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Dynamical theory of single photon transport in a one-dimensional waveguide coupled
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We develop a general dynamical theory for studying a single photon transport in a one-dimensional
(1D) waveguide coupled to multiple emitters which can be either identical or non-identical. In this
theory, both the effects of the waveguide and non-waveguide vacuum modes are included. This
theory enables us to investigate the propagation of an emitter excitation or an arbitrary single
photon pulse along an array of emitters coupled to a 1D waveguide. The dipole-dipole interaction
induced by the non-waveguide modes, which is usually neglected in the literatures, can significantly
modify the dynamics of the emitter system as well as the characteristics of output field if the emitter
separation is much smaller than the resonance wavelength. Non-identical emitters can also strongly
couple to each other if their energy difference is smaller than or of the order of the dipole-dipole
energy shift. Interestingly, if their energy difference is close but non-zero, a very narrow transparency
window around the resonance frequency can appear which does not occur for identical emitters. This
phenomenon may find important applications in quantum waveguide devices such as optical switch
and ultra narrow single photon frequency comb generator.

PACS numbers: 42.50.Nn, 42.50.Ct, 32.70.Jz

I. INTRODUCTION

Photonic structure with reduced dimensions, such
as 1D photonic waveguide, can not only enhance the
photon-emitter interaction but also guide the photons,
which may find important applications in quantum de-
vices and quantum information [1, 2]. A number of sys-
tems can be treated as a 1D waveguide such as opti-
cal nanofibers [3], photonic crystal with line defects [4],
surface plasmon nanowire [5], and superconducting mi-
crowave transmission lines [6–10]. These 1D systems are
also excellent platforms for studying many-body physics
since the interaction between the emitters induced by the
waveguide modes can be long-range [11]. Strong photon-
photon interaction may be also achieved in these systems
[12–16]. In analogy with “cavity quantum eletrodynam-
ics (QED)”, this system is usually termed as “waveguide
QED” [17].

The stationary results of the photon transport in
a waveguide-QED system, including a single photon
or multiple photons interacting with a single emit-
ter or multiple emitters, have been extensively studied
based on the Bethe-ansatz approach [18–23], Lippmann-
Schwinger scattering theory [24, 25], input-output the-
ory [26–28], Lehmann-Symanzik-Zimmermann reduction
approach [29], and the diagrammatic method [30]. In
addition, dynamical theories, which allow to study the
real time evolution of the emitter excitations and photon
pulse, have also been studied [31–35]. Many applications
of the waveguide-QED system have been proposed such
as highly reflecting mirrors [36, 37], single-photon diode
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[38, 39], efficient single-photon frequency converter [40–
43], single-photon transistor [44–47], photonic quantum
gate [49–51], and single photon frequency comb generator
[52].

In the previous calculations [17–35], the effect of the
non-waveguide vacuum modes is included by simply
adding a phenomenological decay factor in the Hamil-
tonian. This approximation is valid when the emitter
separation is of the order of or larger than the resonant
wavelength. However, it was recently shown that cold
atoms can be trapped around a 1D waveguide even in the
subwavelength region [53–55]. Quantum dots array with
subwavelength separation can be also engineered [56]. If
the emitter separation is much smaller than the reso-
nance wavelength, the emitter dipole-dipole interaction
induced by the non-waveguide vacuum modes cannot be
neglected [57–60]. In addition, the emitters may have
different transition frequencies due to the inhomogeneous
local fields or nonuniform impurities [61], which is seldom
considered in this system.

In this paper, going beyond earlier works, we develop
a dynamical theory for single photon transport in a 1D
waveguide-QED system where the emitters can be ei-
ther identical or nonidentical and both the effects of the
waveguide and the non-waveguide vacuum modes are in-
cluded. When the emitter separation is much smaller
than the resonant wavelength, the emitter dynamics and
emission spectra can be significantly modified by the
dipole-dipole interaction induced by the non-waveguide
vacuum modes. From the modifications of the reflec-
tion and transmission spectra, we can clearly compare
the results with and without the dipole-dipole interac-
tion induced by the non-waveguide vacuum modes. We
find that the dipole-dipole interaction induced by the
non-waveguide vacuum modes can induce photon trans-
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FIG. 1: (Color online) Single photon transport in a 1D waveg-
uide coupled to multiple identical or non-identical emitters.
The emitters can couple to each other via the waveguide and
non-waveguide photon modes. Black solid curve: incident
field; Red dotted curve: reflected field; Blue dashed curve:
transmitted field.

parency in the waveguide system. In addition, we also
show that emitters with different transition frequencies
can also significantly couple to each other and induce
remarkable coherence effects. From the emission spec-
tra we can quantify the effects of the dipole-dipole in-
teraction between emitters with different transition fre-
quencies, and we show the transition from coupled emit-
ters to independent emitters as their energy difference
increases. Interestingly, when the energy difference be-
tween the emitters is close but nonzero, a very narrow
transparency window can occur around the resonance fre-
quency. Similar effect has been studied in an ensemble
of atoms based on semiclassical and mean-field theory
and it is named as “dipole-dipole induced eletromagnetic
transparency (DIET)” [62]. Here, we provide an ab ini-
tio calculations for the DIET and this phenomenon may
be easier to experimentally observe in our system. Our
theory here may provide an important tool for studying
many-body physics and designing new waveguide-based
quantum devices.

This paper is organized as follows. In Sec. II, we derive
dynamical equations for a single photon transport in a 1D
waveguide coupled to identical or non-identical emitters
including the effects of the non-waveguide photon modes.
We also derive the reflection and transmission photon
spectra of this system. In Sec. III, we compare the results
with and without including the dipole-dipole interaction
induced by the non-waveguide photon modes in the cases
that one emitter is initially excited or one single photon
pulse is incident. By calculating the emission spectrum
difference, we quantify the effects of the dipole-dipole
interaction induced by the non-waveguide photon modes.
In Sec. IV, we study the photon transport in the case
of non-identical emitters where we show that DIET can
occur in this system. We also show the transition from
coupled emitters to independent emitters by increasing
the emitter energy difference. In Sec. V, we study the
results beyond the two-emitter system where we show
that very narrow single photon frequency combs can be
generated. Finally, we summarize our results.

II. MODEL AND THEORY

A. Emitter excitation dynamics

We consider a single photon transport in a 1D waveg-
uide coupled to multiple quantum emitters which may
have different transition frequencies (Fig. 1). The emit-
ters can interact with the waveguide and non-waveguide
photon modes. The interaction Hamiltonian in the ro-
tating wave approximation is given by [63]

H = ~

Na
∑

j=1

∑

k

(gjke
ikzjσ+

j ake
−iδωj

k
t +H.c.)

