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The energy of plasma waves can be moved up and down the spectrum using chirped modulations
of plasma parameters, which can be driven by external fields. Depending on whether the wave
spectrum is discrete (bounded plasma) or continuous (boundless plasma), this phenomenon is called
ladder climbing (LC) or autoresonant acceleration of plasmons. It was first proposed by Barth et al.

[PRL 115, 075001 (2015)] based on a linear fluid model. In this paper, LC of electron plasma waves
is investigated using fully nonlinear Vlasov-Poisson simulations of collisionless bounded plasma. It
is shown that, in agreement with the basic theory, plasmons survive substantial transformations
of the spectrum and are destroyed only when their wave numbers become large enough to trigger
Landau damping. Since nonlinear effects decrease the damping rate, LC is even more efficient when
practiced on structures like quasiperiodic Bernstein-Greene-Kruskal (BGK) waves rather than on
Langmuir waves per se.

I. INTRODUCTION

Ladder climbing (LC) is understood as an approach to
a robust excitation of quantum systems by the means of
chirped quasiperiodic modulation of system parameters.
Such modulation, or drive, induces successive Landau-
Zener (LZ) transitions [1, 2] between neighboring energy
levels when the corresponding transition frequency is in
resonance with the drive. As the modulation is chirped,
transitions are induced in different pairs of levels at dif-
ferent times. Then it becomes possible to robustly propel
quanta across a wide range of the energy spectrum, pro-
vided that the chirp rate is slow enough and the drive is
sufficiently strong.
By now, LC has been demonstrated in various quan-

tum systems ranging from atoms and molecules [3–6], to
anharmonic oscillators [7–9], Josephson resonator [10],
and bouncing neutrons [11]. In the limit of continuous
spectrum, the drive couples many levels simultaneously
and the quantum LC become the well known classical
autoresonance (AR) [12–19]. Most recently, it was also
proposed that the effect is extendable to classical sys-
tems [20]. Specifically, it was shown in Ref. 20 that Lang-
muir waves in bounded plasma may undergo LC much
like a quantum system, if the background plasma density
is subjected to a low-frequency chirped modulation (e.g.,
a chirped acoustic wave). However, the theory in Ref. 20
relies on a linear fluid model, so it neglects kinetic effects,
such as Landau damping, and nonlinear effects, such as
particle trapping. Whether LC by electron plasma waves
can survive these effects and can be practiced on realistic
waves remains to be shown ab initio.
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The purpose of this paper is to present first ab initio

collisionless simulations confirming that LC of electron
plasma waves is a robust effect that can survive kinetic
and nonlinear effects. The simulations are done using
a one-dimensional Vlasov-Poisson code. We find that,
at sufficiently low mode numbers numbers m, LC pro-
ceeds much like anticipated from the simplified fluid the-
ory [20]. At larger m, Landau damping and nonlinear
effects eventually disrupt the process. That said, we also
find that nonlinear effects facilitate LC in the sense that
they reduce Landau damping and thus help plasmons
reach m larger than those expected from the linear the-
ory. In other words, LC is even more efficient when prac-
ticed on quasiperiodic Bernstein-Greene-Kruskal (BGK)
modes [21, 22] rather than on linear waves per se.

The LC phenomenon practiced upon plasma waves
is certainly of academic interest, because the Langmuir
wave is probably the most fundamental and widely oc-
curring mode in plasma physics. However, manipulating
its properties through ladder climbing could be of inter-
est in practical applications as well. Certain applications
exploit the small group velocity of the Langmuir wave,
such as plasma holography [23], plasma photonic crys-
tals [24], and other cooperative plasma phenomena [25].
The plasma wave is also useful in mediating the compres-
sion of laser energy in plasmas, thereby to reach ultra-
high intensities [26]. In that regard, the ability of the
plasma wave to linger in plasma owing to its small group
velocity makes it a useful seed for this interaction [27].
In each of these cases, while the plasma wave is lingering,
but before performing a task, such as, retrieving informa-
tion or mediating laser compression, it can be imagined
that it might be usefully manipulated to better perform
that task. The LC described here would be one tool to
perform those manipulations or optimizations.

