Heterotic Cosmic Strings

Katrin Beckera,b,c,1, Melanie Beckera,b,c,2, Axel Krauseb,c,3

aRadcliffe Institute, Harvard University, Cambridge, MA 02138, USA
bJefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA
cGeorge P. \& Cynthia W. Mitchell Institute for Fundamental Physics, Texas A\&M University, College Station, TX 77843, USA

Abstract

We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications, solve these problems in an elegant fashion.

Keywords: Heterotic M-Theory, Cosmic Strings

1kbecker@radcliffe.edu
2mbecker@radcliffe.edu
3akrause@fas.harvard.edu
1 Introduction

It has been known for a long time that COBE data require the effective or fundamental tension μ of a cosmic string to be given by $G_N \mu \simeq 10^{-6}$ if the scaling solution of the cosmic string network is assumed to be the prime source for density perturbations which seed galaxy formation. The option that cosmic strings are primarily responsible for structure formation has, however, been ruled out by more recent CMB data. More precisely it has been shown [1] that present CMB data [2] constrain the contribution of a cosmic string network to the CMB anisotropies to be less than 20%. This leads to a slightly tighter upper bound

$$G_N \mu \lesssim 2 \times 10^{-7}, \quad (1.1)$$

on the cosmic string tension. The bound can equivalently be written as $\sqrt{\mu} \lesssim 5.5 \times 10^{15}$ GeV and indicates that the energy scale associated with the cosmic string tension should be roughly of the order of the GUT scale (for recent reviews on cosmic strings see [3], [4], [5], [6]).

For the weakly coupled heterotic string μ equals the fundamental string’s tension $T = 1/2\pi\alpha'$ which is given by the string scale squared M_s^2. Since $M_s \simeq 10^{15}$ GeV we are 2.5 orders of magnitude above the required energy scale and would hence violate the bound (1.1). Another way to see this is to remember the fact that in the weakly coupled heterotic string gravitational and gauge couplings are tightly related, $4\kappa_{10}^2 = \alpha' g_{10}^2$ since both originate at the level of the trilinear interactions of the closed heterotic string. This same origin also implies that both gravity and the gauge fields live in the total 10d spacetime (this no longer holds for the strongly coupled heterotic string) and therefore both couplings reduce in the same way to the corresponding 4d couplings. With $\alpha_{GUT} \simeq 1/25$ being the 4d gauge coupling whose value follows from the unification of all gauge forces, we obtain

$$G_N \mu = \frac{\alpha' \alpha_{GUT}}{8} \mu \simeq 8 \times 10^{-4}, \quad (1.2)$$

which clearly violates the bound (1.1). Consequently weakly coupled heterotic fundamental strings cannot lead to viable cosmic strings, as has been realized by Witten twenty years ago [7].

In type II theories the string-scale can be lowered down to the TeV scale. This allows for a large range of cosmic string tensions below the GUT scale in compliance with the

4Recently the appearance of open heterotic SO(32) strings has been discovered in [8]. It would be interesting to understand their potential role in cosmology.
observational bound [9], [10]. However, this large range for the fundamental string-scale weakens the predictivity of type II cosmic strings. Their tensions might well be below observational verification. To have a more predictive framework, we will now consider the strongly coupled heterotic string where the Planck-scale is fixed. The fact which makes this theory very interesting for cosmic strings is that the gravitational coupling scale which determines the M2 and M5 brane tensions,

$$\kappa_{11}^{2/9} \approx \frac{1}{2M_{GUT}},$$

(1.3)

coincides roughly with the 4d GUT scale $M_{GUT} \simeq 3 \times 10^{16}$ GeV [11]. Hence we can expect that the effective tensions of cosmic strings arising from suitably wrapped M2 and M5 branes might be close to the bound [11]. This is our main reason to focus on the strongly coupled heterotic string or heterotic M-theory for short\(^5\). We will show in this paper that all three criteria – tension, stability, production at the end of inflation – can be satisfied in the M5 brane case.

2 Cosmic String Candidates from Wrapped M2 and M5 Branes

Heterotic M-theory contains only two extended objects, the M2 and the M5 brane which we are exploring as candidates for heterotic cosmic strings. The theory also contains 10-dimensional boundaries which might loosely be regarded as M9 branes. They fill, however, all of the 4-dimensional spacetime and can therefore not generate cosmic strings. For the generation of gauge cosmic strings, which we are not investigating here, this is another matter as the Yang-Mills vector bundles are localized precisely on the M9’s. It should be interesting to explore this question in the future. Generating a cosmic string from wrapped M2 or M5 branes means that these branes must extend along a time-like and a space-like direction, t, x, into four-dimensional spacetime.

We consider heterotic M-theory compactified on $X \times S^1/Z_2$, where X is a Calabi-Yau threefold. The resulting flux compactification geometry has in the simplest case a Calabi-Yau which is conformally deformed by a warp-factor generated from the background $G^{(2,2,0)}$ flux [19], [20], [21] (see also [22]). We will now consider wrapping M2 and M5

\(^5\)Another decisive virtue is its realistic phenomenology which has gained renewed interest recently [12], [13], [14], [15], [16], [17], [18].
branes over suitable cycles in this 7-dimensional flux-compactification background and start by listing all possible candidates for obtaining cosmic strings in four dimensions.

Let us begin with those configurations which are considered BPS in the flat spacetime limit. These are the M2 brane transverse to the M9’s and the M5 brane parallel to them. The M2 brane which stretches along the S^1/Z_2 interval produces in the limit of vanishing orbifold length L, i.e. the weakly coupled limit, a fundamental heterotic string. Since the fundamental heterotic string is a closed string, we learn that the M2 brane worldvolume must have the following topology

$$M2_\perp : \underbrace{\mathbb{R}^1 \times S^1}_\text{cosmic string loop} \times S^1/Z_2,$$ \hspace{1cm} (2.1)

giving rise to a cosmic string loop.

The parallel M5 brane needs to wrap a 4-cycle Σ_4 on X to produce a string-like object. For this we need to adopt a Calabi-Yau with non-vanishing $b_4(X) = 2h^{3,1} + h^{2,2} = h^{1,1} \neq 0$ which is the generic case. The topology of the M5 brane worldvolume will then be

$$M5_\parallel : \underbrace{\mathbb{R}^1 \times \mathbb{R}^1}_\text{∞-extended cosmic string} \times \Sigma_4,$$ \hspace{1cm} (2.2)

where the two non-compact time and space directions are along the two M5 brane dimensions which extend into the 4-dimensional spacetime and create naturally an infinitely extended cosmic string.