+ ~

Na
∑

j=1

∑

~qλ

(gj~qλe
i~q·~rja~qλσ

+
j e

−iδωj

~qλ
t
+H.c.) (1)

where the first term is the coupling between the quantum
emitters and the waveguide photon modes, and the sec-
ond term is the coupling between the quantum emitters
and the non-waveguide photon modes. Here, Na is the
number of quantum emitters, δωj

k = ωk − ωj (δω~qλ =
ω~qλ − ωj) is the detuning between the transition fre-
quency of the jth emitter ωj and the frequency ωk (ω~qλ)
of the guided photon with wavevector k (non-waveguide
photon modes with polarization λ and wavevector ~q).
If ωj is far away from the cutoff frequency of the pho-
tonic waveguide and the waveguide photon has a narrow
bandwith, we can linearize the waveguide photon dis-
persion relation as δωj

k = (|k| − kj)vg where kj is the
wave vector at frequency ωj and vg is the group ve-
locity [64]. σ+

j = |e〉j〈g|(σ−
j = |g〉j〈e|) is the raising

(lowering) operator of the jth emitter with position rj
(zj is its z component along the waveguide direction).

a†k(a
−
k ) and a

†
λ,~q(a

−
λ,~q) are the creation (annihilation) op-

erators of a guided photon and a non-guided photon.

gjk = ~µj · ~Ek(~rj)/~ is the coupling strength between the
jth emitters and the guided photon modes with ~µj being
the transition dipole moment of the jth emitter and ~

being the Planck constant, and gjλ,~q = ~µj · ~Eλ,~q(~rj)/~ is
the coupling strength between the jth quantum emitter
and the non-guided photon modes.
For a single photon excitation, the quantum state of

the system at an arbitrary time can be expressed as

|Ψ(t)〉 =
Na
∑

j=1

αj(t)|ej , 0k, 0~qλ〉+
∑

k

βk(t)|g, 1k, 0~qλ〉

+
∑

~qλ

γ~qλ(t)|g, 0k, 1~qλ〉 (2)

where |ej, 0k, 0λ,~q〉 is the state in which only the jth emit-
ter is excited with zero waveguide and non-waveguide
photons, |g, 1k, 0λ,~q〉 is the state in which all the emitters
are in the ground state and one waveguide photon is gen-
erated with zero non-waveguide photon, and |g, 0k, 1~qλ〉
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is the state where all the emitters are in the ground state
and one non-waveguide photon is generated with zero
photon being in the waveguide. αj(t), βk(t), and γ~qλ(t)
are the corresponding amplitudes at time t.

From the Schrödinger equation i~∂t|Ψ(t)〉 = H |Ψ(t)〉
with Hamiltonian given by Eq. (1) and the quantum
state given by Eq. (2), we obtain the following dynamical
equations for the probability amplitudes

iα̇j(t) =
∑

k

gjke
ikzj−iδωj

k
tβk(t) +

∑

~qλ

gj~qλe
i~q·~rj−iδωj

~qλ
t
γ~qλ(t),

(3)

iβ̇k(t) =

Na
∑

j=1

gj∗k e
−ikzjeiδω

j
k
tαj(t), (4)

iγ̇~qλ(t) =

Na
∑

j=1

gj∗~qλe
−i~q·~rje

iδωj

~qλ
t
αj(t). (5)

Integrating Eqs. (4) and (5), we obtain the formal solu-
tions of the photon amplitudes which are given by

βk(t) = βk(0)− i

Na
∑

j=1

gj∗k e
−ikzj

∫ t

0

αj(t
′)eiδω

j

k
t′dt′, (6)

γ~qλ(t) = γ~qλ(0)− i

Na
∑

j=1

gj∗~qλe
−i~q·~rj

∫ t

0

αj(t
′)e

iδωj

~qλ
t′
dt′,

(7)

where βk(0) is the initial guided photon amplitude, and
γ~qλ(0) is the initial non-guided photon amplitude. In
this paper, we assume that there is no photon in the
non-waveguide photon modes initially, i.e., γ~qλ(0) = 0.
Inserting Eqs. (6) and (7) into Eq. (3), we obtain

α̇j(t) = −i
∑

k

gjke
ikzje−iδωj

k
tβk(0)

−
Na
∑

l=1

∑

k

gjkg
l∗
k e

ik(zj−zl)

∫ t

0

dt′αl(t
′)eiδω

l
kt

′

e−iδωj
k
t

−
Na
∑

l=1

∑

~q,λ

gj~qλg
l∗
~qλe

i~q·(~rj−~rl)

∫ t

0

dt′αl(t
′)eiδω

l
~qλ

t′e
−iδωj

~qλ
t
,

(8)

where the first term is the excitation by the incident
waveguide photon, the second and the third terms are
the coupling between the emitters induced by the waveg-
uide vacuum modes and non-waveguide vacuum modes,
respectively.

By summing over the second and third terms of Eq.
(8) using the Weisskopf-Wigner approximation, we can
obtain closed dynamical evolution equations of the emit-

ters given by (see Appendix)

α̇j(t) = bj(t)−
Na
∑

l=1

[V
(w)
jl eiklzjlαl(t−

zjl
vg

)

+ V
(nw)
jl eiklrjlαl(t−

rjl
vg

)]ei∆ωjlt, (9)

with j = 1, · · · , Na. In Eq. (9),

bj(t) =
−i
2π

√

ΓjvgL

2
eikazjei∆kjvgt

∫ ∞

−∞

β0(δk)e
iδk(rj−vgt)dδk

(10)

is the incident photon excitation, V
(w)
jj = Γj/2 with

Γj = 2L|gjka
|2/vg the decay rate of the jth emitter

due to the waveguide vacuum modes (L is the quanti-

zation length of the waveguide, ) and V
(nw)
jj = γj/2 with

γj = k3jµ
2
j/3π~ǫ0V the spontaneous decay rate of the jth

emitter due to the non-waveguide vacuum modes (ǫ0 is
vacuum permittivity and V is the quantization volume).

For j 6= l, V
(w)
jl =

√

ΓjΓl/2 is the dipole-dipole cou-
pling strength due to the waveguide vacuum modes with
zjl = |zj − zl| and

V
(nw)
jl =

3
√
γjγl

4
[
−i
karjl

+
1

(karjl)2
+

i

(karjl)3
] (11)

is the dipole-dipole interaction due to the non-waveguide
photon modes with rjl = |~rj − ~rl| where we assume the
emitter dipole moment is perpendicular to the emitter
chain. ∆kj = kj − ka where ka can be chosen as the

average emitter wavevector. The term ei∆ωjl
a t is due to

the energy difference between the jth and lth emitters
with ∆ωjl = (kj − kl)vg. If the emitters have the same
transition frequencies, the equation describes the case for
identical emitters. Using Eq. (9) and the given initial
conditions, we can calculate the real-time evolution of
the emitter system with arbitrary configurations.

B. Emission spectra

In addition to the emitter excitation, we can also cal-
culate the emission photon spectrum. The waveguide
photon spectrum at arbitrary time can be also calculated
by Eq. (6) after obtaining the emitter excitation αj(t).
For simplicity, we assume Γj = Γ and γj = γ in the
following calculations. Particularly, long time after the
interaction, i.e., t → ∞, the reflection and transmission
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waveguide photon spectra are given by

βR(δk) = −i
√

Γvg
2L

Na
∑

j=1

eikzj
∫ ∞

0

αj(t
′)ei(δk−∆kj)vgt

′

dt′,

(12)

βT (δk) = β0(δk)

− i

√

Γvg
2L

Na
∑

j=1

e−ikzj

∫ ∞

0

αj(t
′)ei(δk−∆kj)vgt

′

dt′,

(13)

where k = ka + δk.
We can perform the Fourier transformation and define

χj(δk) =

∫ ∞

−∞

αj(t)Θ(t)eiδkvgtdt (14)

where Θ(t) is the unit step function with Θ(t) = 1 for
t ≥ 0 and Θ(t) = 0 for t < 0. The photon spectra shown
in Eqs. (12) and (13) can then be rewritten as

βR(δk) = −i
√

Γvg
2L

Na
∑

j=1

eikzjχj(δk −∆kj), (15)

βT (δk) = β0(δk)− i

√

Γvg
2L

Na
∑

j=1

e−ikzjχj(δk −∆kj).