The paper is organized as follows. In Sec. II, we briefly
overview the fluid theory reported in Ref. 20. In Sec. III,
we introduce our numerical model. In Sec. IV, we pro-
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duce our main results. In Sec. V, we present our main
conclusions.

II. FLUID THEORY OF LADDER CLIMBING

Consider a one-dimensional collisionless nonmagne-
tized plasma with immobile ions that form a static ho-
mogeneous background. As known commonly from fluid
theory [28], such plasma supports electrostatic electron
waves, called Langmuir waves, whose frequency ω for a
given wave number k is given by ω = ωpe[1+3(kλD)

2]1/2.

Here, ωpe = (4πn0e
2/me)

1/2 is the electron plasma fre-
quency, λD = vth,e/ωpe is the Debye length, n0 is the
unperturbed electron density, e is the elementary charge,
me is the electron mass, vth,e = (Te/me)

1/2 is the elec-
tron thermal velocity, and Te is the electron temperature.
Assuming hard-wall boundary conditions, the allowed

wave numbers are km = mk1, where m is the mode num-
ber, k1 = π/L is the wave number of the fundamental
mode, and L is the plasma length. The discrete disper-
sion relation of a standing Langmuir wave can be written
as ωm ≈ ωpe(1 + β̃m2)1/2, where β̃ = 3π2λ2

D/L2. Note

that β̃ can be understood as a measure of the spectrum
anharmonicity, i.e., of how strongly the frequency differ-
ence of neighboring modes ωm,m+1 = ωm+1−ωm depends

on m. For β̃m2 ≪ 1, one has

ωm,m+1

ωpe
=

√

1 + β̃(m+ 1)2−
√

1 + β̃m2 ≈ β̃

(

m+
1

2

)

.

(1)
As any collection of discrete modes, such system is math-
ematically equivalent to a quantum particle governed by
a Hamiltonian with the same spectrum [29]. Thus, lin-
ear Langmuir waves in bounded fluid plasma can be de-
scribed by LC theory borrowed from quantum mechan-
ics, in which the system is propelled from an initial mode
(e.g., the lowest-order mode, or “ground state”) up to a
desired final mode [7, 20]. LC can be realized by apply-
ing an external drive or a density modulation [20], with a
chirped frequency ωd = ω0 +αt, where ω0 is the starting
frequency, α is a constant chirping rate, and t is time.
Following the quantum LC theory, we identify two di-

mensionless parameters of interest: the driving param-
eter P1 = A/(4

√
α̃) and the anharmonicity parame-

ter P2 = β̃/
√
α̃, where A is the modulation amplitude

(namely, the relative perturbation of the background
electron density) and α̃ = α/ω2

pe is the dimensionless
chirping rate. The probability of the plasmon transfer be-
tween neighboring modes is given by 1−exp(−πP 2

1 /2) [1,
2]. In order to have efficient LC, P1 must be large enough.
For example, P1 > 1.5 results in energy transfer above
97% to the next mode. In addition, from Eq. (1), one has

ωm,m+1 −ωm−1,m ≈ ωpeβ̃. This means that the time in-
terval between successive resonances (“transition time”)

is ∆ttrans = ωpeβ̃/α = ω−1
pe β̃/α̃. Using the “natural” di-

mensionless time τ =
√
αt =

√
α̃ωpet, the transition time

is given by ∆τtrans = β̃/
√
α̃ = P2. For LC, P2 ≫ 1 + P1

must be satisfied so that the LZ transitions are well sep-
arated and only two levels are coupled at a given time.
In the other limit, where P2 ≪ 1, many levels are simul-
taneously coupled and the system exhibits AR accelera-
tion, which is the continuum limit of LC. Also note that
α̃ ≪ 1 (adiabaticity condition) is needed for this theory
to hold. Otherwise, the mode coupling induced by the
drive is nonresonant, so the transfer of quanta becomes
phase-dependent (nonadiabatic).
This theory of LC and AR by Langmuir waves was

proposed in Ref. 20, and it was also confirmed there nu-
merically using linear fluid simulations. Although the
linear Landau damping was recognized as a kinetic limit
on the accessibility of levels with high m, the kinetic sta-
bility of lower levels and the phase space evolution during
the damping were not studied. In order to explore how
LC is modified when kinetic and nonlinear effects are in-
volved, more rigorous simulations are needed. We report
such simulations below. The transition to the AR is not
considered because of numerical limitations.

