
ar
X

iv
:h

ep
-t

h/
01

12
10

0v
1 

 1
2 

D
ec

 2
00

1

CTP-TAMU-34/01

UU-01-08

hep-th/0112100

7D Bosonic Higher Spin Gauge Theory:

Symmetry Algebra and Linearized Constraints

E. Sezgin

Center for Theoretical Physics, Texas A&M University, College Station, TX 77843, USA

P. Sundell

Department for Theoretical Physics, Uppsala University, Box 803, S-75108, Uppsala, Sweden

Abstract

We construct the minimal bosonic higher spin extension of the 7D AdS algebra SO(6, 2),
which we call hs(8∗). The generators, which have spin s = 1, 3, 5, ..., are realized as monomials
in Grassmann even spinor oscillators. Irreducibility, in the form of tracelessness, is achieved by
modding out an infinite dimensional ideal containing the traces. In this a key role is played by
the tree bilinear traces which form an SU(2)K algebra. We show that gauging of hs(8∗) yields a
spectrum of physical fields with spin s = 0, 2, 4, ... which make up a UIR of hs(8∗) isomorphic to
the symmetric tensor product of two 6D scalar doubletons. The scalar doubleton is the unique
SU(2)K invariant 6D doubleton. The spin s ≥ 2 sector comes from an hs(8∗)-valued one-form
which also contains the auxiliary gauge fields required for writing the curvature constraints in
covariant form. The physical spin s = 0 field arises in a separate zero-form in a ‘quasi-adjoint’
representation of hs(8∗). This zero-form also contains the spin s ≥ 2 Weyl tensors, i.e. the
curvatures which are non-vanishing on-shell. We suggest that the hs(8∗) gauge theory describes
the minimal bosonic, massless truncation of M theory on AdS7×S4 in an unbroken phase where
the holographic dual is given by N free (2, 0) tensor multiplets for large N .
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1 Introduction

A higher spin (HS) gauge theory is a general covariant field theory with an additional infinite set
of local symmetries. The full set of symmetries is based on a rigid HS algebra, which typically
extends the spacetime (super) AdS group. The first step in the construction of a HS gauge
theory is therefore to identify this algebra and find its representations. Extensive results along
these lines already exist in the literature for D ≤ 5 [1, 2, 3, 4, 5, 6, 7, 8]. In this paper we
construct the minimal bosonic HS algebra in D = 7 and its linearized massless field equations.
Altogether these results show that the HS theories in diverse dimensions have many features in
common, which points to some underlying universal principle.

As will be discussed in more detail in [9], HS gauge theories in diverse dimensions that include
massive higher spin fields, are the anti-holographic duals of free conformal field theories in the
limit of large number of free fields [10, 11, 6, 12]. HS field equations do not seem to admit any
truncation to ordinary (super)gravity, because lower spin fields appear as sources of HS fields.
This is consistent with the fact that the stress-energy tensor of a free CFT does not form a
closed OPE algebra, as has been illustrated in the case of the 3d supersingleton [13] (though the
conserved charges of course form the finite dimensional conformal group which closes). Thus,
if one wishes to give an anti-holographic description of a renormalization group flow in the
vicinity of a (free) CFT with conserved HS currents one should use HS gauge theory instead
of ordinary (super)gravity. In particular, the HS theory discussed in this paper is the minimal
bosonic truncation of a supersymmetric HS theory which is [9] is proposed to contain solutions
describing the flow from the strongly coupled AN−1 fixed point [14] to the free theory of N (2, 0)
tensors.

Our construction of hs(8∗) is given in terms of a basic Grassmann even oscillator yα which is
a Dirac spinor of SO(6, 1). The generators of hs(8∗) are traceless monomials in the oscillators.
The trace is taken with the symmetric charge conjugation matrix. Importantly, the tracelessness
condition is imposed as a coset condition, namely hs(8∗) = L/I where L is a certain Lie algebra
which contains both traceless generators and generators with non-zero trace, and I ⊂ L is an
ideal containing all the generators with non-zero trace.

In fact, the above construction is similar to the one of hs(2, 2) in D = 5 [6, 7], which is the
minimal bosonic HS extension of SO(4, 2). The ideal I occurring in that case contains the trace
K ∼ ȳy. The spectrum of the 5D theory is given by the product of two scalar doubletons, which
have vanishing K charge. This yields massless fields in D = 5 with spin s = 0, 2, 4, .... The spin
s = 0 field and the on-shell curvatures (Weyl tensors) are collectively described in HS theory
by a master field Φ which is a zero-form. As a consequence of modding out I the master field
Φ is dressed up by ‘K2-expansions’ which are crucial for getting the correct AdS lowest weights
[6, 7].

In D = 7, the ideal I is generated by the traces, K3 ∼ ȳy, K− ∼ yy and K+ ∼ ȳȳ, which form
an SU(2)K algebra (note that the charge conjugation matrix is symmetric in D = 7 whereas it
is antisymmetric in D = 5). Massless fields in AdS7 arise in tensor products of two 6d conformal
tensors known as doubletons [15]1. The spectrum of the theory is given by the product of two

1In the N = 2 superextension of the 7D theory the superdoubleton squares belong to an isolated series [16, 17].
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scalar doubletons. The scalar doubleton is the only one with vanishing SU(2)K charge (in the
(2, 0) superextension of the theory this scalar is one of the five scalars in the tensor multiplet).
As in five dimensions, this yields massless fields of spin s = 0, 2, 4, .... We will show that the
gauging of hs(8∗) in D = 7 yields a matching set of gauge fields. In particular, we verify that for
each spin s the algebra generators are in one-to-one correspondence with the previously known
set of physical and auxiliary spin s gauge fields given in terms of a particular set of spin s Lorentz
tensors [18, 19]. Moreover, modding out the ideal I the 7D master scalar field Φ is dressed up
with K2-expansions, where now K2 = KIKI . It is gratifying that these expansions indeed lead
to the correct critical mass-terms in the linearized equations for φ and the Weyl tensors such
that the AdS energies assume the correct massless values.

This paper is organized as follows. In Section 2 we describe the doubleton representations
of the AdS7 group and compute explicitly the massless 7D field content from the product of
two scalar doubletons. In Section 3 we construct the bosonic HS algebra hs(8∗). In Section 4
we gauge hs(8∗) by introducing a master gauge field in the adjoint representation and a master
scalar field in a quasi-adjoint representation of hs(8∗), and in particular we compute the K2-
dressing. In Section 5 we write the linearized curvature constraints and show that they yield
the correct spectrum of massless fields. Our results are summarized and further discussed in
Section 6. Appendix A contains the details of the calculation of the mass terms occurring in the
linearized field equations. Appendix B contains the harmonic analysis on AdS7 × S4 needed in
the computation of the AdS energies.

