the metric. In this way one recovers the
usual Einstein term for the scalar curvature. However, in two dimensions the form
(14) is more fundamental. One can never transform away the scale factor once it
is non-trivial. Indeed, under a generic conformal transformation in D space-time
dimensions of the form G}; = e**G;; the curvature tensor transforms as,

R = e %R - o(D — 1)V26 — Zi’(D —1)(D — 2)G8:46,9) (15)

For D=2 the combination of the Einstein term with the scale factor is conformally
invariant. This is the main reason for the appearance of the extra Q-terms in the
otherwise familiar conservation laws (11) etc. (for linear dilaton terms this is the
result of a differentiation of the scale factor). We also note that by choosing ¢ = —1
one can transform away the dilaton kinetic terms in (14). This is the scheme we
shall adopt from now on, unless otherwise stated.

Now let us focus the attention on the stress temsor of the theory. As usual we
define it as a response of the ‘matter’ action to a variation of the gravitational field.
We are mainly interested in the effects of the black hole solution on the conservation
of the charge associated with this spin-two current. The graviton equation of motion
reads

“The exact solution claimed in [30] correponds to a thermal bath in Euclidean formalism, which
does not represent, the physically interesting case associated with collapsing matter that we consider
in this work.




1
(Bun — 5GunR)e® = Tyd + Tigk (16)

where the index (T') ((¢)) on the stress tensor labels the corresponding parts refer-
ring to the tachyon (dilaton). The dilaton stress-tensor includes the cosmological
constant piece, and it can easily be computed as

TAtk — %GMNA = ?[Gun(Vio+ (Vkd)’) — Vo Vnod — Y Vg
= GMNV2(6¢) - VMVN(8¢) (17)

In two dimensions the left hand side of (16) vanishes identically. This implies that
the combination, Tyn, of the tachyonic stress tensor and the cosmological constant
part of the dilaton energy-momentum tensor is itself a total space-time divergence
for the black hole solution [8] °. This in turn implies the following conservation law

VMTyy = %qusRﬁ (18)

Asymptotically the space-time is flat for the black hole solution [8], so the tachy-
onic spin-two current is conserved (the cosmological constant part of T is trivially
conserved). One can, therefore, define a conserved charge (asymptotically),

- _ black—holexr2 @black—hole
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where we took into account the fact that the black hole solution is a static solution
of space-time with coordinates (¢, p).

The above analysis can easily be extended to higher orders in o' by exploiting the
freedom one has in performing local redefinitions of fields. The latter correspond
to different choices of renormalisation schemes for the evaluation of the o-model -
functions [32]. As long as one truncates the theory to a certain (finite) order in the
o-model loop expansion the locality of the effective action and the corresponding
field redefinitions is guaranteed. For instance, from general tensor analysis of the
string effective action in D = 2 it becomes clear [33] that there is always a scheme in
which the order (a')? stringy corrections to the effective action contain, in addition
to the terms in (14), only graviton-tachyon mixed terms of the form

f\/—8¢R2(T+ const) (20)

*We assume, following [8], that the tachyonic field does not destroy the black hole solution of
the pure graviton-dilaton sector of the theory, but only produces marginal deformations, and a
classical ‘hair’ determined by the value of the Liouville (world-sheet) cosmological constant. The
latter is itself produced by the tachyon boundary values in Liouville space [25, 20].




(remember that in D = 2 the only inequivalent structure of the curvature tensor is
the Ricci scalar), By performing a constant shift in the tachyon field we can always
consider such terms as part of the ‘matter’ action, which leaves the dilaton stress
tensor as before ©.

The above considerations show clearly that the spin-two current leads to a con-
served charge (asymptotically) that is a surface term in space (in two dimensions
there is a degeneracy since the boundary of one-dimensional space consists only of
points). Hence its conservation will be maintained by the Hawking process of black
hole evaporation. According to our previous considerations, the stress tensor is the
current associated with a gauge symmetry of the string characterising the level-one

massive siring multiplet. The corresponding charge will help characterise the black
hole.