III. KINETIC MODEL

Electrons are described by their phase-space distribu-
tion f , which is a function of the position x, velocity v,
and time t. We adopt the reflecting-wall conditions in x
space; i.e., f(x, v, t) = f(x,−v, t) at the plasma bound-
aries x = 0 and x = L. The dynamics of f is governed
by the Vlasov equation

∂f

∂t
+ v

∂f

∂x
− eE

me

∂f

∂v
= 0, (2)

where the electric field is given by E = Es+Edrive+Eprep,
where Es is the self-induced field, Edrive is the field that
drives LC, and the “preparation” field Eprep is used to
set up the initial Langmuir wave. The self-induced field
is Es = −∂xφ, where the potential φ is governed by the
Poisson equation

∂2φ

∂x2
= −4πe(ni − ne). (3)

Here, ni is the ion density, which is constant (in both
x and t), and ne(x, t) =

∫

∞

−∞
f(x, v, t) dv is the elec-

tron density, respectively. We assume that the plasma

is overall neutral [
∫ L

0
ne(x, t) dx/L = ni] and the surface

charges at the walls are zero, so the boundary conditions
for the electric field are E(x = 0) = E(x = L) = 0.
In this paper, we investigate the LC dynamics that

begins the “ground level”; namely, the initial wave
is prepared using Eprep that is resonant with the
lowest mode (m = 1). We adopt Eprep(x, t

′) =

Ep0Âp(t
′) cos(ω1t

′) sin(k1x), where Ep0 is the amplitude
of the preparation driver, t′ = t− t0, and t0 is the start-
ing time of the simulation. Following Refs. 30 and 31, we
choose a ramp-up and ramp-down envelope as follows:
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2Âp(t
′) = tanh[8(t′/tr−0.5)]− tanh[8((t′− tc)/tr−0.5)].

The time scale of the ramp-up and ramp-down stages, tr,
is chosen large enough to prevent beating of the plasma
wave with the preparation field and thus retain a smooth
distribution; specifically, we choose tr = 40ω−1

pe . The
time tc during which the amplitude is kept constant is
chosen to be tc = 200ω−1

pe . It is noted that the initial
wave action in the first mode depends on the prepara-
tion field amplitude, Ep0, and duration, tc.
After the initial mode is excited, we turn off Eprep and

apply a different, chirped external field

Edrive(x, t) = Ed0 sin(k1x) cos

(

ω1,2t+ α
t2

2

)

. (4)

The frequency of this field, ωd = ω1,2 + αt, is initially in
resonance with the frequency of the transition between
the first and second modes, ω1,2 = ω2 − ω1. Note that

ω1,2 ≪ ωpe for β̃m ≪ 1 [see Eq. (1)] and t = 0 is cho-
sen to be the time when ωd = ω1,2. At later times, ωd

becomes resonant with the transition frequencies ωm,m+1

corresponding to higher m, so plasmons can be gradually
propelled from the lowest mode to higher modes, thus re-
alizing LC.
In order to have efficient LC, the values of α̃ and

β̃ are chosen based on the following conditions. First,
the system length must satisfy L/λD = π/(k1λD) =

(3/β̃)1/2 ≫ 3π in order to ensure that kinetic effects
are weak (kmλD

<∼ 1/3) [30] at least for the first few

resonant modes (m ∼ 1). Thus, β̃ ≪ 1/(3π2). Second,

P2 = β̃/
√
α̃ ≫ 1+P1 is adopted to ensure the LC regime

(see Sec. II). For the simulations reported here, we chose

α̃ = 4.5628 × 10−8 and β̃ = 0.002. These parameters
correspond to L/λD ≈ 121 and ∆ttrans = 4.38× 104ω−1

pe ,
i.e., τtrans = P2 = 9.36. In addition, we employ Ep0 =
1 × 10−4 and Ed0 = 0.1, which yields P1 ≈ 2.4 in our
simulation, for which the transition probability predicted
from fluid theory is almost 100%.
The numerical method chosen to solve Eq. (2) is