2 SO(6, 2) Representation Theory

Physical representations of SO(6, 2) can be obtained from a set of Grassmann even oscillator yα
(α = 1, .., 8), which is a SO(6, 1) Dirac spinor, obeying the oscillator algebra2

yα ⋆ ȳβ − ȳβ ⋆ yα = 2Cαβ , (2.1)

where ⋆ denotes the product of the oscillator algebra. We also define a Weyl ordered product
as follows:

yαȳβ = ȳβya = yα ⋆ ȳβ − Cαβ . (2.2)

The Weyl ordered product extends in a straightforward fashion to contraction rules between
arbitrary polynomials of the oscillators similar to those used in expanding products of Dirac
matrices. For example,

(ȳαyβ) ⋆ (ȳγyδ) = ȳαȳγyβyδ + Cβγ ȳαyδ − Cαδ ȳγyβ − CβγCαδ . (2.3)

On the other hand, the massless fields of the D = 5, N = 4 higher spin theory [8], which arise in the square of a
certain superdoubleton, saturate the bound of a continuous series [16, 17]. Thus the 5D theory can be Higgsed in
a continuous fashion [9].

2We use mostly positive signature and Dirac matrices (Γa)α
β obeying {Γa,Γb} = 2ηab (a = 0, 1, 2, 3, 4, 5, 7).

The charge conjugation matrix Cαβ is symmetric and real and (ΓaC)αβ are anti-symmetric. The Dirac conjugate
of yα is defined by ȳα = (y†iΓ0C)α.
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The SO(6, 2) generators are given by (A = a, 8):

MAB = 1
2 ȳ ⋆ ΣABy = 1

2 ȳΣABy , Σa8 =
i

2
Γa , Σab =

i

2
Γab , (2.4)

[MAB ,MCD] = iηBCMAD + 3 more , (MAB)
† =MAB . (2.5)

The spin group Spin(6, 2) is a non-compact version of SO(8;C), which we denote by SO(8∗).
The 7D spin group Spin(6, 1) is a subgroup of SO(8∗).

The maximal compact subgroup SO(6, 2) is given by L0 = SO(6) × U(1)E where SO(6)
is the group of spatial rotations and U(1)E is generated by the the AdS energy E = M08.
There is a three-grading SO(6, 2) = L− ⊕ L0 ⊕ L+, where L± contain non-compact energy-
lowering and energy-raising operators M± such that [E,M±] = ±M±. The three-grading also
requires [L+, L+] = [L−, L−] = 0, [L+, L−] = L0 and [L±, L0] = L±. The reality conditions
are (L0)† = L0 and (L+)† = L−. Positive energy representations of SO(6, 2) are weight spaces
D(E0;n1, n2, n3) labeled by the lowest energy E0 and SO(6) highest weight labels (n1, n2, n3)
obeying n1 ≥ n2 ≥ |n3|. In case of integer spin these determine an SO(6) Young tableaux
with n1 boxes in the first row, n2 boxes in the second row and |n3| boxes in the third row.
If n3 6= 0 the Young tableaux can be self-dual or anti-self-dual, which corresponds to n3 > 0
and n3 < 0, respectively. The SO(6) Young tableaux can be converted into an SU(4) Young
tableaux by contracting it with SO(6) Dirac matrices. A column with N boxes (N = 1, 2, 3)
stacked on top of each other is contracted with the rank N Dirac matrix. Their symmetry
properties are as follows: (σR)ij (R = 1, ..., 6, i, j = 1, ..., 4) is anti-symmetric, (σRST )ij and
(σRST )ij are symmetric and with definite self-duality properties, and (σRS)i

j belongs to 4 × 4̄.
In the case of half-integer spin all three highest weight labels are half-integers determining a
σ-traceless tensor-spinor whose tensor structure is determined as above by the highest weight
labels (n1 − 1

2 , n2 − 1
2 , n3 − ǫ(n3)

1
2 ), where ǫ(n3) is the sign of n3. For example, (1, 0, 0) denotes

the (real) 6-plet, (1, 1,±1) denotes the self-dual and anti-self-dual (complex) 10-plets, (12 ,
1
2 ,±1

2)
denotes the chiral SU(4) spinors and (32 ,

1
2 ,±1

2 ) has the (1, 0, 0) tensor structure and denotes a
chiral and σ-traceless vector-spinor.

Our next aim is to describe the UIRs of SO(6, 2) which arise in the oscillator construction
[15]. A convenient choice of Dirac matrices is

C =

(
0 1
1 0

)
, Γ0 =

(
i 0
0 −i

)
. (2.6)

The Dirac spinor oscillator yα obeying (2.1) then split into two sets of U(4)-covariant oscillators
(i = 1, ..., 4):

yα =
√
2(ai, bj) , (ai)

† = ai , (bi)
† = bi , (2.7)

[ai, a
j ]∗ = δji , [bi, b

j ]∗ = δji . (2.8)

The U(4)-covariant oscillators have a unitary representation in the Fock space built on the
vacuum state |0〉 defined by
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ai|0〉 = bi|0〉 = 0 . (2.9)

The identification (2.7) implies that the Fock space is a unitary representation space of SO(6, 2).
Other unitary representations of SO(6, 2) can then be obtained by considering tensor products
of several copies of the Fock space.

The Fock space and its tensor products decompose into physical UIR’s of SO(6, 2). The
three-grading L− ⊕ L0 ⊕ L+ takes the following form in the (single) Fock space representation:

L+ : Lij = a[i ⋆ bj] , (2.10)

L0 : Li
j = ai ⋆ aj + bi ⋆ bj + 4δij , (2.11)

L− : Lij = a[i ⋆ bj] . (2.12)

The energy operator, which is the trace-part of Li
j , is bounded from below and contains a

constant contribution when it is written in normal ordered form:

E =
i

4
ȳ ⋆ Γ0y =

1

4
y† ⋆ y = 1

2 (a
i ⋆ ai + bi ⋆ bi) + 2 = 1

2(Na +Nb) + 2 . (2.13)

Since L0 = U(4) ≃ SU(4) × U(1)E where SU(4) is the diagonal sum of SU(4)a and SU(4)b,
it is possible to form lowest weight states (lws) carrying the same L0 weight by exchanging ai

and bi oscillators. To be more precise, the lws carry an extra label of the SU(2)K group under
which (ai, bi), i = 1, ..., 4 transform as doublets. In fact, the SU(2)K is generated by:

K+ =
i

4
ȳȳ = −ibiai , (2.14)

K− =
i

4
yy = iaibi , (2.15)

K3 =
1

4
ȳy =

1

4
ȳ ⋆ y + 2 = 1

2 (Nb −Na) . (2.16)

For computational purposes it is convenient to write (I = 1, 2, 3)

KI =
1

8
yA(σI)ABy

B , yA = yBΩBA = (yα, ȳα) , (2.17)

where (σI)AB are symmetric Pauli matrices tensored with the SO(8∗) charge conjugation matrix
and yA obeys

yA ⋆ yB = yAyB +ΩAB , ΩAB =

(
0 Cαβ

−Cαβ 0

)
. (2.18)

By construction [SO(6, 2), SU(2)K ]⋆ = 0. Thus the Fock space and its tensor products decom-
pose into (2j+1)-plets of identical SO(6, 2) weight spaces, which we denote byD(j)(E0;n1, n2, n3).
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The Fock space F of a single set of oscillators decomposes into SO(6, 2) × SU(2)K weight
spaces, known as doubletons, as follows [15]:

F =
∑

s=0,
1
2 ,1,

3
2 ,...

