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ABSTRACT

We extend the investigation of the recently proposed Kerr/CFT correspondence to large

classes of rotating black hole solutions in gauged and ungauged supergravities. The cor-

respondence, proposed originally for four-dimensional Kerr black holes, asserts that the

quantum states in the near-horizon region of an extremal rotating black hole are holograph-

ically dual to a two-dimensional chiral theory whose Virasoro algebra arises as an asymptotic

symmetry of the near-horizon geometry. In fact, in dimension D there are [(D− 1)/2] com-

muting Virasoro algebras. We consider a general canonical class of near-horizon geometries

in arbitrary dimension D, and show that in any such metric the [(D− 1)/2] central charges

each imply, via the Cardy formula, a microscopic entropy that agrees with the Bekenstein–

Hawking entropy of the associated extremal black hole. In the remainder of the paper we

show for most of the known rotating black hole solutions of gauged supergravity, and for

the ungauged supergravity solutions with four charges in D = 4 and three charges in D = 5,

that their extremal near-horizon geometries indeed lie within the canonical form. This es-

tablishes that, in all these examples, the microscopic entropies of the dual CFTs agree with

the Bekenstein–Hawking entropies of the extremal rotating black holes.

http://arxiv.org/abs/0812.2918v2
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1 Introduction

A recent paper [1] proposed a new holographic duality symmetry in quantum gravity, in

which the quantum states in the near-horizon region of a four-dimensional extremal Kerr

black hole are identified with a certain two-dimensional chiral conformal field theory. This

CFT arises by examining the asymptotic symmetry generators associated with a class of

diffeomorphisms of the near-horizon Kerr geometry that obey suitably chosen boundary

conditions at infinity. The Lie brackets of the infinitesimal diffeomorphism transformations

close on a centreless Virasoro algebra. By defining charges associated with the transfor-

mations, and evaluating the Dirac brackets of the charges, one obtains a Virasoro algebra

with a central charge that is related to the angular momentum of the black hole. By us-

ing the Cardy formula, the microscopic entropy of the chiral CFT can be computed. This

calculation requires that one invoke the ideas of Frolov and Thorne [2] in order to define

a quantum theory in the extremal black hole geometry, and to associate a non-zero tem-

perature TFT with the vacuum state. It was shown in [1] that the microscopic entropy

so calculated agrees precisely with the Bekenstein–Hawking entropy of the extremal Kerr

black hole. (See [3, 4, 5, 6, 7, 8, 9] for some earlier related work, and [10, 11, 12, 13, 14, 15]

for recent follow-ups.)

The proposed Kerr/CFT correspondence was extended to a wider class of rotating black

hole backgrounds in [11]. It was shown that the microscopic entropy of the dual CFT again

agrees with the Bekenstein–Hawking entropy in the case of extremal Kerr–AdS black holes,

both in four dimensions and also in all higher dimensions. A new feature that arises in

more than four dimensions is that there is a Virasoro algebra, and a corresponding chiral

CFT, associated with each of the orthogonal 2-planes in which the black hole is rotating.

Curiously, although the central charges are different for the different CFTs, their Frolov–

Thorne temperatures differ too, in precisely such a way that the Cardy formula leads to

an identical microscopic entropy for each of the CFTs. Furthermore, each one of these

entropies agrees precisely with the Bekenstein–Hawking entropy of the extremal rotating

Kerr–AdS black hole [11].

It is perhaps useful at this point to elaborate a little on the the rôle of the Frolov–Thorne

temperature in the calculation of microscopic entropy via the Cardy formula. The Cardy

formula gives the entropy of the two-dimensional CFT as

S = 2π

√
cL

6
, (1.1)

where c is the central charge and L is the energy. The temperature of the CFT is then
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given by dL = TdS, and so from (1.1) we have dS = π
√
c/(6L) TdS and hence

√
L = π

√
c

6
T . (1.2)

Substituting back into (1.1) gives

S =
π2

3
c T . (1.3)

It is in this form, with c being the central charge of the Virasoro algebra, and T being the

Frolov–Thorne expression for the temperature of the near-horizon metric, that the Cardy

formula delivers an expression for the microscopic entropy of the CFT that can be compared

with the Bekenstein–Hawking entropy of the extremal black hole.

Another extension of the original proposal in [1] has also recently been given, in which

it was shown that the microscopic entropy of the dual CFT agrees with the Bekenstein–

Hawking entropy in the case of the Kerr–Newman–(A)dS charged rotating extremal black

hole in four dimensions [13]. It was also noted in [13] that if one makes an assumption

about the Frolov–Thorne temperature for black hole solutions to a class of four-dimensional

theories involving the coupling of gravity to electromagnetic and scalar fields, one could

establish an equality of the microscopic CFT entropy and the Bekenstein–Hawking entropy

for a wide class of higher-dimensional extremal black holes that are related by dimensional

reduction.

In this paper, we shall probe the Kerr/CFT correspondence for a large class of extremal

higher-dimensional rotating charged black holes. Our strategy will be first to establish, for

a general ansatz for near-horizon geometries, a result that demonstrates the equality of the

microscopic entropy derived via the Cardy formula and the Bekenstein–Hawking entropy.

Then, for any specific black hole solution it only remains to construct its extremal near-

horizon limit, and to show that it is contained within the general ansatz mentioned above,

in order to establish the equality of the microscopic and the Bekenstein–Hawking entropies

for that case.

The charged rotating black hole examples that we shall consider in this paper in-

clude: the solution in four-dimensional N = 2 (Einstein–Maxwell) gauged supergravity

[16]; five-dimensional minimal gauged supergravity [17]; four-dimensional ungauged super-

gravity with 4 unequal charges [18]; four-dimensional gauged supergravity with 2 sets of

pairwise equal charges [19]; five-dimensional ungauged supergravity with 3 unequal charges

[20]; five-dimensional gauged supergravity with 3 charges, of which 2 are equal [21, 22, 23];

five-dimensional gauged supergravity with both angular momenta equal and 3 charges [24];

six-dimensional gauged supergravity [25]; seven-dimensional gauged supergravity with two
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equal charges [26]; the higher-dimensional Kerr–AdS solution [27, 28]; and a general class

of black holes in arbitrary dimension with two equal charges [29, 26].

2 General Extremal Rotating Black Holes and CFT Duals

It was argued in [13] from the general structure of four-dimensional extremal rotating black

holes that the entropy of the black hole can be obtained from the Cardy formula of the two-

dimensional conformal field theory in the boundary of the black hole near-horizon geometry.

Here, we shall present a general argument for higher-dimensional black holes.

We consider first D = 5 black holes that are asymptotic to flat or AdS spacetimes, with

the asymptotic metric given by

ds2 = −(1 + r̂2ℓ−2)dt̂2 +
dr̂2

1 + r̂2ℓ−2
+ r̂2(dθ2 + cos2 θdφ̂21 + sin2 θdφ̂22) . (2.1)

The discussion that follows is applicable for both vanishing and non-vanishing cosmological

constant ℓ−2. In the extremal limit, it is possible to extract the near-horizon geometry as

an exact solution in its own right, by first making the coordinate transformations

r̂ = r0(1 + λ ρ), φ̂1 = φ1 +Ω0
1 t̂ , φ̂2 = φ2 +Ω0

2 t̂ , t̂ =
t

2πT ′ 0
H r0λ

. (2.2)

Here r0 is defined to be the horizon radius in the extremal limit. The quantities Ω0
i are

the angular velocities on the horizon for the two azimuthal angles φ̂i, with the superscript

0 indicating that they are evaluated in the extremal limit. Let r+ be the outer horizon

radius of the general non-extremal black hole, which we regard as one of the parameters

of the general non-extremal family of solutions, and TH(r+) be the corresponding Hawking

temperature. The quantity T ′ 0
H is defined to be

T ′ 0
H :=

∂TH
∂r+

∣∣∣∣
r+=r0

. (2.3)

For later purposes, we also define

Ω′ 0
i :=

∂Ωi

∂r+

∣∣∣∣
r+=r0

, (2.4)

where Ωi(r+) are the angular velocities for the general non-extremal black hole.

