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ABSTRACT

We obtain the general solution for non-extremal 3-charge dilatonic rotating black holes in

the U(1)3 gauged five-dimensional N = 2 supergravity coupled to two vector multiplets, in

the case where the two rotation parameters are set equal. These solutions encompass all the

previously-known extremal solutions, and, by setting the three charges equal, the recently-

obtained non-extremal solutions of N = 2 gauged five-dimensional pure supergravity.
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Valuable tests of the AdS/CFT correspondence can be performed by taking charged

black holes with non-zero cosmological constant as gravitational backgrounds [1, 2]. The

black-hole charges play the rôle of R-charges in the dual field theory [3]. Furthermore,

one can gain insight into the phase structure of the strongly-coupled dual field theory by

studying the thermodynamic stability of the black-hole solutions, and the analogue of the

Hawking-Page transition [3, 4, 5]. The first examples of non-extremal charged black holes

in five dimensions, as solutions of a gauged supergravity theory, were obtained in [6]. These,

and some higher-dimensional generalisations obtained in [7], were all non-rotating.

Charged rotating black holes in four dimensional theories with a cosmological constant

were obtained long ago [8], but until recently no analogous five-dimensional charged rotating

solutions were known, except in certain extremal BPS limiting cases [9, 10]. In a recent paper

[11], we constructed general solutions for charged rotating black holes in five-dimensional

gauged N = 2 pure supergravity, in the case where the two angular momenta are taken

to be equal. These non-extremal solutions encompass the extremal solutions of [9, 10] as

special cases. By instead setting the charge to zero, the solutions in [11] reduce to the

rotating five-dimensional Kerr-de Sitter black holes of [12], in the special case where the

two rotation parameters are set equal.

In this letter we extend our previous results, by constructing a general class of non-

extremal charged rotating black hole solutions in the five-dimensional U(1)3 gauged theory

of N = 2 supergravity coupled to two vector multiplets. We obtain the general non-

extremal solutions of this dilatonic theory, with three independent electric charges, subject

to the specialisation that the two angular momenta in the orthogonal 4-space are set equal.

These 3-charge solutions are important for probing fully the microscopic degrees of freedom

associated with the three R-charges in the dual N = 4 CFT on the boundary, without the

loss of information that would be inherent if the three charges were set equal.

Our new 3-charge solutions are generalisations to the gauged theory of the 3-charge

spinning black hole solutions (with two rotation parameters set equal) of the corresponding

five dimensional ungauged supergravity, obtained in [13]. They also, of course, specialise

to our previous results in [11] if one sets the three electric charges equal, under which

circumstance the two dilatonic scalars decouple and become constant.

The bosonic sector of the five-dimensional N = 2 gauged supergravity coupled to two

vector multiplets is described by the Lagrangian
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where ~ϕ = (ϕ1, ϕ2), and
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The gauge-coupling constant g is related to λ by λ = −g2.
The solutions that we have obtained are as follows:

ds25 = −Y − f3

R2
dt2 +

r2R

Y
dr2 +RdΩ2

3 +
f1 −R3

R2
(sin2 θdφ+ cos2 θdψ)2

−2f2
R2

dt (sin2 θdφ+ cos2 θdψ) , (3)

Ai =
µ

r2Hi

(

si ci dt+ ℓ (ci sj sk − si cj ck) (sin
2 θdφ+ cos2 θdψ)

)

, (4)

Xi =
R

r2Hi
, i = 1, 2, 3 (5)

where

R ≡ r2 (

3
∏

i=1

Hi)
1

3 , Hi ≡ 1 +
µ s2i
r2

,

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2 , (6)

and si and ci are shorthand notations for

si ≡ sinh δi , ci ≡ cosh δi , i = 1, 2, 3 . (7)

Note that in the expressions (4) for the vector potentials Ai, the triplet indices (i, j, k) are

all unequal: (i 6= j 6= k 6= i). The functions (f1, f2, f3, Y ) are given by

f1 = R3 + µ ℓ2 r2 + µ2 ℓ2
[
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,
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f3 = γ2 ℓ2 λ2R3 + µ ℓ2 λ
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si ,

Y = f3 − λΣR3 + r4 − µ r2 ,

where

Σ ≡ 1 + γ2 ℓ2 λ . (9)

It is helpful to note that
√−g takes a simple form, namely

√−g = r R sin θ cos θ.

We arrived at the above solution by making conjectures for the expressions for the

metric, vector potentials and dilatonic scalars that reduced to previously-known cases under
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appropriate limits. In particular, we were guided by the results for the ungauged case in

[13], and the results for the non-dilatonic gauged case (i.e. with three equal charges) in

[11]. Verifying that the conjectured configuration solves the equations of motion following

from (1) is then a straightforward mechanical exercise, which is most easily accomplished

with the aid of a computer. (We used Mathematica for this purpose.) There are six free

parameters in the solution, namely (µ, δ1, δ2, δ3, ℓ, γ). The constant µ, together with the

three “non-extremality parameters” δi, characterise the mass and the three electric charges

associated with the three vector potentials Ai. The parameter ℓ characterises the rotation of

the black hole. One can define “physical” mass, charge and angular momentum parameters

M , Qi and J , according to

M = 1

2
µ
∑

i

(s2i + c2i ) ,

Qi = µ si ci , (10)

J = µ ℓ
(

∏

i

ci −
∏

i

si

)

.