One might also contemplate parallel M2 branes by wrapping the M2 not along S^1/Z_2 but instead on a 1-cycle of X. This would also create a string but can be ruled out because the Calabi-Yau threefold has vanishing first Betti number, $b_1(X) = 2h^{1,0} = 0$, hence possesses no 1-cycles on which the M2 could be wrapped (we will not consider non-simply connected Calabi-Yau’s). More interesting are the transverse M5 branes which wrap one of the $b_3(X) = 2(h^{3,0} + h^{2,1}) = 2(1 + h^{2,1}) \neq 0$ 3-cycles Σ_3 and have topology

$$M5_\perp : \underbrace{\mathbb{R}^1 \times \mathbb{R}^1}_\text{∞-extended cosmic string} \times \Sigma_3 \times S^1/Z_2.$$ \hspace{1cm} (2.3)

The resulting cosmic string would again be an infinitely extended cosmic string.

We will next derive the tensions of the cosmic string and compare them with the constraint (1.1). An important role will be played by the warped background which influences the tension. The observational bound will eliminate the $M2_\perp$ candidate and leave us with the two M5 brane candidates.
3 Cosmic String Tensions

3.1 M2⊥ Brane Case

Let us begin with the M2⊥ brane. To determine the effective tension of the associated cosmic string we take the Nambu-Goto part of the M2⊥ brane action

\[S_{M2} = \tau_{M2} \int_{\mathbb{R}^1} dt \int_{S^1} dx \int_0^L dx^{11} \sqrt{-\det h_{ab}} + \ldots, \]

and integrate it over the compact dimension \(x^{11} \). Here \(a, b, \ldots = t, x, x^{11} \) and \(L \) is the length of the \(S^1/\mathbb{Z}_2 \) interval. We adopt a static gauge for the embedding of the M2⊥ into 11-dimensional spacetime which gives us for the induced metric \((I, J = 0, \ldots, 9, 11) \)

\[h_{ab} \equiv \frac{\partial X^I}{\partial x^a} \frac{\partial X^J}{\partial x^b} G_{IJ} = \delta_a^I \delta_b^J G_{IJ}. \]

The 11d metric \(G_{IJ} \) is given by the warped \(G \)-flux compactification background sourced by the boundary M9's \([19], [20], [21]\)

\[ds_{11}^2 = G_{IJ} dx^I dx^J = e^{-f(x^{11})} g_{\mu\nu} dx^\mu dx^\nu + e^{f(x^{11})} \left(g(X)_{lm} dy^l dy^m + dx^{11} dx^{11}\right), \]

where the warp-factor is given by\(^6\)

\[e^{f(x^{11})} = (1 - x^{11} Q_v)^{2/3} \]

with visible M9 brane charge

\[Q_v = -\frac{1}{8\pi V_v} \left(\frac{\kappa_{11}}{4\pi}\right)^{2/3} \int_{X_v} J \wedge (\text{tr} F \wedge F - \frac{1}{2} \text{tr} R \wedge R) \]

which sources the \(G^{(2,2,0)} \) flux component. \(X_v \) and \(V_v \) denote the Calabi-Yau and its volume at the location of the visible M9, \(J \) its Kähler-form and \(F \) resp. \(R \) the Yang-Mills and curvature 2-forms, again on the visible M9.

Notice that we are taking the flux background which incorporates only the backreaction of the M9’s but not that of extra M5⊥ branes in the bulk. The extra M5⊥ branes would wrap genus zero holomorphic 2-cycles on \(X \) and fill all of 4-dimensional spacetime so shouldn’t be confused with the M5∥, M5⊥ brane candidates for cosmic strings. Though the backreaction of the M5⊥ branes is known \([19], [20], [21]\), their neglect is justified when

\(^6\)The charge \(Q_v \) had been denoted \(S_v \) in \([19], [20], [21]\).
we want to focus on a cosmological epoch at the end of inflation or even later which is the time when the cosmic strings are produced and observed. In the proposal for heterotic M-theory inflation made in [23] which we will use here the inflationary dynamics relies on the interactions between several M5\(_2\) branes in the bulk. Towards the end of inflation the 11-dimensional bulk gets however cleared of its M5\(_2\) branes which coalesce with the boundary M9’s. This justifies the neglect of the M5\(_2\) branes in the flux background. Let us also note that the addition of M5\(_2\) branes would weaken the tight relation between the GUT and gravity sector which relates so successfully the standard values for \(M_{\text{GUT}} \simeq 3 \times 10^{16}\,\text{GeV}\) and \(\alpha_{\text{GUT}} \simeq 1/25\) to the observed value for Newton’s Constant \(G_N\).

We can now explicitly integrate over \(x^{11}\) with the result that the M2 brane action becomes the cosmic string action

\[
S_{M2} = \mu_{M2} \int_{\mathbb{R}^1} dt \int_{S^1} dx \sqrt{-g_{tt}g_{xx}} + \ldots .
\] (3.6)

with tension determined by the warp-factor and length \(L\) of the \(S^1/\mathbb{Z}_2\) interval

\[
\mu_{M2} = \tau_{M2} \int_0^L dx^{11} e^{-f(x^{11})/2} = \frac{3\tau_{M2}}{2Q_v} \left(1 - (1 - LQ_v)^{2/3}\right).
\] (3.7)

To evaluate the value, let us remind that the correct value of the 4d Newton’s Constant requires \(L\) to be of critical length \(L_c\) which is given in terms of the M9 charge by [19], [20]

\[
L_c \equiv 1/Q_v.
\] (3.8)

We should therefore use \(L \simeq L_c\) for the evaluation of the cosmic string’s tension. To evaluate the tension, let us express all quantities in terms of the 11-dimensional gravitational coupling constant \(\kappa_{11}\). Based on phenomenological reasoning the critical length will be given by [11], [20]

\[
L_c \simeq 12\kappa_{11}^{2/9}.
\] (3.9)