Taking the scaling parameter λ to zero, we obtain the near-horizon geometry of the

extremal black hole, whose metric has the form

ds25 = A(θ)

(
−ρ2dt2 + dρ2

ρ2

)
+ F (θ)dθ2 +B1(θ) ẽ

2
1 +B2(θ)(ẽ2 + C(θ) ẽ1)

2 ,

ẽ1 = dφ1 + k1ρ dt , ẽ2 = dφ2 + k2ρ dt , (2.5)

4



where A, Bi, C and F are functions of the latitude coordinate θ. The metric can be

viewed as an S3 bundle over AdS2. The AdS2 base of the metric, written here in Poincaré

coordinates (t, ρ), can be recast in global coordinates (τ, r) by means of the transformations

ρ = r +
√

1 + r2 cos τ , t =

√
1 + r2 sin τ

r +
√
1 + r2 cos τ

, (2.6)

Since this implies that ρdt = rdτ + dγ, where

γ := log

(
1 +

√
1 + r2 sin τ

cos τ + r sin τ

)
, (2.7)

it follows that if in addition we send φi −→ φi − kiγ, then the metric (2.5) becomes

ds25 = A(θ)

(
−(1 + r2)dt2 +

dr2

1 + r2

)
+ F (θ)dθ2 +B1(θ) ẽ

2
1 +B2(θ)(ẽ2 + C(θ) ẽ1)

2 ,

ẽ1 = dφ1 + k1r dt , ẽ2 = dφ2 + k2r dt . (2.8)

In either form, the constants k1 and k2 are given by

ki =
1

2πTi
, (2.9)

with

Ti = lim
r+→r0

TH
Ω0
i − Ωi

= −T
′ 0
H

Ω′ 0
i

. (2.10)

The quantities Ti, defined first for higher-dimensional Kerr–AdS black holes in [11], can

be interpreted as the Frolov–Thorne temperatures [2, 1] associated with the CFTs for each

azimuthal angle φi. The Bekenstein–Hawking entropy for the extremal black hole is given

by

SBH = 1
4

∫
dθ

√
B1B2F

∫
dφ1dφ2 . (2.11)

The five-dimensional near-horizon geometry (2.8) has a pair of commuting diffeomor-

phisms that generate two commuting Virasoro algebras:

ζ (1)

(n) = −e−inφ1
∂

∂φ1
− in r e−inφ1

∂

∂r
,

ζ (2)

(n) = −e−inφ2
∂

∂φ2
− in r e−inφ2

∂

∂r
. (2.12)

The central charges ci in these Virasoro algebras, at the level of Dirac brackets of the

associated charges Qi
(n) = 1/(8π)

∫
∂Σ k

i
(n), can be calculated in the manner described in

[30, 31] and applied in [1], namely from the m3 terms in the expressions

1

8π

∫

∂Σ
kζi

(m)
[Lζi

(−m)
g, g] = − i

12
(m3 + αm)ci , (2.13)
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where

kζ [h, g] =
1
2

[
ζν∇µh− ζν∇σhµ

σ + ζσ∇νhµ
σ + 1

2h∇νζµ − hν
σ∇σζµ

+1
2hνσ(∇µζ

σ +∇σζµ)
]
∗(dxµ ∧ dxν) , (2.14)

Taking gµν to be given by (2.8), we find that the central charges are

ci =
3

2π
ki

∫
dθ

√
B1B2F

∫
dφ1dφ2 =

6kiSBH

π
, (2.15)

for i = 1 and i = 2. Thus we have

SBH =
π2

3
c1T1 =

π2

3
c2T2 , (2.16)

in precise agreement with the microscopic entropy given by the Cardy formula (1.3).

The argument above can be straightforwardly generalised to higher dimensions. The

near-horizon geometry of extremal rotating black holes in D = 2n + ǫ dimensions, with

ǫ = 0, 1, can be written, using Poincaré AdS2 coordinates, as

ds2 = A

(
−ρ2 dt2 + dρ2

ρ2

)
+

n−1∑

α=1

Fα dy
2
α +

n−1+ǫ∑

i,j=1

g̃ij ẽi ẽj ,

ẽi = dφi + kiρdt , ki =
1

2πTi
, Ti = −T

′ 0
H

Ω′ 0
i

, (2.17)

or alternatively, using global AdS2 coordinates, as

ds2 = A

(
−(1 + r2) dτ2 +

dr2

1 + r2

)
+

n−1∑

α=1

Fα dy
2
α +

n−1+ǫ∑

i,j=1

g̃ij ẽi ẽj ,

ẽi = dφi + kir dτ , ki =
1

2πTi
, Ti = −T

′ 0
H

Ω′ 0
i

. (2.18)

Here we follow [32] and use a set of unconstrained latitudinal coordinates yα, rather than

the direction cosines µa subject to
∑n

a=1 µ
2
a = 1 that were used in the original formulation

of the higher-dimensional Ricci-flat [33] or asymptotically AdS [27, 28] rotating black holes.

The functions A, Fα and g̃ij depend only on these latitudinal coordinates. The metric has

n−1+ ǫ copies of the Virasoro algebra. It has been shown that near-horizon geometries are

generally of this form for classes of theories that are of interest in four and five dimensions

[34], and also for cohomogeneity-1 horizons in arbitrary dimension [35]. We have verified

for dimensions D ≤ 7 that the central charges are given by

ci =
3

2π
ki

∫
dn−1yα

(
det g̃ij

n−1∏

α=1

Fα

)1/2 ∫
dφ1 · · · dφn−1+ǫ

=
6kiSBH

π
. (2.19)
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Since this relation does not have any features relying on a particular dimension, it is very

likely to hold in arbitrary dimension. It follows that

SBH = 1
3π

2ciTi , for each i, (2.20)

holds in general, in complete agreement with the microscopic entropy given by the Cardy

formula (1.3).

In the next few sections, we shall examine a large class of charged rotating black holes

in diverse dimensions. We obtain the near-horizon geometries of these black holes in the

extremal limit. We demonstrate that the metrics can all be cast into the form (2.17), and

hence that the Cardy formulae are all satisfied.

3 Einstein–Maxwell AdS Supergravities in Four and Five Di-

mensions

We shall start our main discussion with two relatively simple examples, namely the charged

rotating black holes in Einstein–Maxwell AdS supergravities in four and five dimensions.

3.1 Four-dimensional Einstein–Maxwell AdS supergravity

This example, the Kerr–Newman–AdS solution, was discussed in detail in [13]; we include

it here for completeness. The metric is given by

ds2 = ρ2
(
dr̂2

∆
+
dθ2

∆θ

)
+

∆θ sin
2 θ

ρ2

(
adt̂− r̂2 + a2

Ξ
dφ̂

)2

− ∆

ρ2

(
dt̂− a sin2 θ

Ξ
dφ̂

)2

,

ρ2 = r̂2 + a2 cos2 θ , ∆ = (r̂2 + a2)(1 + r̂2ℓ−2)− 2Mr̂ +Q2 ,

∆θ = 1− a2ℓ−2 cos2 θ , Ξ = 1− a2ℓ2 . (3.1)

Here Q2 = p2 + q2, with (q, p) being the electric and magnetic charges. The solution

describes a charged black hole with the outer horizon at r̂ = r+, where r+ is the largest

root of the function ∆(r̂). The metric is asymptotically AdS4 in global coordinates, but

with non-vanishing angular velocity Ω∞ = −a2ℓ−2. The Hawking temperature, entropy

and angular velocity on the horizon are given by

TH =
r2+ − a2 −Q2 + r2+ℓ

−2(3r2+ + a2)

4πr+(r
2
+ + a2)

, Ωφ =
Ξa

r2+ + a2
,

S =
π(r2+ + a2)

Ξ
. (3.2)
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The extremal limit is achieved when the parameters M and Q take the following values:

M = r0 + r0(2r
2
0 + a2)ℓ−2 , Q2 = r20 − a2 + r20(3r

2
0 + a2)ℓ−2 . (3.3)

The horizon of the metric is at r̂ = r0, with the function ∆ near the horizon given by

∆ = V (r̂ − r0)
2 +O(r̂ − r0)

3 , with V = 1 + (6r20 + a2)ℓ−2 . (3.4)

To obtain the near-horizon geometry, we make the coordinate transformation

r̂ = r0(1 + λρ) , φ̂ = φ+Ω0
φt̂ , (3.5)

where Ω0
φ = Ωφ|r+=r0 . We then scale the time coordinate t̂ by

t̂ =
r20 + a2

r0V λ
t , (3.6)

and send λ→ 0. We obtain the metric

ds2 =
ρ20
V

(
−ρ2dt2 + dρ2

ρ2
+
V dθ2

∆θ

)
+

(r20 + a2)2 sin2 θ∆θ

Ξ2ρ20

(
dφ+

1

2πTφ
ρ dt

)2

,

ρ20 = r20 + a2 cos2 θ , (3.7)

where the Frolov–Thorne temperature Tφ is given by

Tφ = −∂r+TH
∂r+Ωφ

∣∣∣∣
r+=r0

=
V (r20 + a2)

4πΞar0
. (3.8)

The entropy in the extremal limit is

S =
π(r20 + a2)

Ξ
. (3.9)

The central charge can be easily obtained, given by

c =
12ar0
V

. (3.10)

3.2 Five-dimensional minimal gauged supergravity

The general non-extremal rotating black hole in five-dimensional minimal gauged super-

gravity with two arbitrary angular momenta was obtained in [17]. Here we shall adopt the

notation given in [36]. The metric is given by

ds2 = −e0e0 +
4∑

i=1

eiei, (3.11)
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where

e0 =

√
R

r̂2 + y2
A, e1 =

√
r̂2 + y2

R
dr, e2 =

√
Y

r̂2 + y2
(dt′ − r̂2dψ1), (3.12)

e3 =

√
r̂2 + y2

Y
dy, e4 =

ab

r̂y

(
dt′ + (y2 − r̂2)dψ1 − r̂2y2dψ2 +

qy2

ab(r̂2 + y2)
A
)
,

and

R =
(1 + r̂2ℓ−2)(r̂2 + a2)(r̂2 + b2) + 2abq + q2

r̂2
− 2M , (3.13)

Y = −(1− y2ℓ−2)(a2 − y2)(b2 − y2)

y2
, A = dt′ + y2dψ1.