D(s)(E0 = s+ 2; s, s,±s) . (2.19)

The lws with K3-eigenvalue m is given by

a(i1 · · · ai2s−2mbi2s−2m+1 · · · bi2s)|0〉 . (2.20)

The doubletons describe off-shell conformal tensors in six dimensions3 with spin s and scaling
dimension E0. In particular, the SU(2)K -singlet describes a scalar field with scaling dimension
2.

The P -fold tensor product F⊗P of the oscillator Fock space F can be described by adding a
flavor-index (r, s = 1, ..., N):

[ai(r), a
j(s)] = δrsδ

j
i , [bi(r), b

j(s)] = δrsδ
j
i . (2.21)

The representation of SO(6, 2) × SU(2)K on the tensor product is given by:

Lij =
∑

r

Lij(r) , Li
j =

∑

r

Li
j(r) , Lij =

∑

r

Lij(r) , (2.22)

KI =
∑

r

KI(r) . (2.23)

In particular, the total energy operator is given by:

E = 2P +
1

2

∑

r

[Na(r) +Nb(r)] . (2.24)

Thus the tensor product decomposes into weight spaces with lowest energy E0 ≥ s + 2P (the
lws with E0 > s + 2P are obtained by anti-symmetrizing oscillators carrying different flavor
indices). In particular, P = 2 yields massless fields in AdS7 [15]4.

3 The Massless Spectrum of The Theory

As discussed in the Introduction, the minimal bosonic 7D HS theory is conjectured to be the
anti-holographic dual of the 6d theory of N free scalar fields ϕi , i.e. N copies of the scalar

3The compact SO(6) labels are related to the non-compact SO(5, 1) labels, i.e. the six-dimensional spin labels,
and the energy E0 to the six-dimensional scaling dimension by a non-unitary rotation [20].

4These fields also satisfy the masslessness criteria defined in [21]. In [21] certain UIRs of SO(6, 2) that cannot
be obtained by multiplying any number of 6d doubletons. However, the unitarity bounds of Osp(8∗|4) seem to
exclude this possibility [22, 23].

5



doubleton, in the limit of large N [12, 9]. The composite operators of this theory couple to (non-
normalizable) bulk modes of the HS theory. In particular, the bilinear operators are the spin
s = 0 operator ϕiϕi and a set of conserved, symmetric and traceless tensors of spin s = 2, 4, 6, ...
[24]. These tensors are in one-to-one correspondence with the massless representations in the
symmetric tensor product of two 6d scalar doubletons. The anti-symmetric tensor product
contains massless representations which correspond to descendants. The massless spectrum of
our 7D theory is therefore given by:

S = [D(2; 0, 0, 0) ⊗D(2; 0, 0, 0)]S . (3.1)

In order to decompose D(2; 0, 0, 0) ⊗ D(2; 0, 0, 0) under SO(6, 2) we compute the lws with
energy E0 = 4+ s for s = 0, 1, 2, .... To this end, we expand a general state |ψ〉 ∈ D(2; 0, 0, 0) ⊗
D(2; 0, 0, 0) with that energy as follows:

|ψ〉 =
s∑

µ=0

|ψ(µ)〉 =
s∑

µ=0

ψ(µ)
i1j1,...,iµjµ;k1l1,...,ks−µls−µ

Li1j1(1) · · ·Liµjµ(1)Lk1l1(2) · · ·Lks−µls−µ(2)|0〉 .

(3.2)
The quantities Li1j1(1) · · ·Liµjµ(1) and Lk1l1(2) · · ·Lks−µls−µ(2) are irreducible under SU(4).
Their SO(6) highest weight labels are (µ, 0, 0) and (s − µ, 0, 0), respectively. Thus the SU(4)
tensors ψ(0) and ψ(n) are irreducible, and given by the SU(4) Young tableaux with two rows of
length s. This SU(4) irrep, which we shall denote by Rs, has spin given by s and can be converted
to a real, symmetric rank s SO(6) tensor by contracting it with s (anti-symmetric) SO(6) Dirac
matrices. Its SO(6) highest weight labels are (s, 0, 0). The remaining ψ(µ), 0 < µ < s, are
reducible and decompose into Rs plus a set of various other irreps, {R(µ)} say (where each irrep
occur once and only once), which we write as

ψ(µ) = ψ(µ)(Rs) +
∑

R(µ)

ψ(µ)(R(µ)) , 0 < µ < s . (3.3)

The state |ψ〉 is a lws provided that

Lij|ψ〉 ≡ (Lij(1) + Lij(2))|ψ〉 ≡
s−1∑

ν=0

|χ(ν)〉 = 0 , (3.4)

where |χ(ν)〉 contains ν factors of L+(1) and s− 1− ν factors of L+(2). Thus

|χ(ν)〉 = 0 , ν = 0, . . . , s− 1 . (3.5)

The state |χ(ν)〉 is a linear combination of contributions from ψ(ν) and ψ(ν+1). From |χ(0)〉 = 0
and the fact that the contributions from the various irreps are linearly independent it follows
that

ψ(1)(Rs) = −s2ψ(0) , ψ(1)(R(1)) = 0 . (3.6)
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From |χ(1)〉 = 0 it then follows that

ψ(2)(Rs) = −(s− 1)2

4
ψ(1)(Rs) =

(
s

2

)2

ψ(0) , ψ(2)(R(2)) = 0 . (3.7)

Iterating this procedure we find that there is precisely one lws with energy E0 = 4 + s, which
belongs to the SU(4) irrepRs described above. Collecting the above results, we find the following
explicit expression for this state:

|E0; s, 0, 0〉 =
s∑

µ=0

(−1)µ
(
s

µ

)2

Li1j1(1) · · ·Liµjµ(1)Liµ+1jµ+1(2) · · ·Lisjs(2)|0〉 , (3.8)

where separate symmetrization of the i and j indices is assumed. The lws with even spin belong
to the symmetric tensor product and those with odd spin to the anti-symmetric product. In
summary:

[D(2; 0, 0, 0) ⊗D(2; 0, 0, 0)]S =
∑

s=0,2,4,...

D(E0 = s+ 4; s, 0, 0) , (3.9)

[D(2; 0, 0, 0) ⊗D(2; 0, 0, 0)]A =
∑

s=1,3,5,...

D(E0 = s+ 4; s, 0, 0) . (3.10)

We have thus computed the massless spectrum of our minimal bosonic HS theory, which hence
consists of massless states with spin s = 0, 2, 4, ... and vanishing SU(2)K charge.

4 The Higher Spin Algebra hs(8∗)

Our next task is to determine the HS symmetry algebra, hs(8∗). From the boundary point of
view, hs(8∗) is the algebra of charges of the set of conserved currents built from the s ≥ 2 sym-
metric traceless tensors [24]. These rigid symmetries of the free CFT induce local symmetries in
the anti-holographic bulk theory, including general covariance. However, instead of determining
hs(8∗) from the current algebra we construct it directly in terms of the oscillators. We do this by
making use of the properties of the spectrum derived in the previous section, and the knowledge
of which gauge fields are required for writing the covariant constraints for a massless field of
given spin s ≥ 2 in a linearization around AdS7 [18, 19]. In fact, the ‘canonical’ set of spin s
gauge fields which contains physical as well as auxiliary fields is in one-to-one correspondence
with the above mentioned set of conserved currents of that spin [24].