Strang’s time splitting with a finite volume method us-
ing the monotonic upwind for scalar conservation laws
(MUSCL) scheme [32]. A modified Arora-Roe limiter [33]
is used in order to preserve positivity of the phase-
space distribution f and reduce the numerical dissipa-
tion as much as possible within the MUSCL frame-
work. Since simulations were done for large time scales
(about 105 plasma periods), Message Passing Interface
(MPI) is used for parallel computing. Previously, this
method was applied for simulating plasma discharges in
Hall thrusters [34], trapped particle instability [35], and
plasma wall interactions [36]. The computational time
for one simulation is about 1-2 days using 64 processors.
The resolution of the Vlasov simulation is set as follows:
∆x = L/Nx ≈ λD/5 and ∆v = (vmax − vmin)/Nv, where
Nx = 512, vmax = −vmin = 8vth,e, Nv = 1000, and
vth,e is the electron thermal velocity. The time step is
∆t ≈ 0.028ω−1

pe , the total steps Nt = 2.7× 107, resulting

in the total time about 7.7× 105ω−1
pe .
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FIG. 1. Simulated evolution of plasma waves during LC: (a)
wave frequency, ω; (b) phase velocity, vφ; (c) linear Landau
damping rate, γL, from Eq. (5); and (d) the evolution of the
field-energy spectrum. Also shown is the sum of the field
energy for m ≥ 2. The contribution of mode with m = 1
is excluded in order to eliminate the interference with Edrive,
which has the wave number equal to that of the first mode.

IV. RESULTS

Field spectrum. Figure 1 presents an overview of the
electron plasma wave evolution. Figures 1(a)-(c) show
the wave frequency ω, phase velocity vφ = ω/k, and lin-
ear Landau damping rate γ, respectively, as functions of
the mode number m and the corresponding wave number
k (i.e., km). The real part of the frequency is calculated
using the fluid dispersion of Langmuir wave (Sec. II), and
the Landau damping is calculated using [28]

γL ≈
√

π

8

ωpe

(kλD)3
exp

[

− 1

2(kλD)2
− 3

2

]

. (5)

At m <∼ 7, Landau damping is negligible at our pa-
rameters, so the wave total action I is conserved [29].
Since the Langmuir wave temporal spectrum is localized
in the vicinity of ωpe, one can adopt the standard lin-
ear relation between the action and the wave energy E ,
namely, I ≈ E/ωpe [37]. At small enough kλD, one also

has E ≈ 2W , where W =
∫ L

0
E2/(8π) dx is the total

field energy [37]. Then, W is approximately conserved
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FIG. 2. Snapshots of a plasma wave undergoing LC: (a) elec-
tric field; and (b) electron distribution at τ = 21.1, 33.9, 43.1,
55.9, 70.6, and 85.2, when transitions occur to modes with
m = 4, 5, 6, 7, 8, and 9 (see Fig. 1). The same log-scale col-
ormap is used in all six subfigures in (b). The orange dashed
lines in (b) show the linear phase velocities of the relevant
modes.

too. At larger m, this approximation fails, and, even-
tually, the action conservation is also broken, namely,
due to Landau damping. This evolution is illustrated in

Fig. 1(d). Specifically, we plot Wm =
∫ L

0
E2

m/(8π)dx,
where Em is the amplitude of the spatial mode with
the corresponding m calculated using Fourier decompo-

sition, Em = (2/L)
∫ L

0
E sin(kmx)dx. Also note that the

transitions between individual modes from the numerical
simulation occur at multiples of time periods which are
predicted from fluid theory up to m = 5, ∆τtrans = 9.36
(∆ttrans = 4.38×104ω−1

pe in the true dimensional time) for

our simulation. At m >∼ 5, the transition time becomes
larger than what the fluid theory predicts, because ki-
netic corrections to the wave dispersion relation becomes
substantial. Below, we discuss some aspects of kinetic
effects in more detail.