The coordinates t′, ψ1 and ψ2 are not proper canonical time and azimuthal coordinates.

The proper coordinates (t̂, φ̂1, φ̂2) are given by

t′ = t̂− (a2 + b2)ψ1 − a2b2ψ2 ,

ψ1 =
aφ̂1

Ξa(a2 − b2)
+

bφ̂2
Ξb(b2 − a2)

,

ψ2 =
φ̂1

a(b2 − a2)Ξa
+

φ̂2
b(a2 − b2)Ξb

, (3.14)

where Ξa = 1 − a2ℓ−2 and Ξb = 1 − b2ℓ−2. Then the coordinates φ1 and φ2 have period

2π. The metric is AdS5 asymptotically, but in a rotating coordinate frame with angular

velocities Ω1 = −aℓ−2 and Ω2 = −bℓ−2. The thermodynamic quantities for this black hole

were obtained in [17]. Here we shall present the temperature, entropy and the angular

velocities of the horizon. These are given by

TH =
r2+

4π[r4+ + (a2 + b2)r2+ + ab(ab+ q)]

(
∂R

∂r̂

) ∣∣∣∣
r̂=r+

,

S =
π2[r4+ + (a2 + b2)r2+ + ab(ab+ q)]

2r+ΞaΞb
,

Ω1 =
Ξa(ar

2
+ + ab2 + qb)

(r2+ + a2)(r2+ + b2) + qab
, Ω2 =

Ξb(br
2
+ + a2b+ qa)

(r2+ + a2)(r2+ + b2) + qab
. (3.15)

We now consider the extremal limit, given by the following conditions:

M =
(1 + r20ℓ

−2)(r20 + a2)(r20 + b2) + q2 + 2abq

2r20
,

ℓ−2 =
(ab+ q)2 − r40

r40(a
2 + b2 + 2r20)

. (3.16)

Near the horizon, we have

R = V (r̂ − r0)
2 +O(r̂ − r0)

3 , V = 1
2R

′′(r0) . (3.17)
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To extract the near-horizon geometry, we make the following coordinate transformation:

r̂ = r0(1 + λρ) , φ̂1 = φ1 +Ω0
1 t̂ , φ̂2 = φ2 +Ω0

2 t̂ , (3.18)

where Ω0
i = Ωi|r+=r0 . We then scale the time coordinate t̂ as

t̂ = βt , β =
1

2πr0T ′ 0
H λ

=
r40 + (a2 + b2)r20 + ab(ab+ q)

V r30λ
. (3.19)

Taking the limit of λ→ 0, the vielbeins become

e0 =

√
r20 + y2

V
ρdt, e1 =

√
r20 + y2

V

dρ

ρ
, e3 =

√
r20 + y2

Y
dy,

e2 =

√
Y

r20 + y2

(
a(a2 + r20) ẽ1
Ξa(a2 − b2)

+
b(b2 + r20) ẽ2
Ξb(b2 − a2)

)
,

e4 =
ab

r0y

(
(a2 − y2)(aqy2 + b(a2 + r20)(r

2
0 + y2))

ab(a2 − b2)Ξa(r20 + y2)
ẽ1

+
(b2 − y2)(bqy2 + a(b2 + r20)(r

2
0 + y2))

ab(b2 − a2)Ξb(r
2
0 + y2)

ẽ2

)
, (3.20)

where

ẽi = dφi + kiρdt , ki =
1

2πTi
, (3.21)

and Ti’s are the Frolov–Thorne temperatures defined in (2.10). Thus we see that the near-

horizon geometry of the extremal black hole can be put in the general form (2.17) discussed

in section 2, and hence the Cardy formulae (2.20) are satisfied. To be specific, we have

T1 =
r0V [(r20 + a2)(r20 + b2) + qab]

4πΞa[a(r
2
0 + b2)2 + qb(b2 + 2r20)]

, T2 =
r0V [(r20 + a2)(r20 + b2) + qab]

4πΞb[b(r
2
0 + a2)2 + qa(a2 + 2r20)]

. (3.22)

The corresponding central charges are given by

c1 =
6π[a(r20 + b2)2 + qb(b2 + 2r20)]

r20ΞbV
, c2 =

6π[b(r20 + a2)2 + qa(a2 + 2r20)]

r20ΞaV
. (3.23)

4 Four Dimensions

In this and following sections, we consider a variety of rotating black holes involving multiple

charges in various dimensions. We start here with four dimensions, and then later proceed

to increase the dimensionality.

4.1 Ungauged supergravity with four unequal charges

Black holes with four unequal charges arise from the bosonic sector of the four-dimensional

N = 2 ungauged supergravity coupled to three vector multiplets. The metric was first

obtained in [18], and the explicit form of the gauge potentials was given in [19].
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The solution is specified by mass, angular momentum, and two electric and two magnetic

charges. The metric takes the form

ds24 = −ρ
2 − 2mr̂

W
(dt̂+B dφ̂)2 +W

(
dr̂2

∆
+ dθ2 +

∆ sin2 θ dφ̂2

ρ2 − 2mr̂

)
, (4.1)

where

∆ = r̂2 − 2mr̂ + a2 , ρ2 = r̂2 + a2 cos2 θ ,

B =
2m(a2 − u2)[r̂c1234 − (r̂ − 2m)s1234]

a(ρ2 − 2mr̂)
,

W 2 = r1 r2 r3 r4 + u4 + u2[2r̂2 + 2mr̂(s21 + s22 + s23 + s24)

+8m4c1234s1234 − 4m4(s2123 + s2124 + s2134 + s2234 + 2s21234)] ,

ri = r̂ + 2ms2i , u = a cos θ ,

ci1···in = cosh δi1 · · · cosh δin , si1···in = sinh δi1 · · · sinh δin . (4.2)

The outer and inner horizons are at r̂ = r±, with

r± = m±
√
m2 − a2 . (4.3)

The entropy S, Hawking temperature TH and the angular velocity Ω have the explicit form

S = 2π [m2(c1234 + s1234) +m
√
m2 − a2(c1234 − s1234)] ,

TH =
1

4πm[c1234 − s1234 + (c1234 + s1234)m/
√
m2 − a2]

,

Ω = 2πTH
a√

m2 − a2
. (4.4)

The extreme black hole corresponds to

m = a , and r+ = a . (4.5)

The near-horizon geometry of the extreme black hole is obtained by taking

r̂ = a(1 + λρ) , φ̂ = φ+Ωt̂, t̂ =
t

λ
, (4.6)

with λ→ 0. The near-horizon metric is then

ds24 =W0

(
−ρ2dt2 + dρ2

ρ2
+ dθ2

)
+
a2 sin2 θ B2

0

W0
(dφ+ kρ dt)2 . (4.7)

where

B0 = B|r̂=a,m=a = −2a(c1234 − s1234) ,

k =
1

2πTφ
= − ∂r+Ω

2π∂r+TH

∣∣∣∣
r+=a

=
c1234 − s1234
c1234 + s1234

,

W0 = W |r̂=a,m=a . (4.8)

Thus, we see that the form of the near-horizon geometry of the extremal black hole fits into

the general pattern discussed in section 2, and hence the Cardy formula is satisfied.
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4.2 U(1)4 gauged supergravity with pairwise equal charges

The most general charged rotating black hole solution known in four-dimensional U(1)4

gauged supergravity has the four U(1) charges pairwise equal [19].

