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ABSTRACT

We show that four-dimensional N = 2 ungauged Einstein-Maxwell supergravity can

be embedded on the Randall-Sundrum 3-brane, as a consistent Kaluza-Klein reduction of

five-dimensional N = 4 gauged supergravity. In particular, this allows us to describe four-

dimensional Reissner-Nordström black holes within the Randall-Sundrum scenario. Using

earlier results on the embedding of five-dimensional N = 4 gauged supergravity in ten

dimensions, we can then describe the four-dimensional Einstein-Maxwell supergravity on

the 3-brane, and its solutions, from a type IIB viewpoint. We also show that the minimal

ungauged supergravities in D = 5 and D = 6 can be consistently embedded in the half-

maximally supersymmetric gauged supergravities in D = 6 and D = 7 respectively. These

allow us to construct solutions including BPS black holes and strings living in “Randall-

Sundrum 4-branes,” and BPS self-dual strings living in “Randall-Sundrum 5-branes.” We

can also lift the embeddings to ten-dimensional massive type IIA and D = 11 supergravity

respectively. In particular, we obtain a solution describing the self-dual string living in the

world-volume of an M5-brane.
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1 Introduction

The Randall-Sundrum II scenario [1] has the intriguing feature that despite the existence of

a non-compact fifth dimension, gravity is localised on the four-dimensional world-volume of

the embedded 3-brane wall. This can also be understood from a Kaluza-Klein perspective,

since one can consistently replace the Minkowski metric of the 3-brane world-volume by any

Ricci-flat metric (see, for example, [2, 3, 4]), implying that pure Einstein gravity is certainly

contained within the four-dimensional theory:

ds2
5 = e−2k |z| gµν dxµ dxν + dz2 . (1)

(The constant k will be taken to be positive throughout this paper, since it is required for

the trapping of gravity.) It is then natural to ask what kind of theory of gravity it is that

resides on the 3-brane. Clearly the answer to this question depends upon the nature of the

five-dimensional theory that is used in implementing the Randall-Sundrum scenario.

Naively, one might expect that if the five-dimensional theory is taken to be a gauged

supergravity, then the theory on the 3-brane wall would be an ungauged supergravity with

the same degree of supersymmetry, since the AdS spacetime preserves all supersymmetry.

However, unlike an ordinary Kaluza-Klein reduction on a circle, the fifth direction z in (1) is

not translationally invariant, and so in particular there will be no gauge-invariant massless

Kaluza-Klein vector arising from the reduction.1 This observation is already sufficient to

show that the reduced theory in four dimensions cannot have as much supersymmetry as

the five-dimensional gauged theory.

The situation can be clarified by looking at the Killing spinors in an AdS background,

which in horospherical coordinates is given by ds2 = e−2kzdxµ dxµ+dz2. The Killing spinors

are of two kinds, given by [6]

ε+ = e−
1
2k zε0

+ , ε− =
(
e

1
2k z − k e−

1
2k z xµ Γµ

)
ε0
− , (2)

where ε0± are arbitrary constant spinors satisfying Γz ε0± = ±ε0±. In the Randall-Sundrum

model, where the spacetime is taken to be symmetric about z = 0, one replaces z by |z| in

(2):

ε+ = e−
1
2k |z|ε0

+ , ε− =
(
e

1
2k |z| − k e−

1
2k |z| xµ Γµ

)
ε0
− , (3)

1It was recently observed in [5] that if one nevertheless writes a “standard” reduction ansatz including a

Kaluza-Klein vector, then the inevitable lack of gauge invariance does not manifest itself until beyond the

linearised level.
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Clearly half of the Killing spinors, namely ε+, will be localised on the brane at z = 0, whilst

the other half, ε− will not. This implies that the four-dimensional theory on the world-

volume of the 3-brane has only half the supersymmetry of the five-dimensional gauged

supergravity.

Thus if one considers Randall-Sundrum II in the framework of five-dimensional simple

(N = 2) gauged supergravity, the world-volume theory will then be four-dimensional simple

(N = 1) supergravity, whose bosonic sector comprises only the metric. We can also view

this as a consistent Kaluza-Klein reduction of D = 5, N = 2 gauged supergravity to D = 4,

N = 1 ungauged supergravity.

Four-dimensional N = 1 supergravity does not support any BPS p-branes. The next

simplest example in D = 4 is N = 2 Einstein-Maxwell supergravity, which admits the

well-known Reissner-Nordström black hole. Following the previous argument, we would

expect that it can be embedded, within the Randall-Sundrum picture, in N = 4 gauged

supergravity in D = 5. In section 2, we show that it is indeed the case, and so we can

construct a Reissner-Nordström black hole in the world-volume of the 3-brane wall. The

N = 4 gauged supergravity itself can be obtained from a consistent 5-sphere reduction of

type IIB supergravity [7], and so this provides a consistent embedding of Einstein-Maxwell

supergravity in the world-volume of the ten-dimensional D3-brane.