With the M2 brane tension \(\tau_{M2} = M_{11}^3/(2\pi)^2\), and the defining relation \(2\kappa_{11}^2 = (2\pi)^8/M_{11}^9\) for the 11d Planck-mass \(M_{11}\), we obtain for the string’s tension

\[
\mu_{M2} = \frac{3\tau_{M2}}{2Q_v} = 3L_c \left(\frac{\pi}{2\kappa_{11}}\right)^2 \simeq 9(2^{10}\pi^2)^{1/3}M_{\text{GUT}}^2.
\] (3.10)
For the last expression we have used the relations (1.3) and (3.9). Since $\mu_{M^2}^{1/2}$ turns out to be larger than the GUT scale, it is clear that the string’s tension comes out too large. This becomes evident when we finally evaluate

$$G_N\mu_{M^2} \simeq 1.2 \times 10^{-3}$$

(3.11)

with $M_{GUT} \simeq 3 \times 10^{16}$ GeV which is in clear conflict with the observational bound (1.1). Also considering a slightly smaller length $L = 11\kappa_{11}^{2/9} = L_c - \kappa_{11}^{2/9}$, which could still be stabilized at the end of inflation, would only decrease the tension by a factor of 0.8 which is not enough. The $M_2\perp$ candidates are therefore ruled out as viable cosmic strings.

3.2 M5∥ Brane Case

Let us now turn to the M5∥ cosmic strings. The Nambu-Goto term of the M5∥ brane action reads

$$S_{M5∥} = \tau_{M5} \int_{R^1} dt \int_{R^1} dx \int_{\Sigma_4} d^4y \sqrt{-\det h_{ab}}$$

(3.12)

where $a, b, \ldots = t, x, y^1, y^2, y^3, y^4$. Adopting again static gauge for its embedding, we have to integrate over the 4-cycle Σ_4 to obtain the action for the cosmic string

$$S_{M5∥} = \mu_{M5∥} \int_{R^1} dt \int_{R^1} dx \sqrt{-g_{tt}g_{xx}}$$

(3.13)

with string tension given by

$$\mu_{M5∥} = \tau_{M5} e^{f(x_{M5}^{11})} \int_{\Sigma_4} d^4y \left(\prod_{i=1,\ldots,4} g(X)_{y^iy^i} \right)^{1/2}$$

$$= \tau_{M5} \left(1 - \frac{x_{M5}^{11}}{L_c} \right)^2 V_{\Sigma_4}.$$

(3.14)

Here $0 \leq x_{M5}^{11} \leq L$ denotes the position of the M5∥ along the S^1/Z_2 orbifold. It will be convenient to write the volume of the 4-cycle V_{Σ_4} in terms of a dimensionless radius r_{Σ_4} by rescaling with the radius R_v of X on the visible boundary, i.e. the undeformed initial Calabi-Yau radius

$$V_{\Sigma_4} = (r_{\Sigma_4} R_v)^4.$$

(3.15)

Typically one would expect for a more or less isotropic Calabi-Yau that $r_{\Sigma_4} \lesssim 1$. For highly anisotropic compactification spaces it could be larger.
To evaluate the tension’s value, we need to employ another standard relation \[11\], \[20\]

\[R_v \equiv V_1^{1/6} = 1/M_{GUT}. \]

(3.16)

Using this, the definition of the M5\textsubscript{∥} brane’s tension, \(\tau_{M5} = M_1^{6}/(2\pi)^5 \), plus \[1.3\] we arrive at

\[\mu_{M5\parallel} = 64\left(\frac{\pi}{2}\right)^{\frac{1}{3}} \left(1 - \frac{x_{11}^{11}}{L_c}\right)^{\frac{2}{3}} M_{GUT}^2 r^4_{\Sigma_4}. \]

(3.17)

Numerically this leads to the following result

\[G_N \mu_{M5\parallel} = 4.7 \times 10^{-4} \left(1 - \frac{x_{11}^{11}}{L_c}\right)^{\frac{2}{3}} r^4_{\Sigma_4}. \]

(3.18)

We will subsequently see that the production of the M5\textsubscript{∥} cosmic strings will happen towards the end of inflation essentially on the hidden M9 when \(L \) gets stabilized near \(L_c \) \[26\], \[27\]. Taking therefore, say, \(x_{11}^{11} = L \simeq 11\kappa_{11}^{2/9} = L_c - \kappa_{11}^{2/9} \), we obtain \(G_N \mu_{M5\parallel} = 8.9 \times 10^{-5} r^4_{\Sigma_4} \). A radius \(r_{\Sigma_4} \leq 0.22 \) would then already be enough to satisfy the observational constraint. Hence the M5\textsubscript{∥} easily passes the tension constraint. The positioning of the M5\textsubscript{∥} brane on the hidden boundary is also supported by the fact that M5 branes can only wrap 4-cycles which carry no G-flux \[28\]. In general this is the case on either the visible or hidden M9 boundary where the \(G^{(2,2,0)} \) flux vanishes as a direct consequence of the \(\mathbb{Z}_2 \) symmetry of the background.

3.3 M5\textsubscript{⊥} Brane Case

Let us finally come to the M5\textsubscript{⊥} cosmic strings. We start from the M5\textsubscript{⊥} brane action

\[S_{M5\perp} = \tau_{M5} \int_{\mathbb{R}^1} dt \int_{\mathbb{R}^3} dx \int_0^L dx^{11} \int_{\Sigma_3(x^{11})} d^2y \sqrt{-\det h_{ab}} \]

(3.19)

Integrating over the compact dimensions gives the cosmic string action

\[S_{M5\perp} = \mu_{M5\perp} \int_{\mathbb{R}^3} dt \int_{\mathbb{R}^3} dx \sqrt{-g_{tt}g_{xx}} \]

(3.20)

with string tension

\[\mu_{M5\perp} = \frac{3}{5} \tau_{M5} \left(1 - \left(1 - L/L_c\right)^{5/3}\right) L_c V_{\Sigma_3}. \]

(3.21)
Again it will be convenient to express the volume of the 3-cycle V_{Σ_3} through a dimensionless radius r_{Σ_3} defined by

$$V_{\Sigma_3} = (r_{\Sigma_3} R_v)^3 .$$

(3.22)

With the standard relations used earlier we arrive then at

$$\mu_{M5_\perp} = \frac{72}{5} \left(\frac{\pi}{2} \right)^{1/3} \left(1 - (1 - L/L_c)^{5/3} \right) M_{\text{GUT}} r_{\Sigma_3}^3 ,$$

(3.23)

which gives the result

$$G_N \mu_{M5_\perp} = 1.1 \times 10^{-4} \left(1 - (1 - L/L_c)^{5/3} \right) r_{\Sigma_3}^3 .$$

(3.24)

Again for a value $L = 11 \kappa_1^{2/9}$, we obtain $G_N \mu_{M5_\perp} = 1.1 \times 10^{-4} r_{\Sigma_3}^3$. Hence the observational constraint can be satisfied for $r_{\Sigma_3} \leq 0.12$. This still seems a rather mild constraint on the average radius of the 3-cycle Σ_3. We can therefore conclude that also the M5\perp cosmic strings pass the tension test. We will next analyze the stability of our two M5 brane candidates.