The metric is

ds2 = H

[
− R

H2(r̂2 + y2)

(
dt̂− a2 − y2

Ξa
dφ̂

)2

+
r̂2 + y2

R
dr̂2 +

r̂2 + y2

Y
dy2

+
Y

H2(r̂2 + y2)

(
dt̂− (r̂ + q1)(r̂ + q2) + a2

Ξa
dφ̂

)2 ]
, (4.9)

where

R = r̂2 + a2 + g2(r̂ + q1)(r̂ + q2)[(r̂ + q1)(r̂ + q2) + a2]− 2mr̂,

Y = (1− g2y2)(a2 − y2), Ξ = 1− a2g2,

H =
(r̂ + q1)(r̂ + q2) + y2

r̂2 + y2
, qI = 2ms2I , sI = sinh δI . (4.10)

Note that, as is standard in the gauged supergravity literature, we are using g to denote the

gauge-coupling constant, which is related to the AdS length scale ℓ by g = ℓ−1. We have

used a shifted azimuthal coordinate φ̂ that gives an asymptotically rotating coordinate

frame; the coordinate change φ̂ → φ̂ − ag2t̂ would give an asymptotically non-rotating

coordinate frame. This shifted azimuthal coordinate is used merely to make the metrics

more convenient to write, and is not otherwise significant. The Hawking temperature and

entropy are

TH =
R′|r̂=r+

4π[(r+ + q1)(r+ + q2) + a2]

=
r2+ − a2 + a2g2(r2+ − q1q2) + g2(r+ + q1)(r+ + q2)(3r

2
+ + q1r+ + q2r+ − q1q2)

4πr+[(r+ + q1)(r+ + q2) + a2]
,

S =
π[(r+ + q1)(r+ + q2) + a2]

Ξ
. (4.11)

In our asymptotically rotating coordinate frame, the angular velocity of the horizon is

Ω̂ =
Ξa

(r+ + q1)(r+ + q2) + a2
. (4.12)

For an extremal solution, with a horizon at r̂ = r0, we have R|r̂=r0 = 0 and R′|r̂=r0 = 0,

and so

r20 − a2 + a2g2(r20 − q1q2) + g2(r0 + q1)(r0 + q2)(3r
2
0 + q1r0 + q2r0 − q1q2) = 0. (4.13)

Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, (4.14)
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where

V = 1 + g2(6r20 + 6q1r0 + 6q2r0 + a2 + q21 + q22 + 4q1q2). (4.15)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ) , φ̂ = φ+Ω0t̂, t̂ =
t

2πT ′ 0
H r0λ

, (4.16)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H0

[
(r20 + y2)

(
−ρ2dt2 + dρ2

ρ2

)
+
r20 + y2

Y
dy2

+
Y

H2
0 (r

2
0 + y2)

(
2r0 + q1 + q2

V
ρdt+

(r0 + q1)(r0 + q2) + a2

Ξa
dφ

)2 ]
, (4.17)

where H0 = H|r̂=r0 . This can be cast in the form of (2.17), so the Cardy formulae are

satisfied.

For the extremal solution, the Frolov–Thorne temperatures are

T0 = 0, T1 =
V [(r0 + q1)(r0 + q2) + a2]

2πΞa(2r0 + q1 + q2)
. (4.18)

The central charge is

c1 =
6a(2r0 + q1 + q2)

V
. (4.19)

5 Five Dimensions

5.1 Ungauged supergravity with three unequal charges

The U(1)3 charged black hole in the STU model in D = 5 ungauged supergravity was

obtained in [20]. The solution was expressed in a simpler form in [22], in which the metric

is given by

ds25 = (H1H2H3)
1/3(x+ y)

(
− G

(x+ y)3H1H2H3
(dt̂+A)2 + ds24

)
,

ds24 =

(
dx2

4X
+
dy2

4Y

)
+
U

G

(
dχ− Z

U
dσ

)2

+
XY

U
dσ2 , (5.1)

where

X = (x+ a2)(x+ b2)− 2Mx , Y = −(a2 − y)(b2 − y) ,

G = (x+ y)(x+ y − 2M) , U = yX − xY , Z = ab(X + Y ) ,

A =
2Mc1c2c3
x+ y − 2M

[(a2 + b2 − y)dσ − abdχ]− 2Ms1s2s3
x+ y

(abdσ − ydχ) ,

Hi = 1 +
2Ms2i
x+ y

, si = sinh δi , ci = cosh δi . (5.2)
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Here, x is the radial coordinate with the asymptotic flat region at x = ∞. The horizon is at

x = x+, where x+ is the largest root of X. The latitude coordinate y runs from a to b. The

U(1) coordinates σ and χ are related to the canonical azimuthal coordinates as follows:

σ =
a φ̂1 − b φ̂2
a2 − b2

, χ =
b φ̂1 − a φ̂2
a2 − b2

. (5.3)

The entropy, Hawking temperature, and angular velocities on the horizon are given by

S =
π2(x+ + a2)(x+ + b2)(c1c2c3 x+ + s1s2s3 ab)

2x
3/2
+

,

TH =

√
x+(x

2
+ − a2b2)

2π(x+ + a2)(x+ + b2)(c1c2c3 x+ + s1s2s3 ab)
, (5.4)

Ω1 =
ax+

(x+ + a2)(c1c2c3 x+ + s1s2s3 ab)
, Ω2 =

bx+
(x+ + b2)(c1c2c3 x+ + s1s2s3 ab)

.

The extremal limit of the solution is achieved with the condition M = 1
2(a + b)2, in

which case the horizon is at x = x0, where x0 = ab. As in the previous case, the extremal

limit can be extracted by the following coordinate transformation:

x = x0(1 + λ ρ) , φ̂i = φ+Ω0
i t̂ , t̂ =

t

2πx0T ′
H(x0)λ

. (5.5)

We then take the limit λ→ 0. The near-horizon geometry then has the following form:

ds25 =
ab+ y

4

3∏

i=1

(
1 +

(a+ b)2s2i
ab+ y

)1/3 (
−ρ2dt2+ dρ2

ρ2
+

dy2

(a2 − y)(b2 − y)
+

2∑

i,j=1

g̃ij(y)ẽiẽj

)
,

(5.6)

where ẽi = dφi + kiρ dt, with ki = 1/(2πTi). This is precisely the same form as in (2.17),

and so the Cardy formulae are satisfied. Here we present the entropy, the Frolov–Thorne

temperatures and central charges:

S = 1
2π

2(a+ b)2
√
ab(c1c2c3 + s1s2s3) ,

T1 =

√
ab(c1c2c3 + s1s2s3)

π(bc1c2c3 − as1s2s3)
, T2 =

√
ab(c1c2c3 + s1s2s3)

π(ac1c2c3 − bs1s2s3)
,

cφ1 = 3
2π(a+ b)2(bc1c2c3 − as1s2s3) , cφ2 = 3

2π(a+ b)2(ac1c2c3 − bs1s2s3) . (5.7)

5.2 U(1)3 gauged supergravity

The maximal five-dimensional gauged supergravity has gauge group SO(6), which has Car-

tan subgroup U(1)3. We have already considered black holes in minimal gauged supergrav-

ity, which corresponds to all three abelian charges being equal. Here, we consider some

further black hole solutions of the theory.
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5.2.1 Charge parameters δ1 = δ2, δ3 = 0

Another particularly simple charged and rotating black hole in five-dimensional U(1)3

gauged supergravity has three charge parameters δI that satisfy δ1 = δ2 =: δ and δ3 = 0,

as well as both angular momenta independent [21].

The metric, using the vielbeins presented in [26] but here with Boyer–Lindquist az-

imuthal coordinates, is

ds2 = H2/3

[
− R

H2(r̂2 + y2)
A2 +

r̂2 + y2

R
dr̂2 +

r̂2 + y2

Y
dy2

+
Y

r̂2 + y2

(
dt̂− a(r̂2 + a2)

Ξa(a2 − b2)
dφ̂1 −

b(r̂2 + b2)

Ξb(b2 − a2)
dφ̂2 −

q

H(r̂2 + y2)
A
)2

+
a2b2

r̂2y2

(
dt̂− (r̂2 + a2)(a2 − y2)

Ξaa(a2 − b2)
dφ̂1 −

(r̂2 + b2)(b2 − y2)

Ξbb(b2 − a2)
dφ̂2 −

q

H(r̂2 + y2)
A
)2 ]

,

(5.8)

where

R =
(r̂2 + a2)(r̂2 + b2)

r̂2
+ g2(r̂2 + a2 + q)(r̂2 + b2 + q)− 2m,

Y = −(1− g2y2)(a2 − y2)(b2 − y2)

y2
, Ξa = 1− a2g2, Ξb = 1− b2g2,

H = 1 +
q

r̂2 + y2
, q = 2ms2, s = sinh δ,

A = dt̂− a(a2 − y2)

Ξa(a2 − b2)
dφ̂1 −

b(b2 − y2)

Ξb(b2 − a2)
dφ̂2. (5.9)

We have used shifted azimuthal coordinates φ̂i that give an asymptotically rotating coor-

dinate frame; the coordinate changes φ̂1 → φ̂1 − ag2t̂ and φ̂2 → φ̂2 − bg2t̂ would give an

asymptotically non-rotating coordinate frame. The Hawking temperature and entropy are

TH =
(r̂2R)′|r̂=r+

4π[(r2+ + a2)(r2+ + b2) + qr2+]
=
r4+ − a2b2 + g2r4+(2r

2
+ + a2 + b2 + 2q)

2πr+[(r2+ + a2)(r2+ + b2) + qr2+]
,

S =
π2[(r2+ + a2)(r2+ + b2) + qr2+]

2ΞaΞbr+
. (5.10)

In our asymptotically rotating coordinate frame, the angular velocities of the horizon are