This situation is reminiscent of axionic hair in four-dimensional black holes. There
the axion charge is a surface term defined as fy(g) H = [;; B, where V(X) is a three
space bounded by X, and Bpy is the antisymmetric tensor field, whose dual is a
scalar in four dimensions. The axion can become massive through topological cou-
plings with U(1) gauge field one-forms A: { BAdA, and the gauge fields themselves
become massive by eating the only degree of freedom of the B field. In the case we
are considering, the role of the long-range fields is played by the discrete graviton
state with momentum — %. This is the only remnant of the gravitational multiplet
in two space-time dimensions, since any propagating graviton would be longitudinal
and, as such, gauged away through the Ward identity (11). The pertinent coupling
in the effective action is provided by the classical trace of the stress tensor Thsn con-
structed from the lagrangian (14). The tachyonic and cosmological constant parts
of the effective lagrangian then can be rewritten in the form,

/ LoV E[e?(VT)? + GMV Tygn] (21)

On-shell, the stress-tensor trace term is a total divergence exactly as happens with
the corresponding topological mass term for the axion-gauge coupling. Such surface
terms become non-trivial for space-times with non-trivial topologies, such as the
Schwarzschild metric spaces. Of course there are differences from the axion case
in the way the charges are measured. In axion-like couplings a charge cannot be
measured by point-like particles, since the latter are coupled only to the axion
field strength which vanishes outside the black hole. Hence Bohm-Aharonov type
experiments with strings (cosmic or fundamental) are needed [6]. This is not the
case with the stress-tensor example, but it might well be that some of the other
stringy gauge charges exhibit such non-classical behaviour.

8This could also be understood by performing redefinitions of the dilaton field appearing in the
scale factor of the metric, which is always present in ) = 2. The latter method does not produce
any shifts in the cosmological constant and is more suitable when the tachyonic coupling to R? has
the form of a generic scalar function f(T).




The physics of the Hawking process is now clear. The final stage of black hole
evaporation excites the quasi-topological Q-graviton and higher-spin discrete states,
which couple to the exact quantum numbers of the asymptotic theory. This coupling
produces an exact conservation of this quantum numbers during the Hawking process
and one recovers this set in the matrix model as remnants of the black hole.

It is straightforward to show formally that the final stage of the black hole excites
Q-graviton modes. This can be seen most easily in the so-called Schwarzschild gauge
studied in [34] 7. This gauge implies a dilaton linear in the space-like coordinate
(Liouville mode), ¢ = @p. The black hole assumes the familiar Schwarzschild form,

1
ds® = —g(p)dt* + —~dp*;g(p) = 1 — ae? (22)
g(p)
The parameter a is related to the mass of the black hole. At the latest stage of the
Hawking process the mass a becomes very small. In this limit ds? = —dt® 4 dp? +

ae??(dt? + dp?), and the metric perturbation becomes identical to that of a vertex
operator exciting a Q-graviton state. This state cannot be gauged away in the matrix
model and constitutes what Polyakov [20] calls a ‘jump in the degrees of freedom
at exceptional values of momenta’. In the presence of tachyonic backgrounds there
may be excited additional remnants of the graviton state, those which arise as poles
in the tachyonic amplitudes for ¢=1 models [18] ®. All these should be considered
as traces of the black hole that have survived the evaporation process. In the full
theory one expects the excitation of all the discrete higher spin states, which are the
only remnants in two dimensions of the entire string spectrum.

For the particular case of two dimensions one expects to find - in addition to sym-
metries that one would encounter in any ordinary string theory - extra symmetries
associated with the specific dimensionality of space-time (e.g. extended conformal
algebras etc.). It seems that this is the case with the infinitely many conserved
charges of the fermion theory [21]. I these symmetries are local in form then the
corresponding currents must couple to topological graviton (and in general high-
spin) modes, as is the case of the tachyon stress tensor. The massive character of
the extra states (of the order of the string Planck mass) does not affect the argu-
ments in favour of conservation, due to the quasi-topological nature of these fields.
One can even draw a rough analogy between these states and soliton solutions in
ordinary string theories with non-irivial dilaton backgrounds [9]. These models are
also related to Wess-Zumino conformal theories [35], and may be interpreted as de-
scribing topologically non trivial configurations in space-time, like half of wormhole

"To make direct contact with the relevant literature we work now in the original formalism
without performing a conformal field redefinition of the space-time metric.

®In the flat target space-time formalism the poles appear to correspond to on-shell tachyons, in
the sense of (7). But this might be deceptive, given the non-triviality of the black hole space-time.
It appears that the only correct interpretation for these extra poles is to think of them as remnants
of high-spin string states in the presence of non-trivial tachyon backgrounds in two dimensions.
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throats [10]. Thus, the infinite set of exactly conserved discrete charges that char-
acterises the c=1 matrix model (viewed as a two-dimensional critical string theory)
probably characterises the black hole.

The values of the conserved charges are in principle independent of the black hole
mass, and a fixed-mass black hole can have arbitrary charges of this kind. This
is the only point where the stress tensor example is not a generic one, since this
particular spin-two current is related to the dilaton stress tensor and therefore to
the total energy of the black hole. However, due to the cosmological constant piece,
the charge corresponding to this current is non-vanishing even in the limiting (zero-
mass) black hole case. Since there is no propagating graviton degree of freedom in
two dimensions, the existence of the conserved charge that we find is a non-trivial
manifestation of a stringy gauge symmetry. In this way the simplest arguments in
favour of the loss of quantum coherence are evaded, given the enormous symmetries
carried by the stringy black holes. By this we mean that the set of conserved charges
is complete in characterising the quantum-mechanical states of the two dimensional
problem.