4 Stability

4.1 Classical Stability

Cosmic strings resulting from fundamental heterotic strings were found in [7] to be unstable. The reason was that these cosmic strings are axionic strings with S^1 topology which bound domain walls. Due to the domain wall tension which is proportional to the area they span, these axionic strings will quickly shrink. Hence they cannot become macroscopically large.

We will at first sight encounter the same instability for cosmic strings resulting from wrapped M2 or M5 branes in heterotic M-theory. This is because these branes are charged under the 3-form C_3 resp. dual 6-form potential C_6, which when reduced over the appropriate cycle which the brane wraps, becomes a 2-form potential $C_{[2]}$ in four dimensions. Since the dual of this 2-form gives an axion ϕ via

$$dC_{[2]} = \star_4 d\phi ,$$

(4.1)
it seems that cosmic strings created by wrapping M2 or M5 branes cannot grow to cosmic size due to their coupling to the axion ϕ. To avoid this conclusion one needs to remove the massless axion. We will see that this will only be possible for the $M_5\parallel$ cosmic string candidate and requires it to be on the hidden M9. Hence the $M_5\perp$ cosmic string candidate will be ruled out as it suffers from the domain wall instability and therefore quickly shrinks to microscopic size. Let us now explain how and under which conditions the massless axion gets removed.

For this, let us remind first that the presence of the boundaries in heterotic M-theory lead to a modification of its 4-form field-strength G on the boundaries \[29\]. This modification involves the Yang-Mills and Lorentz Chern-Simons 3-forms ω_Y, ω_L and one finds on the hidden boundary\[8\] at $x^{11} = L$

$$G_4 = dC_3 + c\kappa_{11}^{2/3} \left(\omega_Y - \frac{1}{2} \omega_L \right) \delta(x^{11} - L) \wedge dx^{11}, \quad c = \frac{\sqrt{2}}{(4\pi)^{5/3}} \tag{4.2}$$

To avoid carrying around the delta-function, let us write this in 10d notation in terms of the Neveu-Schwarz 3-form field-strength H on the hidden boundary (where $H_{ABC} = G_{11ABC}, B_{AB} = C_{11AB}$)

$$H_3 = dB_2 - \frac{c\kappa_{11}^{2/3}}{2L} \left(\omega_Y - \frac{1}{2} \omega_L \right). \tag{4.3}$$

Since $\alpha' = 2c\kappa_{11}^{2/3}/L \[11\]$, we recognize the familiar α' correction of the weakly coupled heterotic string, with the difference of the factor $1/2$ which arises from the separation of the boundaries. Plugging this field-strength into the hidden boundary \mathcal{M}_h^{10} kinetic term

$$-\frac{L}{2\kappa_{11}^2} \int_{\mathcal{M}_h^{10}} H_3 \wedge \star_{10} H_3 \tag{4.4}$$

leads upon dualization $dC_6 = \star_{10} dB_2$ to the coupling

$$\frac{c}{2\kappa_{11}^{4/3}} \int_{\mathcal{M}_h^{10}} C_6 \wedge \left(\text{tr} F \wedge F - \frac{1}{2} \text{tr} R \wedge R \right). \tag{4.5}$$

We know that in order to stabilize the hidden boundary close to the phenomenologically relevant length L_c after inflation, the hidden E_8 gauge symmetry must be broken to a gauge group of smaller rank \[27\]. This will typically provide us with some $U(1)$ gauge symmetries on the hidden M9. Let’s pick one of these and denote its field-strength

\[\text{Since we will find that cosmic string production will preferably occur close to the hidden boundary, we will focus on this boundary here.}\]
\[\mathcal{F}_2 = dA_1. \] Moreover, let us assume a non-vanishing gauge flux \(\int_{\mathcal{C}_2} F \neq 0 \) over some 2-cycle on \(X \). Let us consider the coupling term together with the kinetic terms in the 11-dimensional action

\[
- \frac{1}{2} \times \frac{7!}{7!} \int_{\mathcal{M}^4} |dC_6|^2 + \frac{c}{2^{4/3}} \int_{\mathcal{M}_h^{10}} C_6 \wedge \left(\text{tr} F \wedge F - \frac{1}{2} \text{tr} R \wedge R \right) - \frac{1}{4g_{10}^2} \int_{\mathcal{M}_h^{10}} |F|^2 \quad (4.6)
\]

Here the 10-dimensional gauge coupling \(g_{10} \) is fixed in terms of the gravitational coupling as

\[
g_{10}^2 = \left(\frac{2^7 \pi^5}{7!} \right)^{1/3} \kappa_{11}^{4/3} \quad [29].
\]

After a reduction to four dimensions these terms will give a contribution (we will not consider the curvature term \(\text{tr} R \wedge R \) further)

\[
- \frac{1}{2} \int_{\mathcal{M}^4} |dC_2|^2 + m \int_{\mathcal{M}^4} C_2 \wedge \mathcal{F}_2 - \frac{1}{2} \int_{\mathcal{M}^4} |\mathcal{F}_2|^2 \quad (4.7)
\]

to the 4-dimensional action. The mass parameter \(m \) is given by

\[
m = \frac{(7!)^{1/2}}{2^{5/3} \pi^{5/6}} \times \frac{\kappa_{11}^{1/3} L_{\text{top}}^4}{(L \langle V \rangle V_h)^{1/2}},
\]

where \(\langle V \rangle \) denotes the Calabi-Yau volume averaged over the \(S^1/\mathbb{Z}_2 \) interval, \(V_h \) represents the Calabi-Yau volume at the location of the hidden boundary and the length \(L_{\text{top}} \) will be defined next. To arrive at this expression, we have set

\[
\int_{\mathcal{M}_h^{10}} C_6 \wedge \text{tr}(\mathcal{F}_2 \wedge F) = L_{\text{top}}^4 \int_{\mathcal{M}^4} C_2 \wedge \mathcal{F}_2 \quad (4.9)
\]