The sixth constant, γ, is the analogue of the extra parameter β found in the charged

rotating black holes of the pure N = 2 gauged supergravity theory in [11]. It is in fact a

trivial parameter (see [11], and, for a complete proof of its triviality, [14]). It is nonetheless

useful to retain the redundant parameter γ, since it provides a convenient way to consider

various limits.

In order to make the global structure of the metrics more apparent, it is convenient to

rewrite the metric (3) in terms of left-invariant 1-forms σi on S
3. Defining

σ1 = cos ψ̃ dθ̃ + sin ψ̃ sin θ̃ dφ̃ ,

σ2 = − sin ψ̃ dθ̃ + cos ψ̃ sin θ̃ dφ̃ ,

σ3 = dψ̃ + cos θ̃ dφ̃ , (11)

where

ψ − φ = φ̃ , ψ + φ = ψ̃ , θ = 1

2
θ̃ , (12)

we find that (3) can be rewritten as

ds25 = −RY
f1

dt2 +
r2R

Y
dr2 + 1

4
R (σ21 + σ22) +

f1

4R2
(σ3 −

2f2
f1

dt)2 , (13)

whilst the vector potentials in (4) become

Ai =
µ

r2Hi

(

si ci dt+
1

2
ℓ (ci sj sk − si cj ck)σ3

)

. (14)
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Reductions to Previously-known Solutions

Various limits of our new solutions reduce to previously-known cases. These include

the non-extremal 3-charge spinning black hole solutions of the ungauged theory in [13]

(specialised to the case of equal angular momenta); the non-extremal charged rotating

solutions of the pure N = 2 gauged theory found recently in [11]; the BPS 3-charge rotating

solutions of Klemm and Sabra [15]; and the BPS 3-charge rotating solutions of Gutowski

and Reall [16]. In detail, these various cases arise as follows:

• The ungauged limit (i.e. λ = 0) leads to the special case of the solutions of [13] where

one sets the two angular momenta parameters equal, i.e. ℓ1 = ℓ2 = ℓ. This limit is

obtained from our solution by setting λ = 0, replacing µ by 2m, and by redefining

r2 → r2 + ℓ2.

• The equal-charge limit, i.e. setting δ1 = δ2 = δ3 ≡ δ, reduces to the solution found in

[11]. Note that the parameters β and J in [11] are related to γ and ℓ of the present

paper by

β = γ eδ , J = ℓ e−δ , (15)

while the parameters M and Q in [11] can be read off from (10). The radial variable

in [11] is given by sending (r2 + µ sinh2 δ) → r2.

• The Klemm-Sabra solution [15], which has closed timelike curves, is a BPS limit of

our solution, obtained by taking

µ→ 0 , δi → −∞ ,

Qi =
1

4
µ e−2δi , ℓ = α

√
µ , (16)

where the three charges Qi and the constant α are kept finite and non-zero. The black

hole mass and angular momentum, defined in (10), are then given by

M = −(Q1 +Q2 +Q3) , J = 2α
√

Q1Q2Q3 . (17)

Note that since ℓ → 0 and the γ parameter appears only in a product with ℓ, the

solution does not depend on γ.

• The Gutowski-Reall solution [16] is a regular BPS limit of our solution, obtained by

taking

µ→ 0 , δi → +∞ , (18)

Qi =
1

4
µ e2δi , γ =

√
µ , ℓ =

1√−λµ ,
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where the charges Qi are kept finite and non-zero. Note that γ goes to zero, while ℓ

goes to infinity, when the limit is taken. (The solution remains finite, however.) The

black hole mass and the angular momentum, following from (10), are:

M = +(Q1 +Q2 +Q3) , J =
Q1Q2 +Q1Q3 +Q2Q3

2
√
−λ√Q1Q2Q3

. (19)

Further Remarks

The metric (13) has horizons at values of the radial coordinate where RY f−1

1
vanishes.

In order to avoid naked singularities, the outer horizon at r = rH should lie outside the

curvature singularity at R = 0, and thus we require that it occur at the largest positive

root of Y (rH) = 0. In order to avoid having closed timelike curves (CTCs), f1 should be

positive for all r > rH . A detailed analysis of the restrictions on the parameters in order to

obtain solutions free of naked singularities or closed CTCs is quite involved, and we shall

not present it here. It is analogous to the one given in [11] for the case where all three

charges are equal. Clearly, there exist appropriate ranges of the parameters for which such

“regular” black holes arise.

On the horizon, the Killing vector

l =
∂

∂t
− 2f2(rH)

f1(rH)

∂

∂ψ̃
(20)

becomes null, and thus r = rH corresponds to a Killing horizon. The surface gravity κ,

which is constant over the horizon, can be calculated from

κ2 = (∂µK) (∂µK)
∣

∣

∣

r=rH
, (21)

where K =
√

−lµ lµ, implying that

κ =
∣

∣

∣

Y ′(rH)

4r2H f1(rH)

∣

∣

∣
. (22)

The area of the Killing horizon is given by

A = 2π2
√

f1(rH) . (23)

The Hawking temperature and entropy are therefore given by

T =
∣

∣

∣

Y ′(rH)

8π r2H f1(rH)

∣

∣

∣
, S = 1

2
π2

√

f1(rH) . (24)
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