Thus, the methodology we adopt is to impose constraints on general oscillator expansions.
Essentially we impose three types of constraints: 1) we project out all monomials except those
which are of degree 4ℓ + 2, where ℓ = 0, 1, 2, ... is a level index; 2) we impose neutrality under
SU(2)K ; and 3) we mod out an ideal which contains all the traces5.

5The last step leads to an algebra which cannot be represented on doubletons that carry non-zero SU(2)K
charge.
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We begin by taking A to be the space of arbitrary polynomials f(y, ȳ) in the oscillators,
which is an associative algebra with a ⋆-product defined by the Weyl ordering (2.2). An element
of A can therefore be expanded in terms of Weyl ordered monomials in the basic oscillator yα
and its Dirac conjugate ȳα with complex coefficients which are multispinors. We shall use the
following normalization convention (which we give here for a single monomial):

f(y, ȳ) =
1

m! n!
ȳα1 · · · ȳαmyβ1 · · · yβnfα1...αm,β1...βn

. (4.1)

We next define a linear anti-automorphism τ of A as follows:

τ(f(y, ȳ)) = f(iy, iȳ) , (4.2)

τ(f1 ⋆ f2) = τ(f2) ⋆ τ(f1) . (4.3)

A linear anti-automorphisms of an associative algebra can be used to define a Lie subalgebra.
In our case we define the following Lie subalgebra of A:

L = {P ∈ A : τ(P ) = P † = −P , [KI , P ]⋆ = 0} , (4.4)

where KI are the SU(2)K generators defined in (2.17). The Lie bracket of L is

[P1, P2]⋆ = P1 ⋆ P2 − P2 ⋆ P1 . (4.5)

The generators of L have expansions with multispinor coefficients which in general have non-zero
trace parts. In order to impose tracelessness we define a new ordering of elements in A which
amounts to factoring out the trace parts explicitly [6]. An element P ∈ L is thus expanded as:

P =
∞∑

n=0

P I1...In
(n) (y, ȳ) ⋆ KI1 ⋆ · · · ⋆ KIn , (4.6)

where P I1...In
(n) (y, ȳ) has an expansion in terms of traceless, Weyl ordered multispinors and the

SU(2)K indices I1 . . . In are symmetric. The conditions on P I1...In
(n) imply that

KI ⋆ P
I1...In
(n) = KIP

I1...In
(n) − in

2
ǫIK

(I1P
I2...In)K
(n) . (4.7)

The expansion (4.6) leads to the following decomposition of L:

L = L(0) ⊕ L(1) ⊕ L(2) ⊕ · · · = L(0) + I , I = L(1) ⊕ L(2) ⊕ · · · , (4.8)

where L(n) represents the n’th term in (4.6). If we were to change the prescription for ordering
the SU(2)K generators in (4.6) this would only affect the multispinors in I. Thus the traceless
multispinors in L(0) are uniquely defined by (4.6).

The space L(0) of traceless generators decomposes into levels labeled by ℓ = 0, 1, 2, ... consist-
ing of elements of the form
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P =
1

(n!)2
Pα1...αn,β1...βn

ȳα1 · · · ȳαnyβ1 · · · yβn , n = 2ℓ+ 1 , (4.9)

where the multispinor Pα1...αn,β1...βn
belongs to an (irreducible) Young tableaux of Spin(6, 2) ≃

SO(8∗) with two rows of equal length n. In order to see this we first note that from the condition

[K3, P ]⋆ = 0 (4.10)

it follows that P must have an equal number of y and ȳ oscillators. The conditions

[K±, P ]⋆ = 0 (4.11)

then set to zero the SO(8∗) irreps in P described by Young tableaux which have more boxes in
the first row than in the second row.

The reality condition P † = −P implies that the real dimension of (4.9) equals that of the
corresponding SO(8) Young tableaux. The Young tableaux is reducible under the 7D spin group
Spin(6, 1) ⊂ SO(8∗). It decomposes into irreps labeled by (tensorial) SO(6, 1) Young tableaux
with two rows of which the first one has n boxes and the second one m boxes, where 0 ≤ m ≤ n.
The counting works out simply because SO(8∗) decomposes under Spin(6, 1) in the same way
as SO(6, 2) decomposes under SO(6, 1). The conversion from the SO(8∗) irrep to the set of
SO(6, 1) irreps can be explicitly done by contracting the SO(8∗) Young tableaux with m second
rank Dirac matrices (Γab)αβ and n first rank Dirac matrices (Γc)αβ , where the SO(6, 1) indices
belong to the SO(6, 1) Young tableaux. We express the resulting generators as:

1

(n!)2
P

(m,n−m)
α1...αn,β1...βn

ȳα1 · · · ȳαnyβ1 · · · yβn = P a1
b1

...

...
am
bm

c1...cn−mM b1
a1

· · ·M bm
am
Pc1 · · ·Pcn−m

,

n = 2ℓ+ 1 , 0 ≤ m ≤ n . (4.12)

Upon gauging, these generators lead to the canonical set of gauge fields with spin s = 2ℓ + 2
(ℓ = 0, 1, 2, ...) as discussed earlier. In particular, the zeroth level consists of the SO(6, 2)
generators Pa and Mab corresponding to the gravitational gauge fields.

The space I defined in (4.8) forms an ideal:

[L,I]∗ ⊂ I . (4.13)

Moreover, there is a redundancy such that content of L(0) is reproduced in the SU(2)K trace

part of L(n) for n = 2, 4, .... For example, the generators PδIJ ⋆ KI ⋆ KJ give rise to one copy
of L(0), and so on. We are therefore led to defining the HS algebra by

hs(8∗) = L/I . (4.14)

The elements of hs(8∗) are thus equivalence classes [P ] of elements in L defined by
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[P ] = {P ′ ∈ L | P ′ − P ∈ I} . (4.15)

The Lie bracket of [P1] and [P2] is given by

[[P1], [P2]] = [[P1, P2]∗] . (4.16)

In order to examine the representation theory of the HS algebra hs(8∗) we observe the
following grading of hs(8∗):

hs(8∗) =
∑

n∈Z

L(n) , [E,L(n)]⋆ = nL(n) , (4.17)

[L(n), L(m)]⋆ = L(m+n) , (L(n))† = L(−n) . (4.18)

Moreover, from (4.12) it follows that hs(8∗) is a subalgebra of the universal enveloping algebra
Env(SO(6, 2)):

hs(8∗) = Env(SO(6, 2))/R , (4.19)

where R is an ideal generated by various polynomials in Env(SO(6, 2)) which vanish by Fierz
identities that arise when the single oscillator realization of SO(6, 2) is used. By a choice of
ordering we can thus write

L(n) =
{
(L+)p ⋆ (L0)⋆ q ⋆ (L−)r : p− r = n; p+ q + r = 2ℓ+ 1, ℓ = 0, 1, 2, ...