Ω̂a =
Ξaa(r

2
+ + b2)

(r2+ + a2)(r2+ + b2) + qr2+
, Ω̂b =

Ξbb(r
2
+ + a2)

(r2+ + a2)(r2+ + b2) + qr2+
. (5.11)

For an extremal solution, with a horizon at r̂ = r0, we have R′|r̂=r0 = 0, and so

r40 − a2b2 + g2r40(2r
2
0 + a2 + b2 + 2q) = 0. (5.12)
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Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, (5.13)

where

V = 1− 3a2b2

r40
+ g2(6r20 + a2 + b2 + 2q). (5.14)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ) , φ̂1 = φ1 + Ω̂0
at̂, φ̂2 = φ2 + Ω̂0

b t̂, t̂ =
t

2πT ′ 0
H r0λ

, (5.15)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H
2/3
0

{
r20 + y2

V

(
−ρ2dt2 + dρ2

ρ2

)
+
r20 + y2

Y
dy2

+
Y

r20 + y2

[
2r0
H0V

ρdt+
a(r20 + a2 + q)

H0Ξa(a2 − b2)
dφ1 +

b(r20 + b2 + q)

H0Ξb(b2 − a2)
dφ2

]2

+
a2b2

r20y
2

[
2

H0r0V

(
r20 + y2 +

qy2

r20 + y2

)
ρdt+

[(r20 + a2)(r20 + y2) + qr20](a
2 − y2)

H0(r20 + y2)Ξaa(a2 − b2)
dφ1

+
[(r20 + b2)(r20 + y2) + qr20](b

2 − y2)

H0(r
2
0 + y2)Ξbb(b2 − a2)

dφ2

]2}
, (5.16)

where H0 = H|r̂=r0 . This can be cast in the form of (2.17), so the Cardy formulae are

satisfied.

For the extremal solution, the Frolov–Thorne temperatures are

T0 = 0, T1 =
V r0[(r

2
0 + a2)(r20 + b2) + qr20]

4πΞaa[(r20 + b2)2 + qb2]
, T2 =

V r0[(r
2
0 + a2)(r20 + b2) + qr20]

4πΞbb[(r
2
0 + a2)2 + qa2]

.

(5.17)

The central charges are

c1 =
6πa[(r20 + b2)2 + qb2]

V Ξbr
2
0

, c2 =
6πb[(r20 + a2)2 + qa2]

V Ξar20
. (5.18)

5.2.2 Equal angular momenta

Charged rotating black holes with both angular momenta equal and three arbitrary U(1)

charges in D = 5 gauged supergravity were obtained in [24]. Owing to the equality of the

angular momenta, the solution is of cohomogeneity-one. The metric has the form [24]

ds25 = −RY
f1

dt̂2+
r̂2R

Y
dr̂2+ 1

4R(dθ
2+sin2 θdφ2)+

f1
4R2

(
dψ + cos θ dφ− 2

f2
f1
dt̂

)2

, (5.19)

where Y,R, f1 and f2 are functions of the radial variable r̂ only, and were presented in detail

in [24]. The angular coordinates φ and ψ are related to the standard 2π-period azimuthal

coordinates φ̂1 and φ̂2 as follows:

φ = φ̂1 − φ̂2 , ψ = φ̂1 + φ̂2 . (5.20)
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The extremal limit is achieved when Y has a double root at r̂ = r0. As in the previous

cases, we make the following coordinate transformation:

r̂ = r0(1 + λρ) , φ̂i = φi +
f2(r0)

f1(r0)
t̂ , t̂ =

√
f1(r0)

V λ
t , (5.21)

where V = 1
2Y

′′(r0). Taking the λ→ 0 limit, it is straightforward to obtain the near-horizon

geometry, given by

ds25 =
r20R(r0)

V

(
−ρ2dt2 + dρ2

ρ2

)
+ 1

4R(r0)[dθ
2 + sin2 θ (ẽ1 − ẽ2)

2]

+
f1(r0)

4R(r0)2

(
ẽ1 + ẽ2 + cos θ (ẽ1 − ẽ2)

)2
, (5.22)

where ẽi = dφi+ kiρ dt. This is exactly the same form discussed in section 2, and hence the

Cardy formula is satisfied.

6 Six and Seven Dimensions

6.1 Six-dimensional gauged supergravity

We consider here the black hole solution of six-dimensional SU(2) gauged supergravity

[25], which has two independent angular momenta and a single U(1) charge in the Cartan

subgroup of the gauge group.

The metric is

ds2 = H1/2

[
− R

H2U
A2 +

U

R
dr̂2 +

(r̂2 + y2)(y2 − z2)

Y
dy2 +

(r̂2 + z2)(z2 − y2)

Z
dz2

+
Y

(r̂2 + y2)(y2 − z2)

(
dt̂− (r̂2 + a2)(a2 − z2)

dφ̂1
ǫ1

− (r̂2 + b2)(b2 − z2)
dφ̂2
ǫ2

− qr̂A
HU

)2

+
Z

(r̂2 + z2)(z2 − y2)

(
dt̂− (r̂2+ a2)(a2 − y2)

dφ̂1
ǫ1

− (r̂2+ b2)(b2 − y2)
dφ̂2
ǫ2

− qr̂A
HU

)2]
,

(6.1)

where

R = (r̂2 + a2)(r̂2 + b2) + g2[r̂(r̂2 + a2) + q][r̂(r̂2 + b2) + q]− 2mr̂,

Y = −(1− g2y2)(a2 − y2)(b2 − y2), Z = −(1− g2z2)(a2 − z2)(b2 − z2),

U = (r̂2 + y2)(r̂2 + z2), ǫ1 = Ξaa(a
2 − b2), ǫ2 = Ξbb(b

2 − a2),

Ξa = 1− a2g2, Ξb = 1− b2g2, H = 1 +
qr̂

U
, q = 2ms2, s = sinh δ,

A = dt̂− (a2 − y2)(a2 − z2)
dφ̂1
ǫ1

− (b2 − y2)(b2 − z2)
dφ̂2
ǫ2

. (6.2)
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The coordinate changes φ̂1 → φ̂1 − ag2t̂ and φ̂2 → φ̂2 − bg2t̂ would give an asymptotically

non-rotating coordinate frame. The Hawking temperature and entropy are

TH =
R′|r̂=r+

4π[(r2+ + a2)(r2+ + b2) + qr+]

=
2(1 + g2r2+)r

2
+(2r

2
+ + a2 + b2)− (1− g2r2+)(r

2
+ + a2)(r2+ + b2) + 4qg2r3+ − q2g2

4πr+[(r2+ + a2)(r2+ + b2) + qr+]
,

S =
2π2[(r2+ + a2)(r2+ + b2) + qr+]

3ΞaΞb
. (6.3)

In our asymptotically rotating coordinate frame, the angular velocities of the horizon are

Ω̂a =
Ξaa(r

2
+ + b2)

(r2+ + a2)(r2+ + b2) + qr+
, Ω̂b =

Ξbb(r
2
+ + a2)

(r2+ + a2)(r2+ + b2) + qr+
. (6.4)

For an extremal solution, with a horizon at r̂ = r0, we have R|r̂=r0 = 0 and R′|r̂=r0 = 0,

and so

3r40 + (a2 + b2)r20 − a2b2 + g2r20[5r
4
0 + 3(a2 + b2)r20 + a2b2] + 4qg2r30 − q2g2 = 0. (6.5)

Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, (6.6)

where

V = 6r20 + a2 + b2 + g2[15r40 + 6(a2 + b2)r20 + 6qr0 + a2b2]. (6.7)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ) , φ̂1 = φ1 + Ω̂0
at̂, φ̂2 = φ2 + Ω̂0

b t̂, t̂ =
t

2πT ′ 0
H r0λ

, (6.8)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H
1/2
0

[
Ũ

V

(
−ρ2 dt2 + dρ2

ρ2

)
+

(r20 + y2)(y2 − z2)

Y
dy2 +

(r20 + z2)(z2 − y2)

Z
dz2

+
Y

(r20 + y2)(y2 − z2)

(
2r0(r

2
0 + z2)

V
ρdt+ (r20 + a2)(a2 − z2)

dφ1
ǫ1

+(r20 + b2)(b2 − z2)
dφ2
ǫ2

+
qr0

H0Ũ
Ã
)2

+
Z

(r20 + z2)(z2 − y2)

(
2r0(r

2
0 + y2)

V
ρdt

+(r20 + a2)(a2 − y2)
dφ1
ǫ1

+ (r20 + b2)(b2 − y2)
dφ2
ǫ2

+
qr0

H0Ũ
Ã
)2]

, (6.9)

where Ũ = U |r̂=r0 , H0 = H|r̂=r0 , and

Ã =
−3r40 − r20(y

2 + z2) + y2z2

V r0
ρdt− (a2−y2)(a2−z2)dφ1

ǫ1
− (b2−y2)(b2−z2)dφ2

ǫ2
. (6.10)
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This can be cast in the form of (2.17), so the Cardy formulae are satisfied.