Some of these charges, such as, for instance, the fermion number corresponding
to n = 0 in (1), might not be easy to identify in the o-model theory. Despite
that, it becomes clear from its definition (2, 6) that the fermion number charge
can be expressed, as expected from general arguments due to the locality of the
corresponding current, as a surface term in space (determined by the Liouville mode

P =V2), [ipace dp\/TV e‘%"(T + const)]. The exponent is clearly related to the
asymptotic form of the dilaton. The same dilaton scale factors enter the expression
for the space-time metric G [9]. The symmetry associated with this number in the o-
model is not yet fully understood. However, we believe that all of these symmetries,
manifest in the fermionic representation of the asymptotic theory, are related to
stringy BRST-like symmetries for various multiplets, as is the case for the spin-two
current examined in detail above. It is conceivable, for example, that the possibility
of always finding a renormalisation scheme where the form of the tachyon potential
in the effective theory is quadratic in the tachyon field [36], reflects such a stringy
symmetry for the lowest-lying string level (tachyon), which in D = 2 is associated
with the fermion number. Of course, as far as this particular charge is concerned,
formal coupling to long-range fields in the effective action might not be necessary
for its exact conservation in the presence of singular metric backgrounds. This point
needs further clarification.

An alternative scenario, again in favour of the maintenance of quantum coherence
in the two-dimensional black hole case, is the possibility that some of the currents
are non-focal in space-time. This is a totally unfamiliar picture, but it cannot be
excluded, as we have mentioned earlier. Such a non-locality could probably ensure
the exact conservation of the corresponding charge during the Hawking process,
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In a way similar to what a coupling of the conserved current to a long range-field
does for conventional local theories. It is understood that in such a case a formal
coupling with the topological modes might not be necessary, However, even this
exotic possibility can be attributed to the stringy effects of the black hole. The
matrix model is, after all, believed to be a stringy regularisation scheme of continuous
Liouville theory in which the summation over genera is done exactly.

A final point we would like to comment upon concerus the duality symmetry that
characterises general string theories [37]. In the case of two-dimensional black holes,
such duality symmetries can be interpreted [38, 39, 30] as arising from the gauging
of different subgroups of SU{1,1) (vector or axial). In Minkowskian formalism,
their effect is to interchange the horizon of the black hole with the singularity in the
Kruskal diagram. However, the dual black hole has itself its own singularities, so loss
of information could in principle occur, and the duality symmetry in question seems
incapable of solving the problem of quantum incoherence. Other obstacles to the
possibility of getting black hole quantum hair from duality symmetries in ordinary
string theories have been noted in [40]. Of course, at present our understanding of
duality symmetry may not be sufficient to reveal its importance for the problem,
and it may turn out that generalised duality symmetries [5, 41] are indeed essential
for space-time physics.

We have argued that stringy symmetries are essential in providing enough hair to
restore quantum coherence and thereby reconcile quantum mechanics and black hole
physics. We have seen that gauge symmetries in (141)-dimensional string theory
lead to exactly conserved quantities that are respected even by the Hawking process.
The key to this was the coupling of the corresponding currents to discrete remnants
of higher-spin states. This scenario leads us to imagine analogous scenaria that might
operate in higher space-time-dimensional theories. The infinite set of symmetries
coupled to discrete modes in the two-dimensional case might translate, for higher-
dimensional theories, into the existence of infinitely large discrete quantum hair for
stringy black holes provided by the breaking of certain gauge symmetries down to
discrete subgroups (gauged discrete symmetries) [4]. As argued recently [42], it is
only gauged discrete symmetries (as is the case of strings) that can have non-trivial
dynamical effects on black hole physics. This particular type of quantum hair might
manifest itself through axionic-like couplings between currents and long-range gauge
fields (that exist naturally in string theories). It may well be, following the example
set by the two-dimensional case, that the entire massive string spectrum provides
quantum hair for black holes, which is sufficient to maintain coherence during the
evaporation process. By ‘sufficient’ we mean, again, that the quantum mechanical
states can be classified completely by those charges.

These points are of course mere speculations at this stage. To establish them one
might have to wait for the development of a consistent string field theory. This is
a point where toy string laboratories, like the matrix models, might prove useful.
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They might provide one with prototypes of the non-perturbative stringy calculations
needed to answer such obscure questions as the reconciliation of quantum mechanics
and gravity, not to mention the origin of space-time.
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