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Spin Noise Spectroscopy (SNS) is an experimental approach to obtain correlators of mesoscopic
spin fluctuations in time by purely optical means. We explore the information that this technique
can provide when it is applied to a weakly non-equilibrium regime when an electric current is driven
through a sample by an electric field. We find that the noise power spectrum of conducting electrons
experiences a shift, which is proportional to the strength of the spin-orbit coupling for electrons
moving along the electric field direction. We propose applications of this effect to measurements of
spin orbit coupling anisotropy and separation of spin noise of conducting and localized electrons.

Introduction. Optical spin noise spectroscopy (SNS)
[1] has been recently introduced as a promising approach
for probing local fluctuations of spins in semiconducting
materials [2–8], atomic gases [9–14] and quantum dots
[15–17]. In particular, if Sz(t) is the time-dependent po-
larization of spins in a mesoscopic region of a semicon-
ductor, SNS can be used to obtain the spin noise power
spectrum [18–23]:

P (ω) = 2

∫ ∞
0

dt cos (ωt)〈Sz(t)Sz(0)〉. (1)

The advantage of the optical SNS over the other mea-
surement approaches (e.g., optical pump-probe [24, 25]
or STM measurements of a single spin [26]) is usually as-
sociated with the minimal energy dissipated, i.e., it can
probe spin dynamics at thermodynamic equilibrium. In
addition, the SNS allows accumulation of a large statis-
tics that smoothes out the statistical noise in the data, so
one can study subtle details at the tails of spin-spin cor-
relators [16]. Sensitivity of this approach is continuously
improving, e.g. the recently introduced Ultrahigh Band-
width SNS can resolve spin correlations with picosecond
resolution [8].

At the thermodynamic equilibrium, the fluctuation-
dissipation theorem predicts that the knowledge of the
spin correlator 〈Sz(t)Sz(0)〉, which is obtained by SNS,
is formally equivalent to the information that can be
obtained from a linear response pump-probe measure-
ments. So, for systems at the thermodynamic equilib-
rium, SNS probes characteristics that, at least in prin-
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ciple, can be obtained from more traditional approaches
based on characterizing system’s linear response.

In this letter we explore the possibility to apply SNS to
semiconductors in a non-equilibrium steady state. The
behavior of the spin-spin correlator in a non-equilibrium
regime may no longer be the subject of the fluctuation-
dissipation theorem. Hence, even if a perturbation from
the equilibrium is weak (in our case it will be a weak
electric field that induces an electric current), identifying
non-equilibrium contribution to the spin correlator may
provide the information about the system that cannot be
obtained from the linear response characteristics.

For a demonstration, we consider the effect of an elec-
tric field on spin fluctuations of conducting elections in
2D electron gas with Rashba and Dresselhaus spin orbit
couplings and spin-independent scatterings. We develop
an approach that allows us not only to derive the equa-
tions for mean spin polarization [27] but also to relate
parameters of spin fluctuations to the shot noise at mi-
croscopic scattering events.

Stochastic dynamics of spin fluctuations. Consider
spin fluctuations from the mean steady state of an elec-
tron system. Let ρ̂k be the spin density matrix in the
momentum space, which is a 2×2 matrix in spin indexes.
We assume that the observation region is much larger
than the spin diffusion length, so that we can consider
dynamics only in the momentum space [28]. The evo-
lution of the spin density matrix in a momentum space
volume k is described by the quantum Boltzmann equa-
tion:

˙̂ρk − eE · ∇kρ̂k + i[Ĥ0, ρ̂k] = Îcoll, (2)

in which Îcoll is the collision term due to elastic scattering
on impurities, and Ĥ0 is the scattering-free part of the
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Hamiltonian:

Ĥ0 =
k2

2m
− 1

2
Ωk · σ −

1

2
H · σ, (3)

where σ is the vector of Pauli matrices, H is the in-
plane magnetic field (with absorbed Bohr magneton and
g-factor).

The spin orbit coupling field can be written as a sum
of two parts Ωk = kxΩ1 + kyΩ2, with:

Ω1 = 2(βx̂− αŷ), Ω2 = 2(αx̂− βŷ), (4)

where α and β are strengths of, respectively, Rashba and
Dresselhaus couplings. It is convenient to introduce the
spin density sµk = Tr[σµρ̂k]/2, where µ = x, y, z, so that
eq.(2) can be rewritten as

ṡk − eE · ∇ksk = sk ×H + sk ×Ωk +
∑
k′

Jk′→k, (5)

where Jk′→k is the stochastic spin current, in the mo-
mentum space, due to scattering between states k′ and
k. For spin conserving scatterings, Jk′→k = −Jk→k′ .