and then rescaled

\[
\mathcal{F}_2 \rightarrow \left(\frac{V_h}{2g_{10}^2} \right)^{1/2} \mathcal{F}_2 \quad (4.10)
\]

\[
C_2 \rightarrow \left(\frac{2 \langle V \rangle L}{7! \kappa_{11}^2} \right)^{1/2} C_2 \quad (4.11)
\]

such that the 4-dimensional fields \(C_2, A_1 \) receive a canonical mass dimension one. The volume and length factors which enter the rescaling originate from the ordinary reduction of the metric dependent kinetic terms for \(C_6 \) and \(A_1 \) from 11 resp. 10 to 4 dimensions. The length parameter \(L_{\text{top}} \) which stems from the reduction of the metric independent topological coupling term characterizes the localization of the gauge flux \(F \) and \(C_6 \) on \(X \).

It is now straightforward to demonstrate\(^9\) that this action implies the absence of the axion \(\phi \) which we will show next. The field equations for \(A_1 \) and \(C_2 \) which result from

\(^9\)Although we are considering here the M5-M9 system, the following argumentation closely parallels the argumentation for the D1-D3 brane case [31, 31].
the action (4.7) are
\begin{align}
d *_4 dA_1 &= -mdC_{[2]} \\
d *_4 dC_{[2]} &= -mF_2.
\end{align}

We can solve the second equation by
\[dC_{[2]} = *_4 (d\phi - mA_1), \]
which defines the dual axion field \(\phi \). Plugging this solution back into the field equation for \(A_1 \) gives
\[d *_4 dA_1 = *_4 (-md\phi + m^2 A_1). \]

For the ground state in which \(\phi = 0 \) or by picking a gauge which sets \(d\phi = 0 \), this result shows that \(A_1 \) has acquired a mass \(m \). Alternatively, one might plug the solution back into the action (4.7). Then the coupling term gives us a mass term for \(A_1 \)
\[m \int_\mathcal{M}^4 C_{[2]} \wedge dA_1 = \int_\mathcal{M}^4 (mA_1 \wedge *_4 d\phi - m^2 A_1 \wedge *_4 A_1). \]

Furthermore, we infer from (4.14) that \(\phi \) must transform nonlinearly under \(A_1 \) gauge transformations
\[\delta A_1 = d\Lambda, \quad \delta \phi = -m\Lambda. \]

The proper interpretation of these results is that the \(U(1) \) gauge field swallows the axion \(\phi \), gains a further degree of freedom and becomes massive, i.e. \(A_1 \to A_1 - d\phi/m \). Since the axion gets removed in this Higgsing, there is no domain wall anymore which would prevent the cosmic string from growing. Let us note that \(m \) grows when the hidden boundary comes close to the critical length \(L_c \) where \(V_h \) would classically vanish and quantum-mechanically is expected to reach Planck-size\(^{10}\) \(l_{11}^6 \simeq (\frac{\kappa_{11}^2}{\Lambda})^6 \). Since towards the end of the inflationary mechanism of \cite{23} the hidden boundary gets indeed stabilized close to \(L_c \), where \(V_h \) becomes small, through the stabilization mechanisms developed in \cite{26, 27} we notice that the removal of the axion domain wall will be particularly effective towards the end of inflation when \(m \) becomes large.

For which of our cosmic string candidates, \(M5_{\parallel}, M5_{\perp} \) does this stabilization mechanism apply? The gauge fields \(F \) are localized on the boundary and therefore the initial coupling

\(^{10}\)The 11-dimensional Planck-length \(l_{11} \) is defined by \(2\kappa_{11}^2 = 16\pi G_{N,11} = (2\pi)^8 l_{11}^9 \).
(4.5) will only be non-vanishing for a parallel M5∥ brane which moreover has to be localized on the hidden boundary. The transverse M5⊥ which stretches orthogonal to \(\mathcal{M}_h^{10} \) along \(S^1/Z_2 \) cannot have this coupling. It will therefore maintain its domain wall instability and will consequently quickly shrink to microscopic size. This might have been anticipated because the M5⊥ is a non-BPS object in flat 11-dimensional spacetime. We are therefore left with a unique cosmic string candidate, a parallel M5∥ brane on the hidden boundary.

Let us now come to a second potential instability which is the breaking of the M5∥ cosmic string on the hidden boundary. Since the endpoints which are produced when the string breaks are still connected by flux lines, one can think of this breaking as the M5∥ brane dissolving in the M9. One has to compare the gauge flux \(\int_{C_2} F \) which is transverse to the M5∥ brane with the kinetic energy density \(\int_X F \wedge \ast_6 F \) on \(X \). By counting dimensions one would conclude that it might be energetically favorable for the flux to expand along \(X \) and therefore the cosmic string might break.

The reason why this conclusion should not hold is very simple. Notice that the argument so far implicitly assumed that \(X \) is large enough in order to provide space for the flux to spread along \(X \). This, however, is not the case precisely on the hidden M9. As we will review later, \(L_c \), and therefore the hidden M9, gets stabilized towards the end of inflation close to \(L_c \). The characteristic feature of \(L_c \) is that it is the length at which the volume of \(X \) shrinks classically to a point. Therefore the flux has no space to spread along \(X \) when the M5∥ brane is on (or close to) the hidden M9. Another argument against the breaking of the string, even at finite size \(X \) volumes, might also come from the nice solution of the breaking instability for a D1 on a D3 brane presented in [31]. Here, as well as in our case we have a flux \(\int_{C_2} F \neq 0 \) transverse to the cosmic resp. D1 string. Since we have, however, not a volume for \(X \) of sizeable size, we will not explore this possibility further here.