(16)

Therefore, to calculate the photon spectrum we need
to first calculate χj(δk). For this purpose, we perform
the inverse Fourier transformation

αj(t)Θ(t) =
vg
2π

∫ ∞

−∞

χj(δk)e
−iδkvg tdδk. (17)

Next, using the relation d/dt[αj(t)Θ(t)] = α̇j(t)Θ(t) +
αj(0)δ(t), we obtain a set of linear equations for χj(δk)
from Eq. (9) which are given by

− i(δk −∆kj)vgχj(δk −∆kj)

= Aj(δk −∆kj)−
Na
∑

l=1

Vjle
ikzjlχl(δk −∆kl). (18)

Here, for simplicity, we assumed that the emitters are
all aligned with the waveguide and we have rjl = zjl and

Vjl = V
(w)
jl +V

(nw)
jl . In Eq. (18), Aj(δk) = αj(0)+bj(δk)

where αj(0) is the initial excitation of the jth emitter,
and

bj(δk) = −i
√

ΓL

2vg
β0(δk +∆kj)e

i(kj+δk)zj (19)

is the initial waveguide photon spectrum.
The solution of Eq. (18) can be calculated as

χj(δk −∆kj) =

Na
∑

l=1

[M(δk)]−1
jl Al(δk −∆kl) (20)

where M(δk) is an Na ×Na matrix with matrix element
given by

[M(δk)]pq = Vpqe
ikzpq − i(δk −∆kp)vgδpq. (21)

From Eqs. (15), (16), and (20), we can calculate the
reflection and the transmission spectra. For the case with
one emitter excitation but without incident photons, we
have the photon spectra to the left (“-”) and to the right
(“+”) given by

β±(δk) = −i
√

Γvg
2L

Na
∑

j,l=1

αl(0)[M(δk)]−1
jl e

∓ikzj . (22)

For a single incident photon pulse without any initial
emitter excitation, we have the reflection and transmis-
sion spectra given by

βR(δk) = −Γ

2
β0(δk)

Na
∑

j,l=1

[M(δk)]−1
jl e

ik(zj+zl), (23)

βT (δk) = β0(δk)
{

1− Γ

2

Na
∑

j,l=1

[Mj(δk)]
−1
jl e

ik(zl−zj)
}

.

(24)

For a single emitter case, it is readily obtained from
Eq. (20) that

χ1(δk) =
α1(0) + b1(δk)

V11 − iδkvg
(25)

where V11 = (Γ + γ)/2. When the emitter is initially
excited and there is no input photon, i.e., α1(0) = 1
and b1(δk) = 0, the spontaneous emission spectrum has
the usual Lorentzian line shape. For a single photon in-
put with the emitter being initially in the ground state,
i.e., αl(0) = 0 and b1(δk) 6= 0, the emission spectrum
is a Lorentzian function modulated by the input photon
spectrum.
In the following sections, we first study the effects of

dipole-dipole interaction induced by the non-waveguide
vacuummodes with two-emitter example. Then we study
the effects of non-identical emitters with two-emitter ex-
ample. Finally we study the case beyond two-emitter
system.

III. EFFECTS OF DIPOLE-DIPOLE

INTERACTION INDUCED BY THE

NON-WAVEGUIDE VACUUM MODES

In this section, we consider the emitters to be identical
and compare the results with and without including the
dipole-dipole interaction induced by the non-waveguide
vacuum mode. For identical emitters, we have kj = ka
for all emitters.
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FIG. 2: (Color online) (a, c) Emitter excitation dynamics as a function of time. (b, d) Emission photon spectra. Emitter 1 is
initially excited and there is no incident photon. α1(0) = 1, α2(0) = b1,2(δk) = 0, γ = 0.2Γ. (a, b) a = 0.5λ. (c, d) a = 0.05λ.

Dotted lines are the results without V
(nw)
12 , and the solid curves are the results with V

(nw)
12 .

For a two-emitter system, the evolution of the emitters
is given by

α̇1(t) = b1(t)− V11α1(t)− V12e
ikaz12α2(t−

z12
vg

), (26)

α̇2(t) = b2(t)− V22α2(t)− V21e
ikaz12α2(t−

z12
vg

), (27)

where V11 = V22 = (Γ+ γ)/2, V12 = V21 = V
(w)
12 +V

(nw)
12 ,

and b1,2(t) are given by Eq. (10). Due to the dipole-
dipole coupling, the one excitation subspace is split into
two eigenstates (|+〉 = (|eg〉+|ge〉)/

√
2 and |−〉 = (|eg〉−

|ge〉)/
√
2) with the energy shifts given by ±Im[V12e

ikaz12 ]
and the decay rates given by V11 ± Re[V12e

ikar12 ]. The
M(δk) matrix for calculating the emission spectra are
given by

M(δk) =

[

V11 − iδkvg V12e
ikaz12

V21e
ikaz12 V22 − iδkvg

]

. (28)

A. Emitter excitation propagation

In this subsection, we consider the propagation of emit-
ter excitation without incident photon pulse. We assume
that the emitter on the left is initially in the excited state
while the emitter on the right is initially in the ground
state, α1(0) = 1, α2(0) = b1,2(δk) = 0. In this case, the
photon emission spectra to the left and to the right are
given by

β−(δk) = −i
√

Γvg
2L

eikz1
V11 − iδkvg − V12e

2ikz12

(V11 − iδkvg)2 − V 2
12e

2ikz12
,

(29)

β+(δk) = −i
√

Γvg
2L

e−ikz1
V11 − iδkvg − V12

(V11 − iδkvg)2 − V 2
12e

2ikz12
,

(30)

where k = ka + δk.
We compare the emitter dynamics and the emission

spectra in the cases with and without including the
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dipole-dipole interaction induced by the non-waveguide

vacuum modes (V
(nw)
dd ). Here we study the cases of

two emitter separations, i.e., a = 0.5λ and a = 0.05λ.
The emitter excitations and the emission spectra when
a = 0.5λ and γ = 0.2Γ are shown in Fig. 2(a) and 2(b),

respectively. In this case, Vii = 0.6Γ, V
(w)
12 = 0.5Γ, and

V
(nw)
12 = 0.015Γ − 0.043Γi. Without including V

(nw)
12 ,

Im(V12e
ikar12) = 0 which gives zero energy shifts for the

two eigenstates. The two decay rates are given by 1.1Γ
and 0.1Γ corresponding to a superradiant and a subra-

diant state, respectively. With V
(nw)
12 , the energy shifts

are given by ±0.043Γ and the decay rates are given by
1.115Γ and 0.085Γ. The difference between the cases
with and without V

(nw)
12 is very small. Indeed, from

Fig. 2(a) and 2(b), we see that both the emitter ex-
citations and the photon spectra are almost the same
with (solid curves) and without (dotted curves) includ-

ing V
(nw)
12 . The spectra in two directions are the same

and they have Lorentzian line shapes. Hence, when the
emitter separation is relatively large, we can safely ne-

glect the effect of V
(nw)
12 [34].