For an extremal solution, the Frolov–Thorne temperatures are

T1 =
V [(r20 + a2)(r20 + b2) + qr0]

2πΞaa[2r0(r20 + b2)2 + q(b2 − r20)]
, T2 =

V [(r20 + a2)(r20 + b2) + qr0]

2πΞbb[2r0(r
2
0 + a2)2 + q(a2 − r20)]

, (6.11)

and T0 = 0. The central charges are

c1 =
4πa[2r0(r

2
0 + b2)2 + q(b2 − r20)]

V Ξb
, c2 =

4πb[2r0(r
2
0 + a2)2 + q(a2 − r20)]

V Ξa
. (6.12)

6.2 Seven-dimensional gauged supergravity

We consider here the black hole solution of [26] in seven-dimensional SO(5) gauged super-

gravity. It possesses three independent angular momenta and a single charge parameter,

corresponding to two equal U(1) charges in the U(1)2 Cartan subgroup of the full gauge

group.

The metric is

ds2 = H2/5

{
− R

H2U
A2 +

U

R
dr̂2 +

(r̂2 + y2)(y2 − z2)

Y
dy2 +

(r̂2 + z2)(z2 − y2)

Z
dz2

+
Y

(r̂2 + y2)(y2 − z2)

(
dt̂−

3∑

i=1

(r̂2 + a2i )γi
a2i − y2

dφ̂i
ǫi

− q

HU
A
)2

+
Z

(r̂2 + z2)(z2 − y2)

(
dt̂−

3∑

i=1

(r̂2 + a2i )γi
a2i − z2

dφ̂i
ǫi

− q

HU
A
)2

+
a21a

2
2a

2
3

r̂2y2z2

[
dt̂−

3∑

i=1

(r̂2 + a2i )γi
a2i

dφ̂i
ǫi

− q

HU

(
1 +

gy2z2

a1a2a3

)
A
]2}

, (6.13)

where

R =
1 + g2r̂2

r̂2

3∏

i=1

(r̂2 + a2i ) + qg2(2r̂2 + a21 + a22 + a23)−
2qga1a2a3

r̂2
+
q2g2

r̂2
− 2m,

Y =
1− g2y2

y2

3∏

i=1

(a2i − y2), Z =
1− g2z2

z2

3∏

i=1

(a2i − z2), U = (r̂2 + y2)(r̂2 + z2),

γi = a2i (a
2
i − y2)(a2i − z2), ǫi = Ξiai

∏

j 6=i

(a2i − a2j ), Ξi = 1− a2i g
2,

H = 1 +
q

(r̂2 + y2)(r̂2 + z2)
, q = 2ms2, s = sinh δ, A = dt̂−

3∑

i=1

γi
dφ̂i
ǫi
. (6.14)

The coordinate changes φ̂i → φ̂i − aig
2t̂ would give an asymptotically non-rotating coordi-
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nate frame. The Hawking temperature and entropy are

TH =
(r̂2R)′|r̂=r+

4π[(r2+ + a21)(r
2
+ + a22)(r

2
+ + a23) + q(r2+ − a1a2a3g)]

=
(1 + g2r2+)r

2
+

∑
i

∏
j 6=i(r

2
+ + a2j)−

∏
i(r

2
+ + a2i ) + 2q(g2r4+ + ga1a2a3)− q2g2

2πr+[(r2+ + a21)(r
2
+ + a22)(r

2
+ + a23) + q(r2+ − a1a2a3g)]

,

S =
π3[(r2+ + a21)(r

2
+ + a22)(r

2
+ + a23) + q(r2+ − a1a2a3g)]

4Ξ1Ξ2Ξ3r+
. (6.15)

In our asymptotically rotating coordinate frame, the angular velocities of the horizon are

Ω̂i =
Ξi[ai

∏
j 6=i(r

2
+ + a2j)− q

∏
j 6=i ajg]

(r2+ + a21)(r
2
+ + a22)(r

2
+ + a23) + q(r2+ − a1a2a3g)

. (6.16)

For an extremal solution, with a horizon at r̂ = r0, we have R′|r̂=r0 = 0, and so

2r60 + (a21 + a22 + a23)r
4
0 − a21a

2
2a

2
3 + g2[3r80 + 2(a21 + a22 + a23)r

6
0

+(a21a
2
2 + a22a

2
3 + a23a

2
1 + 2q)r40 − q2] + 2qga1a2a3 = 0. (6.17)

Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, (6.18)

where

V = 6r20 + a21 + a22 + a23 +
3(a1a2a3 − qg)2

r40
+g2[15r40 + 6(a21 + a22 + a23)r

2
0 + a21a

2
2 + a22a

2
3 + a23a

2
1 + 2q]. (6.19)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ), φ̂i = φi +Ω0
i t̂, t̂ =

t

2πT ′ 0
H r0λ

, (6.20)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H
2/5
0

{
Ũ

V

(
−ρ2dt2+dρ2

ρ2

)
+
(r20+y

2)(y2−z2)
Y

dy2+
(r20+z

2)(z2−y2)
Z

dz2

+
Y

(r20+y
2)(y2−z2)

(
2r0(r

2
0+z

2)

V
ρdt+

3∑

i=1

(r20+a
2
i )γi

a2i −y2
dφi
ǫi

+
q

H0Ũ
Ã
)2

+
Z

(r20+z
2)(z2−y2)

(
2r0(r

2
0+y

2)

V
ρdt+

3∑

i=1

(r20+a
2
i )γi

a2i −z2
dφi
ǫi

+
q

H0Ũ
Ã
)2

(6.21)

+
a21a

2
2a

2
3

r20y
2z2

[
2

V r0

(
Ũ− qgy2z2

a1a2a3

)
ρdt+

3∑

i=1

(r20+a
2
i )γi

a2i

dφi
ǫi

+
q

H0Ũ

(
1+

gy2z2

a1a2a3

)
Ã
]2}

,
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where Ũ = U |r̂=r0 , H0 = H|r̂=r0 , and

Ã = −2r0(2r
2
0 + y2 + z2)

V
ρdt−

3∑

i=1

γi
dφi
ǫi
. (6.22)

This can be cast in the form of (2.17), and so the Cardy formulae are satisfied.

For an extremal solution, the Frolov–Thorne temperatures are

T1 =
V r0[(r

2
0 + a21)(r

2
0 + a22)(r

2
0 + a23) + q(r20 − a1a2a3g)]

4πΞ1
[a1(r

2
0 + a22)

2(r20 + a23)
2

+qa1(a
2
2a

2
3 − r40)− qga2a3(3r

4
0 + 2a22r

2
0 + 2a23r

2
0 + a22a

2
3)− q2ga2a3]

−1, (6.23)

temperatures T2 and T3, obtained by cyclic permutation of ai, i = 1, 2, 3, and also T0 = 0.

The central charges are

c1 =
3π2

Ξ2Ξ3V r20
[a1(r

2
0 + a22)

2(r20 + a23)
2 + qa1(a

2
2a

2
3 − r40)

−qga2a3(3r40 + 2a22r
2
0 + 2a23r

2
0 + a22a

2
3)− q2ga2a3], (6.24)

and also c2 and c3, obtained by cyclic permutation of ai, i = 1, 2, 3.

7 Arbitrary Dimensions

7.1 Higher-dimensional Kerr–AdS

The extremal black hole/CFT correspondence for the higher-dimensional Kerr–AdS solution

[27, 28] was previously considered in [11], where it was shown that the Cardy formulae are

satisfied. We return to this example, showing directly that the near-horizon geometry of its

extremal limit can be cast in the form of (2.17). (Note that the near-horizon geometry of the

extremal Kerr–AdS black hole in D = 5 was obtained in [37], and that of the Myers–Perry

solution in [35].)

7.1.1 Even dimensions D = 2n

The Kerr–AdS metric in even dimensions D = 2n is

ds2 = −R
U
A2 +

U

R
dr̂2 +

n−1∑

α=1

Uα

Xα
dy2α +

n−1∑

α=1

Xα

Uα

(
dt̂−

n−1∑

i=1

(r̂2 + a2i )γi
a2i − y2α

dφ̂i
ǫi

)2

, (7.1)
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where

R =

n−1∏

k=1

(r̂2 + a2k)− 2mr̂, Xα = −
n−1∏

k=1

(a2k − y2α), U =

n−1∏

α=1

(r̂2 + y2α),

Uα = −(r̂2 + y2α)

n−1∏′

β=1

(y2β − y2α), γi =

n−1∏

α=1

(a2i − y2α), ǫi = Ξiai

n−1∏′

k=1

(a2i − a2k),

Ξi = 1− a2i g
2, A = dt̂−

n−1∑

i=1

γi
dφ̂i
ǫi
. (7.2)

The notation
∏′ means that we omit the factor that vanishes from a product.