Particle distribution. The characteristic temporal evo-
lution of a plasma wave during LC is shown in Fig. 2. The

Velocity, v / v th,e
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FIG. 3. Spatially-averaged electron velocity distribution func-
tions (VDFs). The time steps correspond to the ones shown in
Fig. 2. Plateaus of the VDFs are found around the phase ve-
locities predicted by the analytic theory. The insert, Fig. 3(b),
is a zoomed-in view showing the evolution of the modes with
m = 8 and m = 9.

snapshots illustrating oscillations at modes with m = 4,
5, 6, 7, 8, and 9 correspond to τ = 21.1, 33.9, 43.1, 55.9,
70.6, and 85.2 in Fig. 1(d), respectively. As plasmons get
transferred to higher and higher m, the phase velocity of
the wave decreases and approaches the bulk in the dis-
tribution function [Fig. 1(b)]. Modes with m > 4 carry
a noticeable amount of trapped electrons, but the real
part of the frequency is largely unaffected by the trapped
population. This is seen in Fig. 2(b) that shows the cor-
responding distribution functions and vφ/vth,e calculated
from the linear theory.

Figure 3 shows the spatially-averaged electron veloc-
ity distributions (VDFs). Flattened VDFs are formed
around the phase velocity predicted by the analytic the-
ory. However, flattening of the spatially-averaged VDF
of the next mode can be also seen. For instance, the
analytic theory predicts that, at τ = 43.1, plasma os-
cillations are excited at m = 6, which corresponds to
vφ/vth,e = 6.68. However, Fig. 3 shows VDF flattening
also around vφ/vth,e = 5.80 (red line), which corresponds
to m = 7. This can be explained by the fact that LC
is not an abrupt but rather continuous process. It can
indeed be seen from Fig. 2(b-3) that particles around
vφ/vth,e = 5.80 are modulated but not fully trapped as
the potential amplitude of m = 7 is still increasing. As
seen in Fig. 1(d), the wave energy of the next mode in-
creases exponentially before the transition occurs. This
results in adiabatic trapping of particles around the phase
velocity of the following mode.

In detail, the transition from m = 6 to m = 7 can be
seen in Fig. 4. Particle trapping occurs at vφ/vth,e =
6.68, which corresponds to the m = 6 mode. For a
sinusoidal wave, the size of the trapped particle region
is ∆vtr = 2

√

eE0/(kme), where E0 is the wave ampli-
tude [30]. Due to the approximate energy conservation
(see above), E0 ≈ const. Thus, ∆vtr decreases with m,



5

FIG. 4. An illustration of a transition between two modes,
specifically m = 6 to m = 7: (a) wave energy, zoomed-in
from Fig. 1. The zoomed-in electron distribution shown in
(b), (c), and (d) correspond to the moments of time marked
in (a) with pink dashed lines. The orange dashed lines in (b)-
(d) show the phase velocities of the modes with m = 6 and
m = 7 correspondingly.

and this effect is seen in simulations indeed [Fig. 2(b)].
The effect is strengthened by the fact that, at large m,
Landau damping comes into play; then E0 is not con-
served but actually decreases too, as will be discussed
below in detail.
We also performed simulations with other amplitudes

of the seeded wave, which results in different E0. Larger-
amplitude plasma waves exhibit trends similar to those
seen in Figs. 1-4. The main difference is that, at larger
amplitudes, the size of the trapping islands increases, be-
cause ∆vtr ∝

√
E0. Eventually, ∆vtr exceeds the differ-

ence between the phase velocities of neighboring modes,
which is given by (assuming β̃m2 ≪ 1)

vm+1 − vm ≈
(

1

m+ 1
− 1

m

)

ωpe

k1
= − ωpe/k1

m(m+ 1)
. (6)