However, when the emitter separation is very small
compared with the resonant wavelength, the results are
quite different. The emitter excitations and the photon
spectra when a = 0.05λ with γ = 0.2Γ are shown in
Fig. 2(c) and 2(d), respectively. In this case, Vii = 0.6Γ,

V
(w)
12 = 0.5Γ, and V

(nw)
12 = 1.52Γ + 4.36Γi. Without in-

cluding V
(nw)
12 the energy shifts are ±0.15Γ and the decay

rates are given by 1.08Γ and 0.12Γ. With V
(nw)
12 , the en-

ergy shifts are ±4.77Γ and the decay rates are given by

1.17Γ and 0.03Γ. There are large differences due to V
(nw)
12

which can also be seen from Fig. 2(c) and 2(d). With-

out including V
(nw)
12 , the emitter excitation dynamics are

similar to the case when a = 0.5λ. However, with the

effect of V
(nw)
12 the two emitters exchange energy many

times until they have the same excitation probability and
then decay slowly to the ground state. Since the decay

rate of the subradiant eigenstate with V
(nw)
12 (0.03Γ) is

smaller than that without V
(nw)
12 (0.12Γ), the emitter ex-

citations last much longer with V
(nw)
12 than those without

V
(nw)
12 . The spectra are also quite different. Without in-

cluding V nw
12 , the emission spectra are peaked close to

the resonance frequency with Fano-like line shapes [65].
With V nw

12 , the emission spectra are far away from the
resonance frequency. The spectra of the left-moving and
the right-moving fields are almost the same with one
superadiant peak and one subradiant peak. Therefore,

V
(nw)
12 can be a crucial factor to determine the charac-

teristics of the waveguide system if the emission to the
non-waveguide modes (γ) is not too small and the emit-
ter separation is much smaller than the resonance wave-
length.

B. Single photon transport

Next, we consider the case when both emitters are ini-
tially in the ground state and there is a single incident
photon pulse. The emitter dynamics are given by Eqs.
(26) and (27). The reflection and transmission photon
spectra are given by

βR(δk) = −Γ

2
e2ikz1β0(δk)

× (V11 − iδkvg)(1 + e2ikz12 )− 2V12e
2ikz12

(V11 − iδkvg)2 − V 2
12e

2ikz12
, (31)

βT (δk) = β0(δk)
[

1− Γ

2

2(V11 − iδkvg)− V12(1 + e2ikz12 )

(V11 − iδkvg)2 − V 2
12e

2ikz12

]

,

(32)

where k = ka + δk. If the waveguide is so good that
the non-waveguide modes are inhibited (i.e., γ = 0), we
have Vii = Vij = Γ/2 with i, j = 1, 2. In this case, it is
not difficult to see that for resonance frequency we have
βR(0) = −e2ikz1β0(δk) and βT (0) = 0. Thus, without
non-waveguide vacuum modes, the resonance frequency
is completely reflected with a π phase shift [34].
For illustration with the numerical examples, we as-

sume that the photon pulse has a Gaussian shape with
spectrum given by

β0(δk) =
(8π)1/4√
∆0L

e
− δk2

∆2
0 , (33)

where ∆0 is the width in the k space with the
full width at half maximum of the spectrum being√
2 ln 2∆0vg. The single photon condition requires that

(L/2π)
∫∞

−∞
|β0(δk)|2dδk = 1. With this Gaussian pho-

ton pulse, we have

bj(t) = −i(8π)−1/4
√

Γ∆0vge
ik0zje−

1

4
∆2

0
(zj−vgt)

2

(34)

in Eq. (9). The emitter excitation as a function of time
when a = 0.05λ, γ = 0.2Γ is shown in Fig. 3(a) where
we assume that ∆0 = 10Γ. The two dotted curves are

the two-emitter excitations without including V
(nw)
12 and

the two solid curves are those with V
(nw)
12 . We can see

that without V
(nw)
12 the two emitters are first exited and

then deexcited with almost the same excitation dynam-

ics. However, with V
(nw)
12 the excitations of the two emit-

ters can oscillate coherently after being excited by the
photon pulse due to the strong dipole-dipole interaction
between the two emitters. The emission spectra with

and without V
(nw)
12 are also quite different as shown in

Fig. 3(b). In the figure, the two dotted curves are the

reflection and transmission spectra without V
(nw)
12 while

the solid curves are those with V
(nw)
12 . Without V

(nw)
12 ,

the resonant frequency is significantly reflected with neg-

ligible transmission. However, with V
(nw)
12 , the resonant

frequency can almost transmit with two reflection peaks
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FIG. 3: (Color online) (a) Emitter excitation probabilities as a function of time excited by an incident photon pulse with (solid

lines) and without (dotted lines) V
(nw)
12 . (b) Emission photon spectra with and without V

(nw)
12 . The green dahsed-dotted lines

are the incident photon spectrum, the solid curves are the results with V
(nw)
12 , and the dotted curves are the results without

V
(nw)
12 . Parameter: α1(0) = α2(0) = 0, γ = 0.2Γ,∆0vg = 10Γ, z1 = 10/Γ, and a = 0.05λ.

far away from the resonant frequency. This is the phe-
nomenon of dipole-dipole induced electromagnetic trans-
parency (DIET). Compared to the usual eletromagnetic
induced transparency (EIT) where the transparency is
caused by a strong pumping field [66], here the trans-
parency is induced by the strong dipole-dipole interaction
between the emitters. The strong dipole-dipole interac-
tion can significantly shift the eigenenergy of the system
and therefore the resonance frequency can be transmit-
ted. This phenomenon may be used as optical switch
[44–46]. By controlling the emitter separation, we can
control the dipole-dipole interaction between the emit-
ters to control the transmission of the photons. However,
in practice it is not easy to tune the emitter separation.
In Sec. IV (A), we show that DIET can be achieved
by simply tuning the emitter transition frequency which
should be more convenient. The reflection occurs at the
frequencies far away from the resonant frequency with
one peak being superradiant peak while the other being
subradiant peak similar to Fig. 2(d). This example again
shows that for small emitter separation the dipole-dipole
interaction induced by the non-waveguide vacuum modes
can play a non-trivial role if γ is not too small compared
with Γ.

C. Spectrum difference with and without V
(nw)
dd

In the last two subsections, we have seen that the
dipole-dipole interaction induced by the non-guide vac-
uum modes can significantly affect the emitter dynamics
and emission spectra when the emitter separation is much
smaller than the resonance wavelength. To further quan-
tify the effects of the dipole-dipole interaction induced by
the non-guide vacuum modes, we define the normalized
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FIG. 4: (Color online) The normalized spectrum difference

between the cases with and without V
(nw)
dd for different emit-

ter separations. The curve with cross symbol is the result
when γ = 0.1Γ, and the curve with circle symbol is the result
when γ = 0.5Γ.

spectrum difference with and without V
(nw)
dd as

∆SD =
1

2

{

∑

k |I1R(k)− I2R(k)|
∑

k[I
1
R(k) + I2R(k)]

+

∑

k |I1T (k)− I2T (k)|
∑

k[2− I1T (k)− I2T (k)]

}

(35)
where I1R(k) (I

1
T (k)) is the reflection (transmission) spec-

trum with V
(nw)
dd and I2R(k) (I2T (k)) is the reflection

(transmission) spectrum without V
(nw)
dd . Since the back-

ground transmission is 1, in the second term of Eq. (35)

the quantity 1−I1,2T (k) is used instead of I1,2T (k) to avoid
divergence in the numerator. If the emission spectra with
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and without V
(nw)
dd are completely identical, ∆SD = 0.