}
/R , (4.20)

where L− ⊕ L0 ⊕ L+ is the three-grading of SO(6, 2), ℓ is the level index and we are using the
non-commutative ⋆-product. From (4.20) it follows that L(0) ∼ L0 + (L0)3 + · · · when acting
on an SO(6, 2) lowest weight state. A physical representation of hs(8∗) is thus a lowest weight
representation D̂(E0;m1,m2,m3) based on an SO(6, 2) lowest weight state |E0;m1,m2,m3〉
obeying the additional conditions

L(−n)|Ω〉 = 0 , n = 1, 2, 3, ... . (4.21)

Since the single oscillator vacuum state |0〉 obeys (4.21), the scalar doubleton, which is the
fundamental SO(6, 2) UIR, is also the fundamental UIR of hs(8∗):

D̂(2; 0, 0, 0) = D(2; 0, 0, 0) .

Tensor products of the scalar doubleton also form hs(8∗) representations. If P ∈ hs(8∗) then
the representation of P on the N -fold tensor product (D(2; 0, 0, 0))⊗N is given by P =

∑N
r=1 Pr,

where Pr acts on the rth factor in the tensor product. Thus, in particular, the massless spectrum
S given in (3.1) is an hs(8∗) representation. The SO(6, 2) lowest weight state |4; 0, 0, 0〉 = |0〉 ∈ S
is an hs(8∗) lowest weight. There are no other hs(8∗) lws in S. To see this we first note that
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any hs(8∗) lws must also be an SO(6, 2) lws. It thus suffices to show that for each lws in (3.8)
with s = 2, 4, 6, ... there exists at least one energy-lowering operator in hs(8∗) which does not
annihilate this state. To exhibit such an operator we first write (3.8) in the following schematic
form (s = 2, 4, 6, ...):

|s+ 2; s, 0, 0〉 =
(
(L+

1 )
s + (L+

1 )
s−1L+

2 + · · ·+ (L+
2 )

s
)
|0〉 . (4.22)

Acting on |s + 2; s, 0, 0〉 with the element L+ ⋆ (L−)s ∈ L(−s+1) (the level of this state is given
by ℓ = s/2) yields

[
L+ ⋆ (L−)s

]
|s+ 2; s, 0, 0〉 =

[
L+
1 ⋆ (L

−
1 )

s + L+
2 ⋆ (L

−
2 )

s
]
|ψ〉 = (L+

1 + L+
2 )|0〉 6= 0 . (4.23)

It follows that the massless spectrum S defined in (3.1) is an irreducible hs(8∗) multiplet:

S = D̂(4; 0, 0, 0) . (4.24)

5 Gauging hs(8∗)

In order to gauge hs(8∗) we introduce an hs(8∗)-valued one-form [A] and a zero-form Φ obeying
the conditions:

τ(A) = A† = −A , [KI , A]⋆ = 0 , (5.1)

τ(Φ) = Φ† = π(Φ) , KI ⋆ Φ = Φ ⋆ KI = 0 . (5.2)

Here τ is the anti-automorphism defined in (4.2-4.3) and π is an automorphism acting on
SU(2)K -invariant elements f ∈ A as follows:

π(f (m,n)) = (−1)nf (m,n) , π(f1 ⋆ f2) = π(f1) ⋆ π(f2) , (5.3)

where m and n are related to the SO(6, 1) highest weight labels as:

m1 = m+ n , m2 = m , m3 = 0 . (5.4)

Here we have used the fact that any SU(2)K invariant element f ∈ A can be expanded in terms
of such SO(6, 1) irreps as explained in the previous section; see the analysis following (4.9). In
order to show that π is an automorphism, we make use of the fact that if f1, f2 ∈ A are SU(2)K
invariant then also f1 ⋆ f2 is SU(2)K invariant. Thus f1 ⋆ f2 can also be expanded in terms of
SO(6, 1) Young tableaux with m3 = 0. Using the basic rules for SO(6, 1) tensor products one
can then verify that π is an automorphism.

The conditions on Φ defines a representation of hs(8∗) which we call quasi-adjoint. It is
essential to introduce this representation to accommodate the physical scalar field and the spin
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s ≥ 2 Weyl tensors as well as all the derivatives of these fields. The curvature and covariant
derivative are defined by

F[A] = [FA] = [dA+A ⋆ A] , D[A]Φ = dΦ +A ⋆ Φ− Φ ⋆ π(A) , (5.5)

δ[ǫ][A] = [dǫ+ [A, ǫ]⋆] , δ[ǫ]Φ = ǫ ⋆ Φ−Φ ⋆ π(ǫ) . (5.6)

The conditions on Φ implies that D[A]Φ and δ[ǫ]Φ are also quasi-adjoint elements and that they
do not depend on the choice of A and ǫ. The role of the π automorphism is to distinguish
between the translations-like and rotations-like generators in the HS algebra; for example6:

π(Pa) = −Pa , π(Mab) =Mab . (5.7)

Hence, if Ω denotes an SO(3, 2) valued connection, we find that DΩΦ = ∇Φ + dxµ{Pµ,Φ}⋆,
where ∇ is the Lorentz covariant derivative. As will be shown in in the next section, this means
that the whole one-form DΩΦ can be constrained without having the consequences of setting Φ
to constant.

We next solve the conditions on Φ. By subtracting the two KI -conditions in (5.2) we obtain
[KI ,Φ]⋆ = 0. Thus we can choose to expand Φ as follows:

Φ =
∞∑

n=0

Φ(n)f(n) =
∞∑

n=0

1

n!
ΦI1...In
(n) (y, ȳ)KI1 · · ·KInf(n)(K

2) , (5.8)

where ΦI1...In
(n) (y, ȳ) consists of traceless multispinors which are also traceless in their internal

SU(2)K indices, i.e.

KI ⋆ Φ
I1...In
(n) = KIΦ

I1...In
(n) − in

2
ǫIK

(I1Φ(n)
I2...In)K , (5.9)

δJKΦ
JKI1...In−2

(n) = 0 , n > 1 . (5.10)

The quantities f(n)(K
2) are analytical functions of K2 = KIKI , which we determine below.

Note that had we chosen to use ⋆-products of SU(2)K generators in (5.8), instead of classical
products, the KI -condition would only admit the trivial solution Φ = 0.

It thus remains to impose KI ⋆ Φ = 0. After some algebra, where it is convenient to use
(2.17) and (2.18), we find

6For D = 4, 5, the map π can also be defined as a linear transformation of the oscillators. This does not seem
to be possible in D = 7, since (ΓaC)αβ and (ΓabC)αβ have the same symmetry. It is worth noting that there
is an alternative way of implementing the π map by extending the oscillator algebra A with an inner Kleinian
operator κ = (−1)2K3 . The associative algebra Ã = A ⊕ (κA) has the π map π(f(y, ȳ;κ) = f(y, ȳ;−κ), and
the AdS generators can be taken to be P̃a = κPa and M̃ab = Mab. More generally, hs(8∗) is generated by
κm+σP (m,2ℓ+1−m) (m = 0, . . . , 2ℓ+ 1) for σ = 1. Taking Φ̃ to obey (5.2) and imposing the curvature constraints
(6.1-6.2), which are now expansions in κ, one finds that σ = 0 gives rise to an entire set of auxiliary gauge fields.
Thus the physical field content remains the same in this framework.
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KI ⋆
(
Φ(n)f(n)

)
= KIΦ(n)D[f(n)]− 4

(
| Φ(n) | +4

) ∂Φ(n)

∂KI
f(n) , (5.11)

where D is the second order differential operator

D[f(n)(z)] = f(n)(z)−
1

8
(7+ | Φ(n) |)f ′(n)(z) −

1

4
zf ′′(n)(z) , (5.12)

and | Φ(n) | denotes the number of irreducible spinor indices in the multispinor defining Φ(n):

yA∂AΦ
I1...In(y, ȳ) =| Φ(n) | ΦI1...In(y, ȳ) . (5.13)

From KI ⋆ Φ = 0 it follows that7

f(n)(K
2) =

{
F (| Φ(0) |;K2) n = 0

0 n > 0
(5.14)

where the function F (w; z) is given by

F (w; z) =
∞∑

n=0

(4z)n

n!