This causes nonlinear interactions between the modes.
While a slight kinetic dissipation is observed, LC can still
occur even when ∆vtr/2 < vm+1−vm. The corresponding
simulations are not presented in this paper.
Effect of Landau damping. Figure 5 compares predic-

tions of Eq. (5) for the rate of linear Landau damping
with numerical simulations. The Landau damping rate
is too small to matter for modes with m ≤ 6. For m = 7,
one can expect a 40% energy loss to Landau damping
during the transition time ∆τtrans. For m = 8, the linear
theory predicts that the wave energy decreases during
transition by orders of magnitude. Such strong dissipa-
tion is not observed in reality due to nonlinear effects, be-
cause we operate in the regime of relatively large bounce
frequency ωB =

√

ekE0/me. The corresponding bounce
period tB = 2π/ωB is about 120ω−1

pe , which is much
smaller than the transition time. Moreover, γLtB ≪ 1 for
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FIG. 5. Comparison between our numerical simulation and
the analytic theory for Landau damping. The dash-dotted,
dashed, dotted lines are theoretical prediction of Landau
damping for m = 6, m = 7, and m = 8, respectively.

all modes of interest (γLtB ≈ 5×10−6, 7.9×10−4, 0.018,
and 0.14, for m = 6, 7, 8, and 9, respectively). This im-
plies that the modes are in the strongly nonlinear regime
and are not Langmuir waves per se; rather, they can be
considered as quasiperiodic BGK-like modes. Since non-
linear effects suppress Landau damping, they facilitate
LC in the sense that they help plasmons reach higher m.
But of course, at very large m, linear damping is still
stronger than the nonlinearity, so there is a limit on the
maximum m (in our case m ≈ 9) beyond which LC is
impossible.
Kinetic dissipation of counter-propagating waves. It is

to be noted that, even in the absence of linear Landau
damping, some nonlinear dissipation is always present in
the system due to reflecting walls. This is due to the
fact that a wave with a positive wave number is also ac-
companied by a wave with a negative wave number. In
that case, there is no reference frame where the electric
field would be stationary, so true BGK waves are impossi-
ble; i.e., no propagating structure is truly stationary. As
pointed out earlier in Ref. 38, there always remains some
amount of interaction between nonlinear waves propagat-
ing in the opposite directions, resulting in dissipation.
This effect is illustrated in Fig. 6 that shows the evo-

lution of two single modes, namely, with m = 4 and
m = 9. The former has vφ/vth ∼ 10, so it carries no
trapped particles and is essentially linear; hence the am-
plitude of the field stays constant and the wave exhibits
no damping. In contrast, the latter has vφ/vth ∼ 5, so
the trapped-particle content is noticeable. That makes
the wave nonlinear, thus resulting in damping.

V. CONCLUSIONS

In summary, we report the first ab initio simulations
of LC by electron plasma waves that was originally pro-
posed in Ref. 20 within a linear fluid theory. The sim-
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FIG. 6. Simulations of a single mode plasma wave with
reflecting-wall boundary conditions. Figures (a, b) corre-
spond to the mode with m = 4, and (c, d) correspond to
the mode with m = 9. Particle trapping occurs around
vφ = ±4.64vth,e.

ulations are done using a one-dimensional collisionless
Vlasov-Poisson code. We find that, although the original
theory was simplified, it does, in fact, capture the essen-
tial features of the phenomenon in realistic settings that

involve both kinetic and nonlinear effects. Specifically,
we find that, at sufficiently low mode numbers numbers
m, LC is kinetically stable and is much like predicted
in Ref. 20. At larger m, Landau damping and nonlin-
ear effects eventually disrupt the process. That said, we
also find that nonlinear effects facilitate LC in the sense
that they somewhat suppress Landau damping due to
particle-trapping and flattening of the distribution func-
tion and thus help plasmons reach m larger than those
expected from the linear theory. In other words, LC hap-
pens to be more efficient when practiced on BGK modes
rather than on linear Langmuir waves per se. Such modes
are potentially producible in nonneutral-plasma experi-
ments using Penning traps [39] and are similar to driven
phase space holes that can be excited autoresonantly us-
ing externally imposed standing waves [19]. (For bound-
less plasmas, a similar excitation technique using travel-
ing waves was also reported in Refs. 17 and 18.) It is
to be noted that, although the LC dynamics of BGK-like
modes is qualitatively discussed in this paper, a full ki-
netic theory of LZ-type transitions between such modes
remains to be developed.
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