Consider a scattering channel that connects states at
k′ and k. Let ak,↑, ak,↓ be the annihilation operators
of an electron with momentum k for spin up and down,
respectively. For such scatterings, without spin-flipping,
the evolution of spin-up and spin-down electrons during
a small time interval t is described by a scattering matrix
[29]:(

ak,↑/↓(t)
ak′,↑/↓(t)

)
=

(
Rkk Tkk′

Tk′k Rk′k′

)(
ak,↑/↓(0)
ak′,↑/↓(0)

)
, (6)

where Tkk′ and Rkk are, respectively, time-dependent
transmission and reflection amplitudes. The spin opera-

tor is defined as ŝk = 1
2Ψ†kσΨk, with Ψk = (ak,↑, ak,↓)

T .

If we assume that scattering is weak, then |Tkk′ |2 =
|Tk′k|2 � 1, |Rkk|2 = 1 − |Tkk′ |2. The spin cur-
rent operator due to such scatterings is defined by:∫ t

0
dt′Ĵk′→k(t′) ≡ ŝk(t)− ŝk(0).
To determine first two cumulants of the spin current

[29], one can take the trace of the first and second pow-
ers of ŝk(t) − ŝk(0) with the density matrix ρ̂st

k + ρ̂k,
where ρ̂st

k is the density matrix at the steady state and
ρ̂k is due to the currently present spin fluctuation [30].
The steady state density matrix is approximated by a
spin-diagonal matrix ρ̂st

k ≈ fk1̂k, where fk = f(εk) is

the Dirac-Fermi distribution over energy εk and 1̂k is a
unit matrix in the spin space of fermions with momentum
k. This is equivalent to disregarding terms O(E2) and
higher order corrections in Ω/εF , where εF is the Fermi
energy, in the final expression for the spin correlator. We
should also assume that there are no initial correlations
between different phase space volumes and between spin
currents at different time moments. Scattering probabil-
ity, |Tkk′ |2, is linearly growing with time when energies
of k′ and k are the same. Introducing the scattering rate

ωk,k′ = |Tkk′ |2/t, we then find

〈Jk′→k〉 = ωk,k′ (sk′ − sk) , (7)

〈Jµk→k′(t
′)Jνk1→k′

1
(t)〉 − 〈Jµk→k′(t

′)〉〈Jνk1→k′
1
(t)〉 =

ωkk′fk(1− fk′)δ(t− t′)δµν(δkk1δk′k′
1
− δkk′

1
δk′k1).(8)

Let’s introduce variables describing coarse-grained spin
characteristics:

S0 =
∑
k

sk, S1,2 =
∑
k

skkx,y, (9)

and the transport life time τtr:

1

τtr
=
∑
k′

ωk,k′ [1− cos(ϕ− ϕ′)], (10)

with ϕ and ϕ′ are angles of, respectively, k and k′ taken
at the Fermi surface. By summing over k in Eq. (5) we
then obtain

Ṡ0 = S0 ×H + S1 ×Ω1 + S2 ×Ω2. (11)

Due to kBT � εF , where T is temperature, we can ap-
proximate

∑
k k

2
x,ysk ≈ (k2

F /2)S0, where kF is the Fermi
momentum. Multiplying Eq. (5) by kx and ky and sum-
ming over k we then find

Ṡ1 = −eExS0 +
k2
F

2
S0 ×Ω1 −

S1

τtr
+ η1, (12)

Ṡ2 = −eEyS0 +
k2
F

2
S0 ×Ω2 −

S2

τtr
+ η2, (13)

where we neglect the terms proportional to H because
H � 1/τtr. The relaxation terms in (12) and (13) origi-
nate from the mean value of the stochastic spin current,
and the spin noise terms are defined as:

η1,2 =
∑
k,k′

kx,y(Jk′→k − 〈Jk′→k〉), (14)

with their averages zero and correlations:

〈ηµi η
ν
j 〉 = k2

F δµνδijDkBTδ(t− t′)/(2τtr), i, j = 1, 2,(15)

where D is the density of states per spin in the full ob-
servation region. Linear dependence on temperature T
appears in (15) after integration of fk(1 − fk) over en-
ergy, i.e. it can be traced to the Dirac-Fermi statistics of
electrons.