On the contrary, if the emission spectra with and with-

out V
(nw)
dd are completely different (i.e., have no any over-

laps), ∆SD = 1. Therefore, the quantity shown in Eq.
(35) is a good measure of spectrum difference with and

without V
(nw)
dd .

In Fig. 4, we plot the spectrum difference for differ-
ent emitter separations with two different γ (γ = 0.1Γ
and γ = 0.5Γ). When the emitter separation r12 ap-
proaches zero, the spectrum difference ∆SD approaches

1 which means that the spectra with and without V
(nw)
dd

for small emitter separation are almost completely differ-
ent. When the emitter separation r12 is of the order of
or larger than the resonant wavelength, ∆SD is close to
zero which indicates that the spectra with and without

V
(nw)
dd for large emitter separation are almost the same.

These observations are consistent with the results shown
in previous sections.
For γ = 0.1Γ, the spectrum difference is 0.5 when

r12 ≃ 0.05λ. For γ = 0.5Γ, the spectrum difference is
0.5 when r12 ≃ 0.08λ. For both cases, the spectrum dif-

ference is 0.5 when |V (nw)
dd | ≈ 2Γ. When |V (nw)

dd | ≈ 0.2Γ,
i.e., r12 ≃ 0.1λ for γ = 0.1Γ and r12 ≃ 0.3λ for γ = 0.5Γ,
the spectrum difference is about 10%. Therefore, when

|V (nw)
dd | < 0.2Γ, we can safely neglect the effect of V

(nw)
dd .

Otherwise, the effect of V
(nw)
dd should be taken into ac-

count.

IV. NON-IDENTICAL EMITTERS

In this section, we consider two-emitter case to illus-
trate the effects of non-identical emitters. For this pur-
pose, we let their transition frequencies be not the same,
i.e., ωj

a 6= ωl
a or kj 6= kl if j 6= l.

For a two-emitter system, the excitation dynamics of
the emitters are given by

α̇1(t) = b1(t)− V11α1(t)− V12e
ikar12ei∆ω12tα2(t−

z12
vg

),

(36)

α̇2(t) = b2(t)− V22α2(t)− V21e
ikar12ei∆ω21tα2(t−

z12
vg

),

(37)

where ∆ωij = ωi − ωj with i, j = 1, 2. The coupling
matrix between these two single-emitter excited states
reads

V (t) =

[

V11 V12e
ikaz12ei∆ω12t

V12e
ikaz12e−i∆ω12t V22

]

, (38)

which is time-dependent. It is seen that the coupling be-
tween the two emitters is modulated by the energy differ-
ence between these two emitters. When ∆ω12 = 0, it re-
duces to the case of identical emitters. When ∆ω12 = ∞,
the rapid oscillations can erase the off-diagonal terms in
Eq. (39) and thus eliminate the coupling between the
two emitters. The instantaneous single-emitter excited
eigenstates are |ψ±(t)〉 = |eg〉 ± e−i∆ω12t|ge〉 and their
corresponding eigenvalues are E± = V11±V12eikar12 . Al-
though the eigenvalues are the same as those with iden-
tical emitters, the eigenstates here are time-dependent
which are quite different from those with identical emit-
ters. Due to the time modulation factor, the two states
|ψ+〉 state and |ψ−〉 can interchange to each other as time
evolves.

For the two-emitter system, M(δk) in Eqs. (23) and
(24) is given by

M(δk) =

[

V11 − i(δk −∆k1)vg V12e
ikz12

V21e
ikz12 V22 − i(δk −∆k2)vg

]

(39)
For a single incident photon pulse, we obtain the reflec-
tion and transmission photon spectra given by

βR(δk) =
Γ

2
e2ikr1β0(δk)

2M12(δk)e
ikz12 −M11(δk)e

2ikz12 −M22(δk)

M11(δk)M22(δk)−M2
12(δk)

, (40)

βT (δk) = β0(δk)
{

1− Γ

2

M11(δk) +M22(δk)− 2M12(δk)cos(kz12)

M11(δk)M22(δk)−M2
12(δk)

}

, (41)

It is seen that βR(δk) and βT (δk) depends on β0(δk) but not other frequency components. Therefore, no fre-
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FIG. 5: (Color online) (a-c) Emitter excitation probabilities as a function of time for different emitter energy gaps with single
Gaussian photon pulse input. The red solid line is the excitation for emitter 1, and the blue dotted line is the excitation for
emitter 2. (d-f) Emission spectra for different emitter energy gaps. The green dahsed-dotted line is the input photon spectrum,
the red and blue solid lines are the reflection and transmission photon spectra of the two-emitter system, the black and gray
dotted lines are the reflection spectrum of independent emitter case. Parameters: ∆0vg = Γ, γ = 0. z1 = 20/∆0, z12 = 0.5λ.
(a, d) ∆ω12 = 0. (b, e) ∆ω12 = 0.2Γ. (c, f) ∆ω12 = 2Γ.

quency conversion can occur here.

A. Without non-waveguide modes

In this subsection, we first consider the case with-
out non-waveguide modes, i.e., γ = 0. In this case,
V11 = V22 = V12 = Γ/2. Here, we compare the excitation
dynamics (Fig. 5(a-c)) and emission photon spectra (Fig.
5(d-f)) when r12 = 0.5λ for three different emitter energy
differences, i.e., ∆ω12 = 0, 0.2Γ, and 2Γ. In these numer-
ical examples, we assume that the input single photon
pulse has a Gaussian shape as shown in Eq. (33) with

∆0 = Γ. For r12 = 0.5λ, V
(w)
12 eikar12 = −0.5Γ. The en-

ergy shift by the dipole-dipole interaction induced by the
waveguide photon modes is zero, and the decay rates for
the two single-emitter excited eigenstates (|+〉 and |−〉)
are given by Γ and 0 with one being superradiant and
the other being subradiant.

When the two emitters are identical (∆ω12 = 0), both
emitters are excited and then deexcited together as the
incident pulse propagates through (Fig. 5(a)). From
Eqs. (40) and (41), it is readily seen that βR(0) =
−e2ikr1β0(δk) and βT (0) = 0, i.e., the resonant frequency
is completely reflected. Although independent-emitter
model can also explain the total reflection of the reso-

nance frequency (black dotted line), it cannot explain
the broader reflection linewidth for the two-emitter sys-
tem (red solid line). The broader linewidth is the signa-
ture of the superradiant state induced by the collective
interaction between the two emitters (Fig. 5(d)).
The results when the two emitters have close but non-

zero energy difference (e.g., ∆ω12 = 0.2Γ with ∆ω
(1,2)
a =

±0.1Γ) are shown in Figs. 5(b) and 5(e). From Fig.
5(b), we see that the two emitters are also excited and
then deexcited together. However, different from the case
of identical emitters (Fig. 5(a)), the emitter excitations
when ∆ω12 = 0.2Γ can last much longer (Fig. 5(b)).
This indicates that the subradiant state can be popu-
lated when there is a small energy difference between the
two emitters. This can be explained by the fact that
the superradiant and subradiant states can interchange
to each other when there is a time modulation factor in
the coupling matrix as shown in Eq. (38). In contrast,
for two identical emitters, the subradiant state will be
never populated when r12 = 0.5λ. The emission photon
spectra also become very distinctive (Fig. 5(e)). Instead
of being completely reflected at the resonant frequency as
in the identical emitter case, a very narrow transmission
window appears around the resonance frequency when
the two emitters has close but non-zero energy differ-
ence. This transparency can be seen from Eqs. (40)
and (41). For δkr12 ≪ 1, we can see from Eq. (40)
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that when δkvg = (∆ω1 + ∆ω2)/2, we have βR(0) = 0
which means the resonance frequency can be completely
transparent. However, if we neglect the dipole-dipole
coupling between the two emitters (V12 = 0), we have
|βR(0)/β0(0)| = 1/[1 + (2∆ω12/Γ)