Γ(12(w + 7))

Γ(12(w + 7 + 2n))
. (5.15)

From [KI ,Φ(0)]⋆ = 0, and following the analysis below (4.9), it follows that the y and ȳ
expansion of Φ(0)(y, ȳ) gives rise to traceless multispinors Φ(0)α1...αs,β1...βs

that belong to spin
s SO(8∗) Young tableaux that have two rows of equal length s. Taking into account also the
condition τ(Φ) = π(Φ) we find (from now on we drop the subscript (0))

Φ(y, ȳ) =
∑

m = 0, 2, 4, ...
n = 0, 1, 2, ... . . .

Φ(m,n;0)(y, ȳ)F (2s;K2) (5.16)

=
∑

m = 0, 2, 4, ...
n = 0, 1, 2, ... . . .

∞∑

k=0

Φ(m,n;k)(y, ȳ) , (5.17)

where the y and ȳ expansion of Φ(m,n;0)(y, ȳ) yields a traceless multispinor Φ
(m,n;0)
α1...αs,β1...βs

which
is equivalent to a spin s SO(6, 1) Young tableaux with s = m+ n boxes in the first row and m

boxes in the second row. The multispinor Φ
(m,n;k)
α1...αs+k,β1...βs+k

(k = 1, 2, 3, ...) which by definition

contain k traces times an SO(6, 1) Young tableaux with s = m + n boxes in the first row and
m boxes in the second row, is given by (5.15) and (5.17). For example

7A solution to KI ⋆ Φ = Φ ⋆ KI = 0 can also be constructed formally as Φ = Π ⋆ Φ, where Π is the projector
of the single oscillator Fock space (2.19) onto the spin s = 0 doubleton, which is the SU(2)K -singlet.
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Φ
(m,n;1)
α1...αs+1,β1...βs+1

= 0 ,

Φ
(m,n;2)
α1...αs+2,β1...βs+2

=
(s+ 2)2(s+ 1)2

2(7 + 2s)
Φ
(m,n;0)
α1...αs,β1...βs

×(Cαs+1βs+1Cαs+2βs+2 − Cαs+2αs+2Cβs+1βs+2) , (5.18)

where separate symmetrization in the α and β indices is assumed.

The spin s = 0 sector of Φ is a single real scalar field φ with the following K2-dressing:

φ(1 +
8

7
K2 + · · ·) , (5.19)

where the coefficient 8/7 is read off from (5.15). The spin s = 1, i.e. |Φ| = 2, sector contains
an SO(6, 1) vector φa. In the spin s = 2 sector, i.e. for | Φ |= 4 we find a symmetric traceless
tensor φab and a traceless tensor Cab,cd = Ccd,ab obeying C[ab,c]d = 0. These tensors match the
on-shell second order derivatives of a scalar and a graviton, respectively. This pattern extends
to higher spins such that the tensorial content of Φ is isomorphic to the derivatives of a spin
s = 0 field and a set of spin s = 2, 4, 6, ... Weyl tensors (obeying Klein-Gordon equations and
Bianchi identities for s ≥ 2).

6 The Linearized Curvature Constraints

In analogy with the 5D case [6], we propose the following linearized curvature constraints (s =
2, 4, 6, ...):

F lin
α1...αs−1,β1...βs−1

= ea ∧ eb(Γab)
γδΦ

(s,0;0)
γα1...αn,δβ1...βn

, (6.1)

DΩΦ = 0 , (6.2)

where Ω is the AdS background

Ω = i(P aea +
1
2M

abωab) , dΩ+ Ω ∧ ⋆Ω = 0 , (6.3)

and F lin is the linearized curvature:

F lin = dA+Ω ⋆ A+A ⋆Ω . (6.4)

These constraints are invariant under the linearized form of the gauge transformations (5.6):

δǫA = dǫ+ [Ω, ǫ]⋆ , δǫΦ = ǫ ⋆ Φ− Φ ⋆ π(ǫ) . (6.5)

Consistency of the constraints requires integrability, i.e. d2 = 0. The integrability of the
scalar constraint (6.2) follows immediately from the flatness of Ω. The integrability of the
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curvature constraint (6.1) is equivalent to the Bianchi identity dF lin + [Ω, F lin]⋆ = 0, which
takes the following form in components:

∇[µF
lin
νρ],α1...αs−1,β1...βs−1

+ (s−1)2

2

(
(Γ[µ)α1

γF lin
νρ]α2...αs−1γ,β1...βs−1

− (Γ[µ)β1
γF lin

νρ]α1...αs−1,β2...βs−1γ

)
= 0 , (6.6)

where separate symmetrization in α and β indices is assumed and ∇µ is the Lorentz covariant
derivative In order to verify this we use the component form of the scalar constraint (6.2) which
reads:

∇µΦα1...αn,β...βn
+ 1

2(Γµ)
γδΦγα1...αn,δβ...βn

+ n2

2 (Γµ)α1β1Φγα2...αn,δβ2...βn
= 0 , (6.7)

where again separate symmetrization in α and β indices is assumed. Inserting the curvature
constraint (6.1) into the Bianchi identity (6.6) and making use of (6.7) we find that (6.6) decom-
poses into two irreducible parts. In the notation defined in (4.12) these are given by an (s, 0)
part and an (s − 1, 1) part (by construction these equations have no trace parts). These are
satisfied due to the following Fierz identities (s ≥ 2):

(Γa[b)
αβ(Γcd])

γδΦ
(s,0;0)
αγǫ1...ǫs−2,βδφ1...φs−2

= 0 , (6.8)

(Γ[a)
αβ(Γbc])

γδΦ
(s−1,1;0)
αγǫ1...ǫs−2,βδφ1...φs−2

= 0 . (6.9)

In order to verify these it is important to use the symmetries of Φ(s,0;0) and Φ(s−1,1;0) as implied by
the properties of their SO(6, 1) Young tableaux. To implement these properties it is convenient
to use expansions similar to (A.4).