So it remains to analyze whether there can be breakage of the M5∥ cosmic string in the four non-compact directions. Here let us note that the M5∥ cosmic strings, when being located on the hidden M9, lead in four dimensions to an effective abelian Higgs model whose \(U(1) \) is Higgsed. Consequently, Abrikosov-Nielsen-Olesen type flux tubes [32] will form which carry magnetic flux of the Higgsed \(U(1) \). These flux tubes, in which the field strength falls off exponentially with radial distance, cannot decay because they are topologically stable. It is these flux tubes which represent the M5∥ cosmic strings in the effective four-dimensional theory and show that they are also stable with respect to breakage along the non-compact directions. One might worry that at high energies
when the gauge theory on the hidden M9 is expected to restore a GUT symmetry11 with a corresponding embedding of the $U(1)$ into the unified gauge group, the flux tubes might break. The reason being that GUT theories possess monopoles such that the flux tube can start on a monopole and end on an anti-monopole, thus making it unstable against monopole pair production. An estimate of the monopole pair creation rate via the Schwinger pair production calculation shows, however, that this rate is suppressed by a factor $\exp\left(-\frac{M^2}{\mu_{M5}}\right)$ with M being the monopole mass. We expect the $M5\|\parallel$ cosmic string’s tension $\mu_{M5}\parallel$ to be far smaller than the monopole’s mass, again due to its warp-factor suppression. Therefore the scale of the monopole mass should easily be an order of magnitude larger than the scale of the string’s tension which is enough to render the flux tubes effectively stable on cosmological time scales \cite{4}. Before describing how the parallel $M5\|\parallel$ branes are produced when inflation comes to an end, we will now briefly address the stability of $M2$ branes and quantum instabilities.

Though we have seen that the tension of an $M2$ cosmic string violates the observational bound and $M2$ cosmic strings are consequently ruled out, let us as nevertheless include the stability discussion for a hypothetical $M2$ cosmic string. In this case there is a similar coupling, the well-known \cite{29}

$$\frac{\sqrt{2}}{(4\pi)^3(4\pi\kappa_{11}^2)^{1/3}} \int_{M^{11}} C_3 \wedge X_8(F, R)$$

(4.18)

where

$$X_8(F, R) = -\frac{1}{4} \left(\text{tr} F^2 - \frac{1}{2} \text{tr} R^2 \right)^2 + \left(-\frac{1}{8} \text{tr} R^4 + \frac{1}{32} (\text{tr} R^2)^2 \right)$$

(4.19)

Combining it with the kinetic terms for C_3 and F can once again generate the desired effective 4d coupling $\int_{M^4} C_{[2]} \wedge F_2$. This time it requires an orthogonal $M2\perp$ brane because F is localized on the boundary $M9$’s. Assuming a non-zero higher instanton charge $\int_X (F \wedge F \wedge F) \neq 0$ on X we would likewise remove the axion and the associated domain wall through Higgsing of the 4-dimensional $U(1)$. This time we have a topological charge $\int_X (F \wedge F \wedge F)$ on X which we need to compare to the energy density term $\int_X F \wedge *_6 F$. Counting dimensions, we would conclude that it is energetically favorable for the flux to shrink. Hence, the hypothetical $M2$ cosmic string would not break up as it cannot transform into flux which can spread out over the $M9$. We will later also see that transverse branes will not be produced at the end of inflation. The stability of the $M2\perp$ brane will therefore not imply its presence.

11Notice that at low energies the hidden $M9$ does not carry a GUT theory since the resulting stabilized orbifold length would be too short and the supersymmetry breaking scale much larger than TeV \cite{27}.

13
4.2 Quantum Stability

One might ask whether the M5\(\parallel\) cosmic strings could decay quantum-mechanically via some non-perturbative effect. With only M2 and M5 brane instantons available, this would require that either of them must be able to couple to the M5\(\parallel\) brane. For the M2 instantons\(^{12}\) to mediate a force, they would need to wrap a genus zero holomorphic 2-cycle \(\Sigma_0^2\) on the divisor \(\Sigma_4\). Hence, if the divisor \(\Sigma_4\) does not contain any such 2-cycles \(\Sigma_2^0\), the M5\(\parallel\) brane and thus the cosmic string would not feel a force mediated by M2 instantons. Moreover, no M5 instantons i.e. M5 branes which wrap the complete \(X\) at some fixed location along the \(S^1/Z_2\) can attach to the M5\(\parallel\) branes because the M5 instantons would need two more compact dimensions than the divisor which the M5\(\parallel\) wraps can provide. Consequently, M5 instantons will not be able to exert a force on the M5\(\parallel\) branes. Therefore with respect to M2 or M5 instanton decay the M5\(\parallel\) cosmic strings are stable as long as the divisor \(\Sigma_4\) does not contain any genus zero holomorphic 2-cycles \(\Sigma_2^0\).

4.3 Relation to Other Types of Cosmic Strings

Cosmic D-strings which arise from the tachyon condensation of a brane-antibrane Dp-\(\bar{D}p\) pair have a priori a very different fundamental description from the heterotic cosmic strings originating from wrapped M5 branes. At the level of the effective 4-dimensional description there are, however, striking similarities. Let us consider for definiteness a D3-\(\bar{D}3\) pair on whose worldvolume a D1-string forms as a tachyonic vortex \((34)\). The tachyon in the open string spectrum of the D3-\(\bar{D}3\) system is charged under the diagonal combination of the two \(U(1)\)’s. When the tachyon condenses in a topologically non-trivial vacuum the diagonal \(U(1)\) is Higgsed. The effective picture \((35)\) of the created D1-string is a topologically stable vortex solution which carries magnetic flux of the Higgsed \(U(1)\) similar to an Abrikosov-Nielsen-Olesen flux tube \((32)\). The Ramond-Ramond charge of the D1-string stems from a Wess-Zumino coupling

\[
\int_{D3-\bar{D}3} F_2 \wedge C_2
\]

on the D3-\(\bar{D}3\) worldvolume. Here, \(F_2\) denotes the field-strength of the diagonal \(U(1)\) and \(C_2\) the Ramond-Ramond 2-form. In four dimensions the D1-string represents a cosmic string \((30)\). Hence, together with the kinetic terms for the gauge potential and \(C_2\) we arrive at an effective action which is formally the same as in \((17)\). Consequently, both

\(^{12}\)See \((33)\) for a recent discussion of these instantons.
the heterotic cosmic strings and the type II cosmic D-strings have the same effective
description in terms of Abrikosov-Nielsen-Olesen type flux tubes. Indeed the analogy
between both can be extended further as we will now indicate.