2] which is close to 1
when ∆ω12 ≪ Γ. Therefore, the dipole-dipole interac-
tion here is critical for the transmission of the resonance
frequency and the phenomena here can be also called
as “didople-dipole induced eletromagnetic transparency
(DIET)”. Actually, the transparency is the result of
destructive interference between two emission channels.
The DIET has been studied in an atomic ensemble where
semiclassical and mean-field theory are applied [62]. Here
we provide an ab initio calculation for this phenomenon
and the system here can be easier to realize in exper-
iment. The DIET here may be used as single photon
switch by tuning the emitter energy.
When the energy difference of the two-emitters is large,

e.g. 2Γ and one emitter has transition frequency resonant
with the center frequency of the incident photon, we can
see that one emitter is excited as a single emitter case,
but the other one is rarely excited by the input photon
pulse due to large detuning (Fig. 5(c)). The emission
spectra are also similar to those of the independent emit-
ter case. Therefore, when the two emitters has a large
energy difference (i.e., much greater than their dipole-
dipole interaction energy), they behave as independent
emitters.

B. With non-waveguide modes

In this subsection, we study how the emission spectra
change when the emitter energy difference increases in
the present of non-waveguide modes, i.e. γ 6= 0. The
numerical results when a = 0.05λ and γ = 0.1Γ are
shown in Fig. 6. In this case, the dipole-dipole inter-
action is V12e

ikar12 = 0.52Γ + i2.46Γ. The energy shifts
due to the dipole-dipole interaction are ±2.46Γ, and the
decay rates of the two eigenstates are Γ+ = 1.07Γ and
Γ− = 0.03Γ, respectively. In the numerical results, we
assume that the incident photon pulse has a Gaussian
shape with ∆0 = 10Γ.
The emission spectra when the two emitters are iden-

tical are shown in Fig. 6(a). There are two reflection
peaks at around ±2.46Γ with one being very broad and
the other being very sharp. The peak positions are the
same as the energy shifts due to the dipole-dipole inter-
action. The broad peak has a width of about 2.13Γ which
is 2Γ+ due to the reflection from the superradiant state.
The sharp peak has a width of about 0.06Γ which is 2Γ−

due to the reflection from the subradiant eigenstate.
When the two emitters have different transition fre-

quencies, for example ∆ω12 = 2Γ, there are also two re-
flection peaks with one being the superradiant peak and
the other one being the subradiant peak (Fig. 6(b)). The
positions of the peaks are about±2.61Γ which are slightly
larger than the energy shifts due to the dipole-dipole in-

teraction. The superradiant peak has a width of about
2.04Γ which is slightly narrower than that of the identical
emitters, and the subradiant peak has a width of about
0.12Γ which is slightly broader than that of the identi-
cal emitters. Although the difference between these two
peaks decreases, the dipole-dipole interaction still plays
an important role when the energy difference is of the
order of the dipole-dipole induced energy shift.
If we continue to increase the energy difference such

that the energy difference between the two emitters is
much larger than the dipole-dipole induced energy shift,
for example ∆ω12 = 10Γ, the emission spectra are quite
different from those in Fig. 6(a) and 6(b). The two reflec-
tion peaks become more similar to each other with one
peak having a width of about 1.56Γ and the other one
having a width of about 0.66Γ. The positions of the two
peaks are about ±5.5Γ which is quite different from the
energy shifts due to the dipole-dipole interaction. The
separation between the two peaks is about 11Γ which is
close to the energy difference of the two emitters which
indicates that they behave more like independent emit-
ters.

C. Transition from coupled emitters to

independent emitters

In the previous subsection, we have shown that the
effective coupling between the emitters depends on the
emitter energy difference. In this subsection, we quan-
tify this dependence by calculating the peak separation
and the linewidth difference of the two reflection peaks
as a function of emitter energy difference. The peak sep-
aration as a function of emitter energy difference when
γ = 0.1Γ and r12 = 0.05λ are shown in Fig. 7(a). The
peak separation increases monotonically as the energy
difference increases. When the two emitters are identical,
i.e., ∆ω12 = 0, the peak separation is equal to 2Im(V12)
which means that the two emitters are strongly coupled
to each other via the dipole-dipole interaction. However,
when the two emitters have a large energy difference, e.g.
∆ω12 = 20Γ, the peak separation are close to ∆ω12 which
indicates that the two emitters behave mostly as inde-
pendent emitters. Thus, the emitters can transit from
coupled emitters to independent emitters by increasing
the emitter energy difference. When ∆ω12 < 2Im(V12)
or ∆ω12 ∼ 2Im(V12) the emitters can strongly couple to
each other, but when∆ω12 ≫ 2Im(V12) the emitters can
be treated as independent emitters.
In addition to the peak separation, we also study the

linewidth difference between the two reflection peaks as
a function of emitter energy difference which is shown
in Fig. 7(b). When ∆ω12 = 0, one reflection peak is
a superradiant peak while the other one is a subradiant
peak and their linewidth difference is about 2.1Γ which
is close to the maximum value 2(Γ+γ). This means that
when ∆ω12 = 0, the collective effect plays an important
role. However, when ∆ω12 is large, the linewidth dif-
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FIG. 6: (Color online) Emission photon spectrum for different emitter energy gaps including the effects of non-waveguide
modes. The green dahsed-dotted line is the input photon spectrum, the red (blue) solid lines are the reflection (transmission)
photon spectra. Parameters: ∆0vg = 10Γ, γ = 0.1Γ. z1 = 20/∆0, z12 = 0.05λ. (a) ∆ω12 = 0. (b) ∆ω12 = 2Γ. (c) ∆ω12 = 10Γ.
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FIG. 7: (Color online) Transition from coupled emitters to independent emitters. (a) The reflection peak separation as a
function of emitter energy difference. (b) The linewidth difference between the two reflection peaks as a function of emitter
energy difference. Parameters: γ = 0.1Γ, and z12 = 0.05λ.

ference between the two reflection peaks approach zero
which means that they behave like independent emitters.
When ∆ω12 = 2Im(V12), the linewidth difference is about
66% of the maximum linewidth difference.

V. BEYOND TWO EMITTERS

Our theory shown in Sec. II can be extended to cal-
culate the single photon transport in a 1D waveguide
coupled to arbitrary number of emitters. In this section,
we take five emitters as an example.
In the first example, we assume that the emitters are

identical and the emitter separation is 0.05λ. The emitter
excitation dynamics and the emission spectra are shown
in Fig. 8(a) and 8(b), respectively. Here, we assume a
single photon pulse with Gaussian shape is incident with
Γ0 = 10Γ and when γ = 0.2Γ. From Fig. 8(a), we see
that the emitters can exchange excitations rapidly and
the coherent population oscillations can last for an ex-

tended period of time. Similar to the two-emitter case,
the coherent population oscillation is due to the coherent
part of the dipole-dipole interactions between the emit-
ters. From Fig. 8(b) we can see that there are five re-
flection peaks with two superradiant peaks on the higher
frequency parts and three subradiant peaks on the lower
frequency parts. This indicates that the collective inter-
actions between the emitters split the single-excitation
states into five eigenstates with two superradiant states
and three subradiant states. This may be used as a fre-
quency filter which can filter out some special frequencies.