The scalar constraint (6.2) implies that the independent fields in Φ are given by Φ(s,0;0)

(s = 0, 2, 4, ...) and that the remaining components are derivatives of these fields; schematically
Φ(s,n;0) ∼ ∇nΦ(s,0;0). The constraint also implies the following Klein-Gordon equations (the
derivation of the mass-term for arbitrary s is given in Appendix A):

(∇2 −m2)Φ(s,0;0) = 0 , m2 = −8− 2s . (6.10)

Using the harmonic analysis in Appendix B, we find the following lowest energy of Φ(s,0;0):

E0 = s+ 4 . (6.11)

As discussed in Section 2, this is the correct value for a massless spin s field. Thus the in-
dependent field content of the quasi-adjoint representation Φ is isomorphic to the spectrum S
in (3.1). We remark that the spectrum S is a massless hs(8∗) multiplet. The global hs(8∗)
transformations on Φ are realized in terms of gauge transformations (5.6) with rigid parameters
ǫ obeying the Killing equation

DΩǫ = 0 . (6.12)
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The K2-expansion found in the previous section play a crucial role in obtaining the correct
critical mass-value in (6.10). Let us demonstrate this in the case of spin s = 0. We examine the
leading equations in the spin s = 0 sector of (6.2):

∂µφ = −1

2
(Γµ)

αβΦα,β , (6.13)

∇µφα,β = −1

2
(Γµ)

γδΦαγ,βδ −
1

2
(Γµ)αβφ . (6.14)

It follows that

∇µ∂µφ =
1

4

(
(Γµ)αγ(Γµ)

βδΦαβ,γδ + (Γµ)αβ(Γµ)αβφ
)
. (6.15)

The second term on the right hand side contributes to m2 by −14. The multispinor in the first
term can be decomposed into SO(6, 1) irreps as follows:

Φαβ,γδ = Φ
(2,0;0)
αβ,γδ +Φ

(1,1;0)
αβ,γδ +Φ

(0,2;0)
αβ,γδ +Φ

(0,0;2)
αβ,γδ . (6.16)

The contributions to m2 from the first three terms vanish, due to the Fierz identity

(Γµ)αγ(Γµ)
βδΦ

(m,n;0)
αβ,γδ = 0 , m+ n = 2 . (6.17)

The SO(6, 1) singlet Φ
(0,0;2)
αβ,γδ yields a non-zero contribution to m2 given by

1

4
(Γµ)αγ(Γµ)

βδ 2

7

1

4
(2CαγCβδ + 2CαδCβγ − 4CαβCγδ) = 6 . (6.18)

As a result we find that the spin s = 0 field obeys

(∇µ∂µ −m2)φ = 0 , m2 = −14 + 6 = −8 , (6.19)

which leads to the lowest weight energy E0 = 4.

The curvature constraint (6.1), when written in SO(6, 1) tensorial basis, is of the canonical
form [18, 19]. Thus the gauge fields consist of (s = 2, 4, 6, ...)

generalized vielbeins : A
(0,s−1)
µα1...αs−1,β1...βs−1

(6.20)

auxiliary gauge fields : A
(1,s−2)
µα1...αs−1,β1...βs−1

, . . . . . . , A
(s−1,0)
µα1...αs−1,β1...βs−1

(6.21)

The auxiliary gauge fields can be solved for in terms of derivatives of the generalized vielbeins.
The linearized field equations, which are second order equations, are obtained by solving for

A
(1,s−2)
µ from F

(0,s−1)
µν = 0 and substituting into a certain projection of the constraint on F

(1,s−2)
µν .

Upon fixing a Lorentz-like gauge, one finds that the physical fields carry the representations
D(s+ 4; s, 0, 0).
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In summary, as a result of the constraints (6.1) and (6.2) the independent set of fields in the
theory are

{
φ, Aµ

a, Aµ
abc, Aµ

abcde, . . . . . .

}
. (6.22)

which obey second order field equations for massless fields carrying the representations in the
spectrum S given in (3.1) and (3.9).

7 Conclusions

We have constructed a minimal bosonic HS extension of the AdS7 group SO(6, 2), which we call
hs(8∗), consisting of generators of spin s = 1, 3, 5, .... We have realized this symmetry in a 7D
HS gauge theory with massless fields of spin s = 0, 2, 4, ..., which are given in (6.22). The s ≥ 2
fields are contained in a hs(8∗) valued one-form and the spin s = 0 field, the Weyl tensors and
their derivatives are assembled in a zero-form which transforms in a quasi adjoint representation
of hs(8∗). The spectrum of physical fields form a UIR of hs(8∗) which is isomorphic to the
symmetric product of two scalar doubletons. The gauge fields (6.20-6.21) and the spin s = 0
field correspond to the full set of conserved bilinear currents [24] and the quadratic ‘mass’ term
ϕiϕi, respectively, of a 6d theory of free scalar fields ϕi (i = 1, ..., N) which carry the scalar
doubleton representation.

The internal SU(2)K algebra given in (2.17) plays a key role for embedding hs(8∗) and
its quasi-adjoint representation in an associative oscillator algebra. Irreducibility is achieved
by imposing the SU(2)K invariance conditions on the master fields as in (5.1-5.2), choosing
the ordering prescriptions (4.6) and (5.8) and modding out the ideal I defined in (4.8). The
SU(2)K invariance implies that a 6d realization of hs(8∗) in terms of doubletons must necessarily
be given in terms of the scalar doubleton (which is part of the tensor multiplet in the case of
(2, 0) supersymmetry).

The structure of the above 7D HS theory suggests that it describes the massless sector of a
hs(8∗) gauge theory which includes massive fields and whose holographic dual is the 6d scalar
field theory in the limit of large N [12, 9]. The scalar doubleton theory is the minimal bosonic
truncation of the theory of N free (2, 0) tensor multiplets. We expect that the latter theory has
an anti-holographic dual for large N which is a 7D gauge theory based on a superextension of
hs(8∗) with N = 2 supersymmetry. Once we have computed the interactions in the 7D theory,
these ideas can be tested explicitly by comparing an 6d n-point functions to the corresponding
amplitude of the bulk theory. Since both sides are weakly coupled when N is large [12, 9] this
provides an explicit example of a directly verifiable AdS/CFT correspondence, similar to the
one proposed in [10, 11, 6] for D = 5.

The results obtained this far on HS gauge theories in diverse dimensions point to underlying
universal features. In particular:

• They are gauge theories of HS algebras that are infinite dimensional extensions of the finite
dimensional AdS group. These algebras are based on oscillator realizations, or equivalently
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AdS group enveloping algebras modded by certain ideals.

• The massless sector of a HS gauge theory is a UIR of the HS algebra given by the sym-
metric tensor product of two ultra-short multiplets, known as singletons or doubletons,
which decomposes into an infinite tower of AdS supermultiplets where the first level is the
supergravity multiplet.

• Their massless field content is given by an adjoint gauge field Aµ and a quasi-adjoint
zero-form Φ.

• Their background independent field equations follow from a universal set of curvature
constraints.

These properties and other arguments which will be presented elsewhere [9] suggest that HS
gauge theories have holographic duals given by various free, large N conformal field theories and
that finite N corrections are encoded into the bulk theory in a universal background independent
‘quantization’ scheme. This would describe an unbroken phase of Type IIB string/M theory.