For the extremal solution, the Frolov–Thorne temperatures are

Ti =
V (r20 + a2i )

4πΞiair0
∏

j 6=i(r
2
0 + a2j )

, (7.3)

where V = 1
2R

′′|r̂=r0 , and also T0 = 0. The near-horizon geometry is [11]

ds2 =
Ũ

V

(
−ρ2dt2 + dρ2

ρ2

)
+

n−1∑

α=1

Ũα

Xα
dy2α

+
n−1∑

α=1

Xα

Uα

(
2r0Ũ

V (r20 + y2α)
ρdt+

n−1∑

i=1

(r20 + a2i )γi
a2i − y2α

dφi
ǫi

)2

, (7.4)

where Ũ = U |r̂=r0 and Ũα = Uα|r̂=r0 .

We can cast this near-horizon geometry in the form of (2.17), reading off g̃ij from gφiφj
.

To explicitly see how for this example, we need to account for the correct coefficients of dt

within the vielbeins. From the partial fraction decomposition

Ũ

(r20 + y2α)
∏n−1

k=1(r
2
0 + a2k)

=

n−1∑

i=1

Ξiaiγi
ǫi(a2i − y2α)(r

2
0 + a2i )

, (7.5)

we see that this is indeed the case. It follows that the Cardy formulae are satisfied.

7.1.2 Odd dimensions D = 2n+ 1

The Kerr–AdS metric in odd dimensions D = 2n+ 1 is

ds2 = −R
U
A2 +

U

R
dr̂2 +

n−1∑

α=1

Uα

Xα
dy2α +

n−1∑

α=1

Xα

Uα

(
dt̂−

n∑

i=1

(r̂2 + a2i )γi
a2i − y2α

dφ̂i
ǫi

)2

+

∏n
k=1 a

2
k

r2
∏n−1

α=1 y
2
α

(
dt̂−

n∑

i=1

(r̂2 + a2i )γi
a2i

dφ̂i
ǫi

)2

, (7.6)
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where

R =
1

r̂2

n∏

k=1

(r̂2 + a2k)− 2m, Xα =
1

y2α

n∏

k=1

(a2k − y2α), U =

n−1∏

α=1

(r̂2 + y2α),

Uα = −(r̂2 + y2α)

n−1∏′

β=1

(y2β − y2α), γi = a2i

n−1∏

α=1

(a2i − y2α), ǫi = Ξiai

n∏′

k=1

(a2i − a2k),

Ξi = 1− a2i g
2, A = dt̂−

n∑

i=1

γi
dφ̂i
ǫi
. (7.7)

For the extremal solution, the Frolov–Thorne temperatures are

Ti =
V r0(r

2
0 + a2i )

4πΞiai
∏

j 6=i(r
2
0 + a2j )

. (7.8)

where V = 1
2R

′′|r̂=r0 , and also T0 = 0. The near-horizon geometry is [11]

ds2 =
Ũ

V

(
−ρ2dt2 + dρ2

ρ2

)
+

n−1∑

α=1

Ũα

Xα
dy2α

+

n−1∑

α=1

Xα

Uα

(
2r0Ũ

V (r20 + y2α)
ρdt+

n∑

i=1

(r20 + a2i )γi
a2i − y2α

dφi
ǫi

)2

+

∏n
k=1 a

2
k

r2
∏n−1

α=1 y
2
α

(
2Ũ

V r0
ρdt+

n∑

i=1

(r20 + a2i )γi
a2i

dφi
ǫi

)2

, (7.9)

where Ũ = U |r̂=r0 and Ũα = Uα|r̂=r0 .

Analogously to the even-dimensional case, the near-horizon geometry can be cast in the

form of (2.17). The analogous partial fraction decomposition used is

r20Ũ

(r20 + y2α)
∏n

k=1(r
2
0 + a2k)

=
n∑

i=1

Ξiaiγi
ǫi(a

2
i − y2α)(r

2
0 + a2i )

. (7.10)

It again follows that the Cardy formulae are satisfied.

7.2 Charged rotating black holes in ungauged supergravity

The solution considered here is the two-charge Cvetič–Youm solution [29], with the simpli-

fication of [26] that both charges are equal. It can be regarded as a solution of toroidally

compactified heterotic supergravity in dimension 4 ≤ D ≤ 9, although the construction

generalizes to arbitrary dimension as a solution of a low-energy effective action of bosonic

strings. This solution underlies the ungauged limit of some of the gauged black hole solu-

tions that we have considered above. We use the form of the metric in [26].
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7.2.1 Even dimensions D = 2n

In even dimensions D = 2n, the metric is

ds2 = H2/(D−2)

[
− R

H2U
A2 +

U

R
dr̂2 +

n−1∑

α=1

Uα

Xα
dy2α

+

n−1∑

α=1

Xα

Uα

(
dt̂−

n−1∑

i=1

(r̂2 + a2i )γi
a2i − y2α

dφ̂i
ǫi

− qr̂

HU
A
)2]

, (7.11)

where

R =

n−1∏

k=1

(r̂2 + a2k)− 2mr̂, Xα = −
n−1∏

k=1

(a2k − y2α), U =

n−1∏

α=1

(r̂2 + y2α),

Uα = −(r̂2 + y2α)

n−1∏′

β=1

(y2β − y2α), γi =
n−1∏

α=1

(a2i − y2α), ǫi = ai

n−1∏′

k=1

(a2i − a2k),

H = 1 +
qr̂

U
, q = 2ms2, s = sinh δ, A = dt̂−

n−1∑

i=1

γi
dφ̂i
ǫi
. (7.12)

The Hawking temperature and entropy are

TH =
R′|r̂=r+

4π[
∏n−1

k=1(r
2
+ + a2k) + qr+]

, S =
AD−2[

∏n−1
k=1(r

2
+ + a2k) + qr+]

4r+
, (7.13)

where AD−2 = 2π(D−1)/2/Γ[(D−1)/2] is the volume of a unit (D−2)-sphere, so for example

A2 = 4π and A4 =
8
3π

2. The angular velocities of the horizon are

Ωi =
ai

∏
j 6=i(r

2
+ + a2j )∏n−1

k=1(r
2
+ + a2k) + qr+

. (7.14)

For an extremal solution, with a horizon at r̂ = r0, we have R|r̂=r0 = 0 and R′|r̂=r0 = 0,

and so
n−1∑

i=1

1

r20 + a2i
=

1

2r20
. (7.15)

Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, V = 1
2R

′′|r̂=r0 . (7.16)

Since R′|r̂=r0 = 0 for an extremal solution, we have

T ′ 0
H =

V

2π[
∏n−1

k=1(r
2
0 + a2k) + qr0]

, (7.17)

and, using (7.15), we obtain

Ω′ 0
i = −

2air0
∏

j 6=i(r
2
0 + a2j )

(r20 + a2i )[
∏n−1

k=1(r
2
0 + a2k) + qr0]

. (7.18)
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Therefore the Frolov–Thorne temperatures are

T0 = 0, Ti =
V (r20 + a2i )

4πair0
∏

j 6=i(r
2
0 + a2j )

. (7.19)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ), φ̂i = φi +Ω0
i t̂, t̂ =

t

2πT ′ 0
H r0λ

, (7.20)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H
2/(D−2)
0

[
Ũ

V

(
−ρ2dt2 + dρ2

ρ2

)
+

n−1∑

α=1

Ũα

Xα
dy2α

+

n−1∑

α=1

Xα

Uα

(
2r0Ũ

V (r20 + y2α)
ρdt+

n−1∑

i=1

(r20 + a2i )γi
a2i − y2α

dφi
ǫi

+
qr0

H0Ũ
Ã
)2]

, (7.21)

where Ũ = U |r̂=r0 , Ũα = Uα|r̂=r0 , H0 = H|r̂=r0 , and

H ′
0 =

∂H0

∂r0
=
qr0

Ũ

(
1

r0
−

n−1∑

α=1

2r0
r20 + y2α

)
, Ã =

H ′
0Ũ

2

V qr0
ρdt−

n−1∑

i=1

γi
dφi
ǫi
. (7.22)

By checking dt coefficients within the vielbeins, we can directly see that this near-horizon

geometry may be cast in the form of (2.17). Some terms follow in the same way as for the

higher-dimensional Kerr–AdS solution. There are also extra terms when charge is included;

these extra terms are within Ã. To check these extra terms, we use the identity

1

Ũ

n−1∑

i=1

aiγi
∏

j 6=i(r
2
0 + a2j )

ǫi(r
2
0 + a2i )

=
n−1∑

α=1

1

r20 + y2α
−

n−1∑

i=1

1

r20 + a2i
. (7.23)

which is seen to hold by a partial fraction decomposition of the entire left hand side. On the

right hand side, the coefficients of 1/(r20 + a2i ) are trivial, and the coefficients of 1/(r20 + y2α)

in turn follow from the partial fraction decomposition

Uα

(r20 + y2α)Xα
=

n−1∑

i=1

aiγi
ǫi(a2i − y2α)