In the second example, we consider the case that the
emitters are not identical. These emitters have a spatial
separation 0.5λ and the neighboring emitters have en-
ergy difference ∆ωj,j+1 = 0.1Γ. The emitter excitation
dynamics and the emission spectra when γ = 0 are shown
in Fig. 8(c) and 8(d) where we assume that the incident
photon pulse has a Gaussian shape with Γ0 = Γ. From
Fig. 8(c), we see that the emitter excitations can oscil-
late and last for a very long time. The jth emitter and
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FIG. 8: (Color online) (a, c) Emitter excitation probabilities as a function of time. (b, d) Emission photon spectrum. (a, b) The
emitters are identical with zj,j+1 = 0.05λ, γ = 0.2Γ, and Γ0 = 10Γ. (c, d) The emitters are non-identical with zj,j+1 = 0.5λ,
∆ωj,j+1 = 0.1Γ, γ = 0, and Γ0 = 1Γ. The green dahsed-dotted line is the input photon spectrum, the red (blue) solid lines are
the reflection (transmission) photon spectra.

the (Na − j)th emitter have almost the same excitation
dynamics. The emission spectra are also very interest-
ing. We can see that most of the photon spectra are
reflected back but there are four very narrow transmis-
sion windows (Fig. 8(d)). This is the generalization of
the DIET shown in previous sections. This phenomena
may be used to generate a single photon frequency comb
with very narrow linewidth [17].

VI. SUMMARY

In summary, we have developed dynamical equations
and photon emission spectra for a single photon trans-
port in a 1D waveguide-QED system. In our general-
ized theory, the emitters can be either identical or non-
identical. In addition, the dipole-dipole interactions in-
duced by both the waveguide and non-waveguide vacuum
modes are included. This theory allows one to calcu-

late the real-time evolution of the photon pulse and the
emitters in a 1D waveguide-QED system and study the
many-body physics.

We first compare the results with and without includ-
ing the dipole-dipole interaction induced by the non-
waveguide photon modes. The emitter dynamics and the
scattering spectrum can be significantly modified by the
dipole-dipole interaction induced by the non-waveguide
vacuum modes if the emitter separation is much smaller
than the resonance wavelength. We introduce a quantity
(spectrum difference) to study the effects of the dipole-
dipole interaction induced by the non-waveguide vacuum
modes. We find that when the emitter separation is much

smaller than the resonant wavelength (|V (nw)
12 | > Γ) the

dipole-dipole interaction induced by the non-waveguide
photon modes can considerably influence the photon dy-
namics. When the emitter separation is of the order of

or larger than the resonant wavelength (|V (nw)
12 | ≪ Γ),

the effects of the non-waveguide photon modes can be
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neglected.
We then studied the case of non-identical emitters.

The results show that if the energy difference between the
emitters is much larger than the energy shift due to the
dipole-dipole interaction (∆ω12 ≫ 2Im(V12)) the emit-
ters behave like independent emitters. Otherwise, the
emitters can strongly couple to each other. More inter-
estingly, when the two emitters have close but non-zero
energy difference, there is a very narrow transparency
window around the resonance frequency due to the inter-
ference between the two collective decay channels. This
is the demonstration of the dipole-dipole induced eltro-
magnetic transparency which may find important appli-
cations in quantum waveguide devices. For the case of
multiple emitters, a single photon frequency comb with
very narrow comb linewidth can be generated.
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Appendix A: Derivation of the emitter dynamical

equations

In this appendix, we derive the dynamical equations of
the emitter system shown in Eq. (9). To derive Eq. (9),
we need to calculate the second and third terms of Eq.
(8).

For the second term of Eq. (8), the summation over k
can be replaced by an integration

∑

k

→ L

2π

∫ ∞

−∞

dk, (A.1)

where L is the quantization length in the propagation
direction. The second term of Eq. (8) can then be cal-
culated as

∑

k

gjkg
l∗
k e

ik(zj−zl)eiδω
l
kt

′

e−iδωj
k
t =

L

2π

∫ ∞

−∞

gjkg
l∗
k e

ik(zj−zl)eiδω
l
kt

′

e−iδωj
k
tdk (A.2)

≃ L

2π
gjka

gl∗ka
e−i∆klvgt

′

ei∆kjvgt
[

∫ ∞

0

eik(zj−zl)ei(k−ka)vg(t
′−t)dk +

∫ 0

−∞

eik(zj−zl)ei(−k−ka)vg(t
′−t)dk

]

(A.3)

=
L

2π
gjka

gl∗ka
e−i∆klvgt

′

ei∆kjvgt
{

eika(zj−zl)

∫ ∞

−ka

eiδk[(zj−zl)+vg(t
′−t)]dδk + e−ika(zj−zl)

∫ ∞

−ka

e−iδk[(zj−zl)−vg(t
′−t)]dδk

}

(A.4)

≃ L

2π
gjka

gl∗ka
e−i∆klvgt

′

ei∆kjvgt
{

eika(zj−zl)

∫ ∞

−∞

eiδk[(zj−zl)+vg(t
′−t)]dδk + e−ika(zj−zl)

∫ ∞

−∞

e−iδk[(zj−zl)−vg(t
′−t)]dδk

}

(A.5)

= Lgjka
gl∗ka

e−i∆klvgt
′

ei∆kjvgt
{

eika(zj−zl)δ[(zj − zl) + vg(t
′ − t)] + e−ika(zj−zl)δ[(zj − zl)− vg(t

′ − t)]
}

(A.6)

=
Lgjka

gl∗ka

vg
e−i∆klvgt

′

ei∆kjvgt
{

eika(zj−zl)δ[t′ − (t− zj − zl
vg

)] + e−ika(zj−zl)δ[t′ − (t+
zj − zl
vg

)]
}

(A.7)

=
Γjl

2
e−i∆klvgt

′

ei∆kjvgteika|zj−zl|δ[t′ − (t− |zj − zl|
vg

)] (A.8)

=
Γjl

2
ei∆ωjlteikl|zjl|δ[t′ − (t− |zjl|

vg
)] (A.9)

where ∆ωjl = (kj−kl)vg is the energy difference between
two emitters, ∆kj = kj − ka with ka being a reference
wavevector which can be chosen as the average wavevec-
tor (i.e., ka =

∑

j kj/Na), and Γjl = 2Lgjka
gl∗ka

/vg. From

Eq. (A. 2) to Eq. (A. 3), we rewrite the integration into
the left-propagation and right-propagation parts and as-
sume that the coupling strength is uniform for the modes

close to ka. From Eq. (A. 4) to Eq. (A. 5), for ka ≫ 0 we
can extend the lower bound of the integration from −ka
to −∞ and use the identity

∫∞

−∞ eikxdx = 2πδ(x). In Eq.