Due to short correlation time of spin currents and due
to fast relaxation, first harmonics Sµ1 and Sµ2 will change
at fast time-scales, at which variables Sµ0 can be consid-
ered constant. This allows us to express first harmonics,
e.g. S1, as functions of S0:

S1 = −eExτtrS0 +
k2
F τtr
2

S0 ×Ω1 + κ1(t), (16)

where κ1 is the solution of the equation, κ̇1 = −κ1

τtr
+

η1(t), which describes a noise with correlators

〈κµ1 (t)〉 = 0, 〈κµ1 (t)κν1(t′)〉 =
k2
FDkBT

4
e−|t−t

′|/τtrδµ,ν .

(17)
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We also note that the correlator (17) has very short de-
cay time τtr (less than 10ps in Rashba 2D electron gas),
so at time scales of spin relaxation it can be safely ap-
proximated by a white noise

〈κµ1 (t)κν1(t′)〉 ≈ k2
FDkBTτtr

2
δ(t− t′)δµ,ν . (18)

By similarly working out equations for S2 and substi-
tuting results into (11) we obtain equations for slowly
changing spin density. In order to simplify notation,
we introduce new parameters HSO = 2λeEτtr with λ =√
α2 + β2 and E =

√
E2
x + E2

y , and 1
τs

= (2λkF )2τtr as

well as the noise variables ξ:

ξ = κ1 ×Ω1 + κ2 ×Ω2. (19)

Note that 〈ξxξy〉 6= 0. Equations for dynamics of Sµ0 are:

Ṡz0 = (S0 ×Heff)z −
Sz0
τs

+ ξz,

Ṡx0 = (S0 ×Heff)x −
Sx0
2τs
− Sy0 sin(2φ)

2τs
+ ξx, (20)

Ṡy0 = (S0 ×Heff)y −
Sy0
2τs
− Sx0 sin(2φ)

2τs
+ ξy,

with Heff = H + HSO, in which

HSO = HSO(− sin(θ + φ), cos(θ − φ), 0), (21)

where θ denotes the angle that the in-plane electric field
makes with x-axis, and tanφ = β/α. Eqs. (20) and (21)
show that τs is a characteristic relaxation time for the
out-of-plane spin component of the fluctuation, and HSO

is the effective magnetic field which is induced by the
electric current.

By taking Fourier transform of (20), e.g. Sz0 (ω) =∫ Tm/2

−Tm/2
dteiωtSz0 (t) with Tm being the measurement time,

which is much larger than τs, we obtain the correlator
in the frequency domain. When |Heff | � 1/τs and a
magnetic field is in-plane of the sample, we find that the
noise power is given by

P (ω) ≡ 〈S
z
0 (−ω)Sz0 (ω)〉

Tm
=

DkBT/τe
(ω − ωL)2 + 1/τ2

e

, (22)

where ωL = |Heff | and the effective spin relaxation time
is τ−1

e = τ−1
s (3 − sin 2ϕ sin 2φ)/4 in which ϕ is the an-

gle between the direction of Heff and the x-axis. Eq.
(22) shows that the shape of the noise power spectrum
is Lorentzian but the Larmor frequency is influenced by
the electric field and the peak width is renormalized by
a factor, which depends on the direction of the magnetic
field and the spin orbit coupling anisotropy.

Applications. A straightforward experimentally
testable prediction of Eqs. (21) and (22) is that the
electric field shifts the position of the maximum of the
Lorentzian peak by the amount δωL ∼ 2eEλτtr, as we

FIG. 1. (a) The spin noise power spectrum without and with
an in-plane electric field (black and red curves, respectively)
in strained bulk GaAs. Maximum of the peak is normalized to
1. The peak is shifted by an amount of δωL ≡ ωL−H. Here,
H = 100MHz, HSO = 15MHz, τ−1

s = 10MHz. (b) The polar
plot of the peak shift |δωL| in a 2D electron gas as a function of
θ, i.e. the angle of an in-plane electric field with x-axis. Here
E = 12V/cm, and the magnetic field is always perpendicular
to the electric field. Red, black and green curves correspond
to α = λ (β = 0), α = β and α = 0 (β = λ), respectively.

show in Fig. 1(a). The sign of the shift is proportional
to e, i.e. depends on the sign of the carriers.