Solitonic descriptions of cosmic superstrings had been given in [36], [37] for heterotic
string motivated models and in [38], [39], [35], [40] for D-strings. Although the low-energy
effective actions are very similar in both cases, they differ by a dilaton-independent D-term
contribution from a Fayet-Iliopoulos term ξ of the Higgsed $U(1)$. This Fayet-Iliopoulos
term ξ was not obvious and therefore omitted in the heterotic models [36], [37] while it
was included for the type II D1-string, being proportional to the D3-brane tension [35].
The presence of this term is crucial as it allows to construct solitonic supersymmetric
solutions free of singularities [35]. With the construction of heterotic cosmic strings in
terms of wrapped M5 branes, it is natural to guess that the M5$_{\parallel}$ tension could provide this
Fayet-Iliopoulos term on the heterotic side. Furthermore, one might wonder whether the
effective heterotic M-theory action (4.7) could be extended to include a tachyon like in the
effective D3-$\bar{D}3$ or D1-D3 descriptions with the tachyon playing the role of the Higgs field.
This seems indeed the case. Similar to the type II D3-$\bar{D}3$ or D1-D3 systems where the
tachyon appears when both branes are close to each other, there are fields Φ in heterotic
M-theory coming from M2 branes stretching between the M5$_{\parallel}$ brane and the hidden M9.
These fields acquire a negative mass squared and hence indeed become tachyonic when
the M5$_{\parallel}$ brane comes close to the M9 [24].

It might also be interesting to study whether viable cosmic strings originating from
wrapped M5-branes may also arise in M-theory compactifications on G_2 manifolds. We
will mention just a few aspects and leave a full investigation to future work. First, in
contrast to the heterotic M-theory case, G_2 compactifications preserving an $N = 1$ super-
symmetry must have zero G-flux and hence possess no warping [41], [42]. The smallness of
the cosmic string tension must therefore arise from a combination of a low (as compared
to the 4-dimensional Planck-scale) fundamental scale $1/\kappa_{11}^{2/9}$ together with the presence of
a 4-cycle of sufficiently small volume. Indeed for special cases [13] a low fundamental scale
$1/\kappa_{11}^{2/9}$ close to the GUT scale has been confirmed. Second, phenomenologically viable G_2
compactifications with non-abelian gauge groups of type A, D or E and charged chiral
matter require the presence of a 3-dimensional locus Q of A, D or E orbifold singularities
on the G_2 manifold. Q itself is smooth but the normal directions to Q have a singularity.
It remains, however, an open problem [43] to construct compact G_2 manifolds with
such singularities. Consequently, the full effective 4-dimensional theory is not known to
date. Anomaly considerations [45] reveal in the case of $A_n = SU(n + 1)$ gauge groups a
7-dimensional interaction term

\[\int_{M^4 \times Q} K \wedge \Omega_5(A) \] \hspace{1cm} (4.21)

with \(K \) the 2-form field strength of a \(U(1) \) gauge field which is part of the normal bundle to \(Q \) and \(\Omega_5(A) \) the Chern-Simons 5-form satisfying \(d\Omega_5(A) = \text{tr} F \wedge F \wedge F \). This term does not lead, in contrast to the heterotic M-theory case with Green-Schwarz anomaly cancelling terms, to a coupling of type (4.20) needed to gauge away the axion and therefore the domain wall instability of the M5 brane cosmic string. The stability of M5 brane wrapped cosmic strings is therefore not clear in M-theory on \(G_2 \) manifolds. One should also add that a viable model of inflation arising from such M-theory compactifications has still to be constructed.

5 End of Inflation

So far we have systematically analyzed which cosmic string candidates pass the tension constraint and the stability criterion. The only candidate left over is a parallel M5\(_\parallel\) brane localized on the hidden boundary. It remains to clarify whether these branes can also be produced towards the end of inflation. Let us therefore now briefly provide some background on the end of heterotic M-theory inflation following [23].

The inflationary phase is driven through non-perturbative interactions between several M5\(_2\) branes distributed along the \(S^1/\mathbb{Z}_2 \) interval. Initially close together, the repulsive interactions between neighboring M5\(_2\) branes drag them towards the boundaries. This characterizes the inflationary phase. The fact that many M5\(_2\) branes are present enhances the Hubble friction and leads to an M-theory realization of the assisted inflation idea [46] with parametrically small slow-roll parameters. As long as the distance between the M5\(_2\) branes stays smaller than the orbifold length \(L \), the resulting potential assumes the required simple exponential form.

This changes at the end of inflation. Here the distances between the M5\(_2\) branes have grown to a size comparable to that of the \(S^1/\mathbb{Z}_2 \) length \(L \) itself and further contributions to the dynamics of the system become equally relevant. These are, a repulsive open M2 instanton force mediated between the two boundary M9’s, gaugino condensation and fluxes. Let us detail this a bit more. The fact that at this stage the repulsive M9-M9 interaction becomes noticeable causes \(L \) to grow. Characteristic for heterotic M-theory, a
growing L implies a growing gauge coupling on the hidden M9. This is a consequence of the theory’s warped flux compactification background [19], [20], [21], [22]. Hence towards the end of inflation the hidden gauge theory becomes strongly coupled which triggers gaugino condensation. As a consequence of gaugino condensation a non-vanishing Neveu-Schwarz H-flux will be induced on the hidden M9. This is due to a specific perfect square structure within the heterotic action which combines gaugino condensation and H-flux [47] (recent discussions can also be found in [48], [49], [50], [51]).

The great importance of these additional contributions to the potential which enter the stage only at the end of inflation – M9-M9 interaction, gaugino condensation and H-flux – lies in the fact that they will stabilize the S^1/Z_2 length (“dilaton”) and the Calabi-Yau volume (see e.g. [48], [49], [50], [51], [52], [53], [54], [55], [56]). Most relevant for us will be the S^1/Z_2 length L. Furthermore, in vacua with positive vacuum energy L will be stabilized close to its critical length L_c which is the length at which the hidden Calabi-Yau volume vanishes classically. This can be achieved either with help of one remaining position-stabilized M5$_Z$ brane in the bulk [26] or by breaking the E_8 gauge symmetry on the hidden boundary [27]13. A stabilization close to L_c is actually necessary to obtain a realistic value for Newton’s Constant and a supersymmetry breaking scale close to the TeV scale [27]. The stabilization of L close to $L_c = 12\kappa_{11}^{2/9}$, say in a regime

$$L_c - \kappa_{11}^{2/9} \leq L \leq L_c$$

(5.1)

has, however, an immediate impact on the cosmic string tensions derived earlier. Let’s focus on the viable M5$_\parallel$ cosmic string where $x_{M5}^{11} = L$ because we have seen that only on the boundary14 can it be freed of its domain wall instability. From (3.18) we see that for $L \to L_c$ these cosmic strings can become nearly tensionless. Such a low tension is only possible through the warp-factor of the background which contributes the $(1-x_{M5}^{11}/L_c)^{2/3}$ suppression factor to (3.18).