Clearly much remains to be done to develop HS gauge theories further. The supersymmetric
extension of the linearized 7D HS gauge theory presented here, and the linearized 6D HS gauge
theory based on the HS extension of the AdS6 superalgebra F4 should be straightforward. As for
the interactions, they are known fully in D = 4 [1] and some cubic couplings have been computed
in the bosonic 5D HS theory [7]. Those in D = 4 are given in a closed form but considerable
amount of work remains to be done to exhibit their structure explicitly. The construction of
the full interactions in D > 4 HS gauge theories also remains an open problem though we do
no expect any fundamental obstacle in achieving this. In testing ideas of higher spin AdS/CFT
correspondence, it is also important to incorporate the massive HS multiplets which arise in
higher than second order tensor product of singletons/doubletons [15]. The coupling of massless
and massive HS multiplets is therefore an important open problem.

Another open problem is to understand the role played by the U(1)K and SU(2)K charged
higher spin doubletons in d = 4 and d = 6, respectively. They may ultimately be necessary
in the description of an unbroken phase of M theory. In any event, it seems likely that their
inclusion will lead to a HS conformal field theory in the boundary and corresponding generalized
HS gauge theory in the bulk based on a HS algebra whose maximal finite dimensional subalgebra
is the symplectic extension of the AdS algebra [26].
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A Calculation of Mass Terms

In order to derive the linearized field equation obeyed by the spin s Weyl tensor Φ
(s,0;0)
α1...αs,β1...βs

we start from the following components of the scalar constraint (6.7):

∇µΦα1...αs,β1...βs
= −1

2
(Γµ)

γδΦγα1...αs,δβ1...βs
− s2

2
(Γµ)α1β1Φα2...αs,β2...βs

, (A.1)

∇µΦα1...αs+1,β1...βs+1 = −1

2
(Γµ)

ǫφΦǫα1...αs+1,φβ1...βs+1 −
(s+ 1)2

2
(Γµ)α1β1Φα2...αs+1,β2...βs+1 .

Here and in the remainder of this section we assume separate symmetrization of α and β indices.
Combining the two equations and restricting to the (s, 0; 0) sector we find:

∇2Φ
(s,0;0)
α(s),β(s) = 1

4 (Γ
µ)γδ

[
(Γµ)γδΦ

(s,0;0)
α(s),β(s) + s (Γµ)γβ1

Φ
(s,0;0)
α(s),δβ(s−1)

+s (Γµ)α1δ
Φ
(s,0;0)
γα(s−1),β(s) +

1
4 (Γµ)

ǫφΦ
(s,0;2)
γǫα(s),δφβ(s)

]
(A.2)

≡ m2Φ
(s,0;0)
α(s),β(s) ,

where α(s) = α1 . . . αs and idem β. The contribution to m2 from the first three terms on the
right hand side is readily found to be

−14− 7

2
s . (A.3)

The calculation of the contribution to m2 from the last term in (A.2) is more elaborate. We
need to use (5.18) and break up the overlapping symmetrizations. In doing so it is convenient
to go over to the SO(6, 1) tensorial basis using

Φ
(s,0;0)
α(s),β(s) = (Γa1

b1)α1β1 · · · (Γas
bs)αsβs

Φb1
a1

...

...
bs
as , (A.4)

where Φa1
b1

...

...
as
bs

belongs to the SO(6, 1) Young tableaux with two rows of length s. Making also
use of the Fierz identities

(Γa
bµ)α1β1(Γ

c
d
µ)α2β2Φ

b
a
d
c = −Φ

(2,0;0)
α(2),β(2) , (A.5)

(Γa
bµ)α1α2(Γ

c
d
µ)β1β2Φ

b
a
d
c = −4Φ

(2,0;0)
α(2),β(2) , (A.6)

where the right hand sides are defined as in (A.4) and extra indices on Φ have been suppressed,
we find that the contribution to m2 from the last term in (A.2) is given by

1

8(7 + 2s)
(24s2 + 180s + 336) = 6 +

3

2
s . (A.7)
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Adding the two contributions in (A.3) and (A.7) we find

m2 = −8− 2s . (A.8)

B Harmonic Analysis

To determine the SO(6, 2) content of the spectrum, we shall follow the technique used in [25]
which is based on the analytic continuation of AdS7 to S

7, and consequently the group SO(6, 2)
to SO(8). The Casimir eigenvalues for an SO(6, 2) representation D(E0;n1, n2, n3), where
n1 ≥ n2 ≥ |n3| are SO(6) highest weight labels, and an SO(8) representation with highest
weight labels ℓ1 ≥ ℓ2 ≥ ℓ3 ≥ |ℓ4|, are given by

C2[SO(6, 2)] = E0(E0 − 6) + n1(n1 + 4) + n2(n2 + 2) + n23

C2[SO(8)] = ℓ1(ℓ1 + 6) + ℓ2(ℓ2 + 4) + ℓ3(ℓ3 + 2) + ℓ24 . (B.1)

The continuation from AdS7 to S7 requires the identification:

∇2|AdS7 → −∇2|S7 , ℓ1 = −E0 , ℓ2,3,4 = n1,2,3 . (B.2)

A tensor T(m1m2m3) on S
7 in an irrep R of SO(7) with highest weight labels m1 ≥ m2 ≥ m3 ≥ 0

can be expanded as

T(m1m2m3)(x) =
∑

(ℓ1ℓ2ℓ3ℓ4)
p

T (ℓ1ℓ2ℓ3ℓ4)
p D

(ℓ1ℓ2ℓ3ℓ4)
(m1m2m3),p

(L−1
x ) , (B.3)

where Lx is a coset representative of a point x ∈ S7 and (ℓ1ℓ2ℓ3ℓ4) label all SO(8) representations
satisfying the embedding condition

ℓ1 ≥ m1 ≥ ℓ2 ≥ m2 ≥ ℓ3 ≥ m3 ≥ |ℓ4| . (B.4)

The Laplacian acting on T yields

−∇2|S7D
(ℓ1ℓ2ℓ3ℓ4)
(m1m2m3),p

=

(
C2[SO(8)] − C2[SO(7)]

)
D

(ℓ1ℓ2ℓ3ℓ4)
(m1m2m3),p

, (B.5)

where the SO(7) Casimir is given by

C2[SO(7)] = m1(m1 + 5) +m2(m2 + 3) +m3(m3 + 1) . (B.6)

Using the notation introduced in (5.17), the SO(7) highest weight labels of Φ
(m,n)
α1...α2s (m+n = s)

are
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m1 = m+ n , m2 = m , m3 = 0 . (B.7)

The embedding condition (B.4) implies

ℓ1 ≥ s , ℓ2 = s , ℓ3 = 0, 1, ..., s , ℓ4 = 0 . (B.8)

The on-shell conditions on Φ(s,0;0), which follow from the (s, 0; 0) part of (A.1), remove the
SO(6, 2) irreps with ℓ3 = 0, 1, ..., s − 1. Recalling (A.8) we thus find that the lowest weight

energy of Φ
(s,0;0)
α(s),β(s) is given by

E0 = 3 +
√
9 + s(s+ 5) + s(s+ 3)− s(s+ 4)− 8− 2s = 4 + s . (B.9)

Thus the physical field content in Φ
(s,0;0)
α(s),β(s) is the massless spin s field carrying the representation

D(s+ 4; s, 0, 0).
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