Taking the values from [31] for Rashba coupling in
2D electron gas at GaAs/AlGaAs interface, λR = 1.5 ·
10−13eV · m, relaxation time 1/τtr = 10−3eV, and as-
suming the electric field E = 12V/cm, we find HSO ∼
800MHz. which is comparable to the spin relaxation rate
in such systems [32]. Alternatively, a linear Rashba-type
spin orbit coupling is induced in bulk 3D GaAs samples
at imposed strains, i.e. α ∼ ε ≡ (εxx − εyy), where εαβ
are components of the strain tensor. The effective spin
orbit field, HSO, induced by an electric field E = 9V/cm
in a 3D GaAs sample with a strain ε = 0.015% was previ-
ously determined to be about ∼ 1Gauss by a local Hanle
measurement approach [25]. Considering that strains
can be increased by an order of magnitude, the field
E ∼ 25V/cm should produce the shift of the conducting
peak by 15MHz, which would be larger than its width
(∼ 10MHz) and hence clearly observable (Fig. 1(a)).
The magnitude of the peak-shift effect is sensitive to the
anisotropy of the spin orbit coupling, and hence, in a 2D
electron gas, depends on the direction of the electric field,
as illustrated in Fig. 1(b). In fact, measuring the shift of
the Larmor frequency at two transverse directions of the
external electric field, one can determine strengths of the
Rashba and Dresselhaus couplings separately.

Another application of the peak-shift effect can be in
studies of localized states at the presence of conduct-
ing electrons. At low doping, below the conducting-
insulating phase transition [33, 34], there can be donor
impurities that are well separated from each other. If
the distance between impurities exceeds some critical
value R ∼ 200nm, electron hopping between them will
be strongly suppressed and localized electron states near
such impurities become akin to localized states in quan-
tum dots [6]. Here we predict that spin noise from con-
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FIG. 2. Estimate of the noise power spectrum (a) at zero
electric field and (b) at an in-plane electric field E = 30V/cm
for a GaAs sample with comparable numbers of conducting
and strongly localized electrons (n ∼ 3 · 1014cm−3). Spin
relaxation times for conducting electrons is τs = 100ns and for
localized electrons τloc = 500ns. Electric field E = 30V/cm
at strain ε = 0.15% splits the peak at zero frequency into two
peaks at ±HSO ∼ 15MHz due to conducting electrons and a
peak that remains at zero frequency, which is produced by
localized electrons.

ducting and localized electrons can be distinguished due
to their different behavior in an applied electric field.
Namely, the noise power spectrum for mobile electrons
will experience a displacement in the electric field, as ex-
plained above, but the power spectrum of localized elec-
tron spins will stay intact, as is shown in Fig. 2.

In order to estimate this effect, consider a 3D strained
GaAs sample with an arbitrary donor concentration n.
Let V = 4πR3/3 be the volume that is needed for a
localized electron of a donor impurity to be well separated
from other impurities. The probability that a localized
state is not overlapped with any other electron state is
given by e−nV , so the concentration of impurities whose
electron wave functions remain well separated from other
donors is given by

nloc(n) = ne−nV . (23)

One can find that for R = 200nm and a doping above the
metal-insulator transition (n ∼ 1016cm−3), the number
of such well localized states is negligibly small. However,
at lower doping (n ∼ 1014cm−3), the number of well

localized and thermally activated conducting electrons,
and hence their contribution to the spin noise power, can
be made comparable.

The physics of spin relaxation of isolated localized
electrons is expected to be dominated by the hyperfine
coupling in essentially the same way as in the spin of
electron-doped InGaAs quantum dots, which was dis-
cussed in [22]. The theory [22] predicts that if the mag-
netic field is set to zero the localized states of a single
donor impurities produce a sharp noise power peak. At
low temperatures (below 7-10K), this peak has a non-
Lorentzian power-law shape at frequencies below 1MHz
with a broader shoulder, whose width is determined by
the typical strength of the quadrupolar coupling of nu-
clear spins (Fig. 5b in [22]). For GaAs, the latter is in
the order of several megahertz. At moderately large tem-
peratures (7-30 K), phonon mediated mechanisms of lo-
calized spin relaxation make this peak shape Lorentzian
[16]. Fig. 2 shows that a reasonably strong electric field
is sufficient to shift the peak of conducting electrons and
distinguish it from the peak of localized states.

Conclusion. We predict that measuring the spin noise
power spectrum at steady non-equilibrium conditions is
a promising research direction with applications to pa-
rameter estimation and uncovering new phenomena. We
showed that an electric field leads to a measurable shift
of the noise power peak of conducting electrons, which
can be used for characterizing the anisotropy of the spin
orbit coupling and separating the spin noise of localized
states from the spin noise of conducting electrons. Future
research directions on the non-equilibrium SNS may in-
clude effects of an AC electric field, spin noise measured
from optically polarized electrons, studies of high order
fluctuation-dissipation relations [35], and spin noise in
the non-Ohmic regime at strong electric fields [36].
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