. (7.24)

Now using the extremality condition (7.15), we see that

2r0

Ũ

n−1∑

i=1

aiγi
∏

j 6=i(r
2
0 + a2j )

ǫi(r20 + a2i )
= −

(
1

r0
−

n−1∑

α=1

2r0
r20 + y2α

)
= −H

′
0Ũ

qr0
, (7.25)

completing the verification. It follows that the Cardy formulae are satisfied. The central

charges are

ci =
3AD−2air0

∏
j 6=i(r

2
0 + a2j)[

∏n−1
k=1(r

2
0 + a2k) + qr0]

πV (r20 + a2i )
. (7.26)
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7.2.2 Odd dimensions D = 2n+ 1

In odd dimensions D = 2n+ 1, the metric is

ds2 = H2/(D−2)

[
− R

H2U
A2 +

U

R
dr̂2 +

n−1∑

α=1

Uα

Xα
dy2α

+
n−1∑

α=1

Xα

Uα

(
dt̂−

n∑

i=1

(r̂2 + a2i )γi
a2i − y2α

dφ̂i
ǫi

− q

HU
A
)2

+

∏n
k=1 a

2
k

r2
∏n−1

α=1 y
2
α

(
dt̂−

n∑

i=1

(r̂2 + a2i )γi
a2i

dφ̂i
ǫi

− q

HU
A
)2]

, (7.27)

where

R =
1

r̂2

n∏

k=1

(r̂2 + a2k)− 2m, Xα =
1

y2α

n∏

k=1

(a2k − y2α), U =

n−1∏

α=1

(r̂2 + y2α),

Uα = −(r̂2 + y2α)

n−1∏′

β=1

(y2β − y2α), γi = a2i

n−1∏

α=1

(a2i − y2α), ǫi = ai

n∏′

k=1

(a2i − a2k),

H = 1 +
q

U
, q = 2ms2, s = sinh δ, A = dt̂−

n∑

i=1

γi
dφ̂i
ǫi
. (7.28)

The Hawking temperature and entropy are

TH =
(r̂2R)′|r̂=r+

4π[
∏n

k=1(r
2
+ + a2k) + qr2+]

, S =
AD−2[

∏n
k=1(r

2
+ + a2k) + qr2+]

4r+
, (7.29)

where AD−2 = 2π(D−1)/2/Γ[(D−1)/2] is the volume of a unit (D−2)-sphere, so for example

A3 = 2π2 and A5 = π3. The angular velocities of the horizon are

Ωi =
ai

∏
j 6=i(r

2
+ + a2j )∏n

k=1(r
2
+ + a2k) + qr2+

. (7.30)

For an extremal solution, with a horizon at r̂ = r0, we have R′|r̂=r0 = 0, and so

n∑

i=1

1

r20 + a2i
=

1

r20
. (7.31)

Then we have the near-horizon expansion

R = V (r̂ − r0)
2 +O(r̂ − r0)

3, V = 1
2R

′′|r̂=r0 . (7.32)

Since R′|r̂=r0 = 0 for an extremal solution, we have

T ′ 0
H =

r20V

2π[
∏n

k=1(r
2
0 + a2k) + qr20]

, (7.33)
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and, using (7.31), we obtain

Ω′ 0
i = −

2air0
∏

j 6=i(r
2
0 + a2j )

(r20 + a2i )[
∏n

k=1(r
2
0 + a2k) + qr20]

, (7.34)

Therefore the Frolov–Thorne temperatures are

T0 = 0, Ti =
V r0(r

2
0 + a2i )

4πai
∏

j 6=i(r
2
0 + a2j )

. (7.35)

To obtain the near-horizon geometry, we make the coordinate changes

r̂ = r0(1 + λρ), φ̂i = φi +Ω0
i t̂, t̂ =

t

2πT ′ 0
H r0λ

, (7.36)

and then take the limit λ→ 0. The near-horizon geometry is

ds2 = H
2/(D−2)
0

[
Ũ

V

(
−ρ2dt2 + dρ2

ρ2

)
+

n−1∑

α=1

Ũα

Xα
dy2α

+
n−1∑

α=1

Xα

Uα

(
2r0Ũ

V (r20 + y2α)
ρdt+

n∑

i=1

(r20 + a2i )γi
a2i − y2α

dφi
ǫi

+
q

H0Ũ
Ã
)2

+

∏n
k=1 a

2
k

r2
∏n−1

α=1 y
2
α

(
2Ũ

V r0
ρdt+

n∑

i=1

(r20 + a2i )γi
a2i

dφi
ǫi

+
q

H0Ũ
Ã
)2]

, (7.37)

where Ũ = U |r̂=r0 , Ũα = Uα|r̂=r0 , H0 = H|r̂=r0 , and

H ′
0 =

∂H0

∂r0
= − q

Ũ

n−1∑

α=1

2r0
r20 + y2α

, Ã =
H ′

0Ũ
2

V q
ρdt−

n∑

i=1

γi
dφi
ǫi
. (7.38)

As in the even-dimensional case, we can directly see that this near-horizon geometry can be

cast in the form of (2.17) by checking dt coefficients. The analogous identities needed are

1

r20Ũ

n∑

i=1

aiγi
∏

j 6=i(r
2
0 + a2j)

ǫi(r20 + a2i )
=

n−1∑

α=1

1

r20 + y2α
−

n∑

i=1

1

r20 + a2i
+

1

r20
, (7.39)

Uα

(r20 + y2α)Xα
=

n∑

i=1

γi
aiǫi(a2i − y2α)

. (7.40)

The 1/r20 coefficient on the right hand side of (7.39) follows from the identity

n∑

i=1

γi
a3i ǫi

=

∏n−1
α=1 y

2
α∏n

k=1 a
2
k

, (7.41)

as seen by a partial fraction decomposition of one of the terms on the left hand side. Now

using the extremality condition (7.31), we see that

2

r0Ũ

n∑

i=1

aiγi
∏

j 6=i(r
2
0 + a2j)

ǫi(r20 + a2i )
=

n−1∑

α=1

2r0
r20 + y2α

= −H
′
0Ũ

q
. (7.42)
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For the dt coefficient of the unpaired vielbein, we also need to use the partial fraction

decomposition

Ũ∏n
k=1(r

2
0 + a2k)

=
n∑

i=1

aiγi
ǫi(r20 + a2i )

, (7.43)

hence completing the verification. It again follows that the Cardy formulae are satisfied.

The central charges are

ci =
3AD−2ai

∏
j 6=i(r

2
0 + a2j )[

∏n−1
k=1(r

2
0 + a2k) + qr20]

πV r0(r20 + a2i )
. (7.44)

8 Conclusions

In this paper, we have generalized the recently proposed extremal black hole/CFT corre-

spondence to large classes of charged rotating black holes in a variety of dimensions. For

extremal black holes, the near-horizon geometry can be obtained by a limiting (or decou-

pling) procedure that implies that the near-horizon geometry is a solution in its own right.

We started with a general argument that the near-horizon geometry of extremal rotating

black holes is of the form of a sphere bundle over AdS2, with the connection potentials pro-

portional to the inverse of the Frolov–Thorne temperatures. It is then straightforward to

demonstrate that the Cardy formulae for these near-horizon geometries are satisfied, which

we have verified in low dimensions. Since the formulae do not rely on any special features

of a particular dimension, they are very likely to be satisfied in arbitrary dimension. With

this general argument, to show that the Cardy formulae are satisfied for a particular black

hole solution, it suffices to show that its near-horizon geometry may be cast in a canonical

form.

We then obtained the near-horizon geometries for a variety of charged rotating black

holes in gauged and ungauged supergravities in a variety of dimensions, and in gravity

theories that are low-energy effective actions of bosonic strings in arbitrary dimension. In

all of these examples, the near-horizon geometry has the form established in the general

argument. Consequently the Cardy formulae are satisfied and the microscopic entropies of

the dual CFTs agree with the Bekenstein–Hawking entropies of the extremal rotating black

holes.
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[27] G.W. Gibbons, H. Lü, D.N. Page and C.N. Pope, The general Kerr–de Sitter metrics

in all dimensions, J. Geom. Phys. 53, 49 (2005), hep-th/0404008.
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[29] M. Cvetič and D. Youm, Near-BPS-saturated rotating electrically charged black holes

as string states, Nucl. Phys. B477, 449 (1996), hep-th/9605051.

[30] G. Barnich and F. Brandt, Covariant theory of asymptotic symmetries, conservation

laws and central charges, Nucl. Phys. B633, 3 (2002), hep-th/0111246.

[31] G. Barnich and G. Compère, Surface charge algebra in gauge theories and thermody-

namic integrability, J. Math. Phys. 49, 042901 (2008), arXiv:0708.2378 [gr-qc].
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