Let us conclude this section by stressing the salient feature of this quick review. Namely, we can influence the tension of the M5$_\parallel$ cosmic string by the value at which L will be stabilized at the end of inflation. Realistic stabilizations require a stabilization close to L_c which lowers the cosmic string’s tension considerably.

13The resulting de Sitter vacua have been shown to be stable under higher order R^4 corrections which amount to changes of a small percentage [57].

14Since the tension will be lower on the hidden than on the visible boundary, we take the hidden M9. The fact that an x_{M5}^{11} dependence arises in the tension might not be surprising given that the M5$_\parallel$ brane breaks the $N = 1$ supersymmetry in four dimensions.
6 Production

Earlier we found that $M_{2\perp}$ cosmic strings would violate the observational bound on the cosmic string’s tension. It is therefore satisfying to see that they are not being produced when inflation comes to an end. This is due to the fact that their production would exceed the energy threshold being available at this time which lies certainly below M_{GUT}.

We had further seen that the tension of an $M_{5\parallel}$ brane is small enough so that they can reach cosmic size once they are produced. In this section we will qualitatively describe a mechanism which leads to the production of these heterotic cosmic strings.

The model of inflation of [58] is based on the dynamics of a pair of D3 and anti-D3 branes. Towards the end of inflation the distance between the brane and the anti-brane goes to zero resulting in their annihilation. It has been argued in [30] that this annihilation results in the creation of D1-branes which can reach a cosmic size.

The mechanism leading to cosmic string production in our scenario is rather different and is based on the strongly time dependent background which originates at the end of the inflationary process [59, 60, 61, 62]. The heterotic M-theory inflation model presented in [23] is based on the dynamics of a set of M5$_2$-branes which towards the end of inflation approach the boundaries of the S^1/Z_2 interval. When the M5$_2$-branes hit the boundaries the background becomes strongly time dependent and at this point the inflaton field starts performing rapid coherent oscillations with a Planck sized amplitude. Precisely these oscillations provide the source of energy to pair produce strings of low tension. The production rate for these strings was evaluated in [59, 60] from the physical state constraint for the string states

$$L_0 |\text{physical}\rangle = 0,$$

which was rewritten as a differential equation for a string state $\chi(t)$ who’s oscillation frequency $\omega(t)$ is sourced by the inflaton

$$\ddot{\chi} + \omega(t)\chi = 0.$$

It turns out that the pair produced strings cannot be fundamental strings as their tension would be of the order of the four-dimensional Planck scale, roughly $M_{Pl} \simeq 10^{18}$ GeV, several orders of magnitude above the typical inflaton mass $m_{inf} \simeq 10^{13}$ GeV.

Non-perturbative strings would be the alternative and these are precisely the objects produced at the end of our inflationary process. Indeed, our candidates for cosmic strings
are not fundamental strings but branes wrapped on a four-cycle of the Calabi-Yau manifold. Towards the end of inflation the volume of the four-cycle becomes very small as the Calabi-Yau volume shrinks to very small size, endowing the corresponding strings with a low tension. There is an extensive production of this type of strings (a similar situation for non-perturbative strings obtained by wrapping $D3$ branes on shrinking two-cycles has been discussed in [59] and references therein). A very rough estimate shows that the effective tension of a string obtained by wrapping a brane on a non-trivial cycle has to satisfy

$$\sqrt{\mu_{\text{string}}} \leq \frac{1}{20} M_{Pl},$$

in order to lead to a massive string production. This bound can be easily satisfied for the case of an $M5\parallel$ brane. In this case the effective string tension is given by

$$\mu_{M5\parallel} = \tau_{M5} (1 - \frac{x_{11}}{L_5})^{\frac{2}{3}} V_{\Sigma_4}. \tag{6.4}$$

This expression makes it clear that we can easily satisfy the bound (6.3) by being close enough to the hidden boundary where the warp factor can be made arbitrarily small. As a result tensionless cosmic strings will be produced on the hidden boundary. Even though the tensionless strings are produced on the hidden boundary they still would have an effect on our visible universe since they interact gravitationally. These strings would then represent an interesting new dark matter candidate (for their detection via gravitational lensing see e.g. [63], [64], [65]) next to other potential dark matter residing on the hidden boundary [66]. One final remark on the stability of the pair produced strings is in order.

For the pair produced strings to be observed, it is important that they stay around long enough and do not annihilate shortly after being pair produced. Even though annihilation and decay of strings are still poorly understood one can make several arguments in favor of the stability and observability of the strings being pair produced. One qualitative argument is based on the dimensionality of the string world-sheet and was used many years ago by Brandenberger and Vafa to argue that our world is four-dimensional [67]. We could argue that the odds for an infinitely extended string pair to meet once produced are pretty small, as the world-sheet of a string is two-dimensional and two strings would only collide at an instant. A generalization of this idea, worked out more recently in a paper by Randall and Karch [68], would allow us to exclude the production of higher dimensional branes, as the odds for such branes to meet and annihilate are much higher. It would be interesting to work out the details of this higher order annihilation process more precisely. We hope to report on this and on the production rate calculation of the cosmic string candidate presented in this paper elsewhere.
Acknowledgements

We would like to thank G. Curio, S. Gubser, A. Mazumdar, L. McAllister, G. Moore, R. Myers, L. Randall, T. Vachaspati and A. Vilenkin for helpful discussions and correspondence. We would especially like to thank J. Polchinski for a careful reading of the manuscript and many helpful discussions. Many thanks to the Perimeter Institute for Theoretical Physics, the Aspen Center for Physics, the Physics Department at Harvard University and the Radcliffe Institute for Advanced Studies for hospitality during different stages of this work. The work of K. Becker was supported by NSF grant PHY-0244722, an Alfred Sloan Fellowship, the University of Texas A&M and the Radcliffe Institute for Advanced Study of Harvard University. The work of M. Becker was supported by NSF grant PHY-0354401, an Alfred Sloan Fellowship, the University of Texas A&M and the Radcliffe Institute for Advanced Study of Harvard University. The work of A.K. was supported by the NSF under grant PHY-0354401 and the University of Texas A&M.

References