(A. 7), since t′ ≤ t, when rj > rl only the second term
survives. On the contrary, when rj < rl only the first
term survives. Therefore, Eq. (A. 7) can be rewritten as
Eq. (A. 8). By inserting Eq. (A. 9) into the second term
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of Eq. (8) we can obtain

−
N
∑

l=1

Γjl

2
ei∆ωjlteikl|zjl|αl(t−

|zjl|
vg

) (A.10)

where Γi = 2L|gika
|2/vg is the decay rate of the ith emit-

ter due to the guided photon modes and |zjl| = |zj − zl|
is the emitter separation along the waveguide direction.
To calculate the third term in Eq. (8), we first rewrite

the summation over the wavevector ~q as an integration

∑

~q

=
V

(2π)3

∫ 2π

0

dφ

∫ π

0

sinθdθ

∫ ∞

0

q2dq, (A.11)

and the summation over the two polarizations as

∑

λ

gj~q,λg
l∗
~q,λ =

νqµ
j
abµ

l
ab

2~ǫ0V
[(µ̂ab · ê1~q)2 +(µ̂ab · ê2~q)2], (A.12)

where νq is the photon frequency with wavevector ~q, µab

is the amplitude of the transition dipole moment with di-
rection µ̂ab, ê

1
~q and ê2~q are the two polarization directions

of the photon. Without loss of generality, we can assume

the direction of the atomic transition dipole moment to
be µ̂ab = (sinϕ, 0, cosϕ). The unit wavevector of the
photon can be written as q̂ = (sinθcosφ, sinθsinφ, cosθ)
and the two polarization directions are given by ê1~q =

(sinφ,−cosφ, 0) and ê2~q = (cosθcosφ, cosθsinφ,−sinθ).
Thus, we have

∑

λ

gj~q,λg
l∗
~q,λ

=
νqµ

j
abµ

l
ab

2~ǫ0V
[sin2ϕsin2φ+(sinϕcosθcosφ− cosϕsinθ)2].

(A.13)

For j = l, using the Weisskoph-Wigner approximation
and

∫∞

−∞
dνqe

i(νq−ω)(t′−t) = 2πδ(t′ − t), it is not difficult
to obtain

∑

~q,λ

|gj~q,λ|2
∫ t

0

αj(t
′)eiδω

j

~q
t′dt′e−iδωj

~q
t =

γj
2
δjlαj(t)

(A.14)
where γj = k3aµ

2
j/3π~ǫ0V is the spontaneous decay rate

of the jth atom due to the non-waveguide photon modes.

For j 6= l, by integrating out the θ and φ we have

∑

~q,λ

gj~q,λg
l∗
~q,λe

−i~q·(~rj−~rl) =
νka

µjµl

4π2~ǫ0V

∫ ∞

0

q2
{

sin2ϕ
sin(qrjl)

qrjl
+ (1 − 3cos2ϕ)[

cos(qrjl)

(qrjl)2
− sin(qrjl)

(qrjl)3
]
}

dq. (A.15)

where we assume that only a narrow band of frequency around resonant frequency can couple to the system, i.e.,
νq ≃ νka

. We then have

∑

~q,λ

gj~q,λg
l∗
~q,λe

−i~q·(~rj−~rl)eiδω
jl
q (t′−t)

=
νka

µjµl

4π2~ǫ0V
e−i∆klvgt

′

ei∆kjvgt

∫ ∞

0

q2
{

sin2ϕ
sin(qrjl)

qrjl
+ (1− 3cos2ϕ)[

cos(qrjl)

(qrjl)2
− sin(qrjl)

(qrjl)3
]
}

ei(q−ka)vg(t
′−t)dq (A.16)

The integration over the first term in the curly bracket can be calculated as follows

∫ ∞

0

q2
sin(qrjl)

qrjl
ei(q−ka)vg(t

′−t)dq =
1

2irjl

∫ ∞

0

q(eiqrjl − e−iqrjl)ei(q−ka)vg(t
′−t)dq (A.17)

≃ ka
2irjl

[

∫ ∞

−ka

eikarjleiδq[rjl+vg(t
′−t)]dδq −

∫ ∞

−ka

e−ikarjleiδq[rjl−vg(t
′−t)]dδq

]

(A.18)

≃ ka
2irjl

[

∫ ∞

−∞

eikarjleiδq(rjl+vg(t
′−t)dδq −

∫ ∞

−∞

e−ikarjleiδq(rjl−vg(t
′−t)]dδq

]

(A.19)

=
2πka
2irjlvg

{

eikarjlδ[t′ − (t− rjl
vg

)]− e−ikarjlδ[t′ − (t+
rjl
vg

)]
}

(A.20)

=
πk2a
vg

· 1

ikarjl
eika|rjl|δ[t′ − (t− |rjl|

vg
)]. (A.21)

According to the Weisskopf-Wigner approximation [63], since the phase varies little around resonant frequency and
it has the major contribution, from Eq. (A. 17) to Eq. (A. 18) we use q ≃ ka and move q out of the integration, and
change the lower bound of the integration from −ka to −∞ from Eq. (A.18) to Eq. (A.19). Similarly, we have the
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second term and the third term of Eq. (A. 15) which are respectively given by

∫ ∞

0

q2
cos(qrjl)

(qrjl)2
ei(q−ka)vg(t

′−t)dq =
πk2a
vg

· 1

(karjl)2
eika|rjl|δ[t′ − (t− |rjl|

vg
)] (A.22)

and
∫ ∞

0

q2
sin(qrjl)

(qrjl)3
ei(q−ka)vg(t

′−t)dq =
πk2a
vg

· 1

i(karjl)3
eika|rjl|δ[t′ − (t− |rjl|

vg
)] (A.23)

On inserting Eqs. (A. 21-A. 23) into Eq. (A. 15), we have

∑

~q,λ

gj~q,λg
l∗
~q,λe

−i~q·(~rj−~rl)eiδω
l
qt

′

e−iδωj
qt) (A.24)

=
3γjl
4
e−i∆klvgt

′

ei∆kjvgt
{

sin2ϕ
−i
karjl

+ (1− 3cos2ϕ)[
1

(karjl)2
+

i

(karjl)3
]
}

eika|rjl|δ[t′ − (t− |rjl|
vg

)] (A.25)

=
3γjl
4
e−i∆ωjlteikl|rjl|

{

sin2ϕ
−i
karjl

+ (1 − 3cos2ϕ)[
1

(karjl)2
+

i

(karjl)3
]
}

δ[t′ − (t− |rjl|
vg

)] (A.26)

On inserting Eqs. (A. 10) and (A. 26) into Eq. (8) we can obtain the dynamical equations of the emitters

α̇j(t) = bj(t)−
N
∑

l=1

[

V
(w)
jl eikl|zjl|αl(t−

|zjl|
vg

) + V
(nw)
jl eikl|rjl|αl(t−

|rjl|
vg

)
]

ei∆ωjlt, (A.27)

where

bj(t) = − i

2π

√

ΓvgL

2
eikazjei∆kjvgt

∫ ∞

−∞

βδk(0)e
iδk(rj−vgt)dδk, (A.28)

V
(w)
jj = Γj/2 and V

(nw)
jj = γj/2. For j 6= l, V

(w)
jl =

√

ΓjΓl/2 is the dipole-dipole coupling due to the waveguide modes
and

V
(nw)
jl =

3
√
γjγl

4

[

sin2ϕ
−i
karjl

+ (1− 3cos2ϕ)
1

(karjl)2
+

i

(karjl)3

]

. (A.29)

is the dipole-dipole interaction due to the non-waveguide
photon modes. The term e−i∆ωjlt is due to the energy
difference between the two emitters. If the two emitters

are the same, this term becomes unit and the equation
returns back to the case for identical emitters.
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