In section 3 we generalise the procedure, to show that six-dimensional ungauged simple

supergravity can be obtained as a consistent reduction of seven-dimensional N = 2 gauged

supergravity. This allows us to construct a self-dual string in the world-volume of the 5-

brane wall of the seven-dimensional gauged theory. This theory itself can be obtained as

a consistent 4-sphere reduction of D = 11 supergravity [8, 9], and so the self-dual string

can be lifted to eleven dimensions. The resulting configuration can be viewed as a self-

dual string living in the M5-brane. In a similar vein, we also show that five-dimensional

ungauged N = 2 supergravity can be obtained as a consistent reduction of six-dimensional

gauged N = 2 supergravity. This allows us to obtain solutions for Reissner-Nordström black

holes and strings living in the world-volume of the 4-brane wall. Since the six-dimensional

gauged supergravity can itself be obtained as a local S4 reduction from the massive type IIA

theory [10], we can also view these solutions as living in the world-volume of the D4/D8-

brane system.
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2 Reissner-Nordström black holes in Randall-Sundrum

2.1 Einstein-Maxwell supergravity via Randall-Sundrum

Here, we show that we can obtain ungauged four-dimensional Maxwell-Einstein (N = 2)

supergravity as a consistent Kaluza-Klein reduction of gauged five-dimensional N = 4

supergravity, within a Randall-Sundrum type of framework. The bosonic sector of the

five-dimensional theory comprises the metric, a dilatonic scalar φ, the SU(2) Yang-Mills

potentials Ai
(1), a U(1) gauge potential B(1), and two 2-form potentials Aα

(2) which transform

as a charged doublet under the U(1). The Lagrangian [11], expressed in the language of

differential forms that we shall use here, is given by [7]

L = R ∗1l− 1
2∗dφ ∧ dφ− 1

2X4 ∗G(2) ∧G(2) − 1
2X−2 (∗F i

(2) ∧ F i
(2) + ∗Aα

(2) ∧Aα
(2))

+
1
2g

εαβ Aα
(2) ∧ dAβ

(2) − 1
2Aα

(2) ∧Aα
(2) ∧B(1) − 1

2F i
(2) ∧ F i

(2) ∧B(1)

+4g2 (X2 + 2X−1) ∗1l , (4)

where X = e
− 1√

6
φ
, F i

(2) = dAi
(1) + 1√

2
g εijk Aj

(1) ∧Ak
(1) and G(2) = dB(1). It is useful to adopt

a complex notation for the two 2-form potentials, by defining

A(2) ≡ A1
(2) + iA2

(2) . (5)

Our Kaluza-Klein reduction ansatz involves setting the fields φ, Ai
(1) and B(1) to zero,

with the remaining metric and 2-form potentials given by

ds2
5 = e−2k |z| ds2

4 + dz2 ,

A(2) = 1√
2

e−k |z| (F(2) − i ∗F(2)) , (6)

where ds2
4 is the metric and F(2) is the Maxwell field of the four-dimensional N = 2 super-

gravity, and ∗ denotes the Hodge dual in the four-dimensional metric.

To show that this ansatz gives a consistent reduction to four dimensions, we note from

(4) that the five-dimensional equations of motion are [7]

d(X−1 ∗̃ dX) = 1
3X4 ∗̃G(2) ∧G(2) − 1

6X−2 (∗̃F i
(2) ∧ F i

(2) + ∗̃ Ā(2) ∧A(2))

−4
3g2 (X2 −X−1) ∗̃ 1l,

d(X4 ∗̃G(2)) = −1
2F i

(2) ∧ F i
(2) − 1

2 Ā(2) ∧A(2),

d(X−2 ∗̃F i
(2)) =

√
2 g εijk X−2 ∗̃F j

(2) ∧Ak
(1) − F i

(2) ∧G(2),

X2 ∗̃F(3) = −i g A(2) ,

RMN = 3X−2 ∂MX ∂NX − 4
3g2 (X2 + 2X−1) gMN
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+1
2X4 (GM

P GNP − 1
6gMN G2

(2)) + 1
2X−2 (F i P

M F i
NP − 1

6gMN (F i
(2))

2)

+1
2X−2 (Ā(M

P AN)P − 1
6gMN |A(2)|2) , (7)

where

F(3) = DA(2) ≡ dA(2) − i g B(1) ∧A(2) , (8)

and ∗̃ denotes a Hodge dual in the five-dimensional metric. It follows from (6) that

F(3) = − 1√
2

k ε(z) e−k |z| (F(2) − i ∗F(2)) ∧ dz + 1√
2
e−k |z| (dF(2) − i d∗F(2)) , (9)

where ε(z) = ±1 according to whether z > 0 or z < 0. Thus the equation of motion for F3

implies first of all that

dF(2) = 0 , d∗F(2) = 0 , (10)

and so then, after taking the Hodge dual of the remaining terms in (9), we find from (7)

that

− 1√
2

k ε(z) e−k |z| (∗F(2) + iF(2)) = − 1√
2

i g e−k |z| (F(2) − i ∗F(2)) , (11)

which is identically satisfied provided that

g =

{
+k , z > 0 ,

−k , z < 0 .
(12)

Since k is always positive (to ensure the trapping of gravity), this means that the Yang-

Mills gauge coupling constant g has opposite signs on the two sides of the domain wall. This

requirement is the same as the one imposed in [12] for the continuity of the Killing spinors

across the boundary. This implies, as emphasised in [13], that the Randall-Sundrum scenario

cannot arise strictly within the standard five-dimensional gauged supergravity, where g is a

fixed parameter. It has a completely natural explanation from a ten-dimensional viewpoint,

where g arises as a constant of integration in the solution for an antisymmetric tensor, and

the imposed Z2 symmetry in fact requires that the sign must change across the wall [13].

For convenience, however, we shall commonly treat the coupling constant g of the gauged

supergravity as if its sign can be freely chosen to be opposite on opposite sides of the

domain wall, with the understanding that this can be justified from the higher-dimensional

viewpoint.2

The equations of motion for X and G(2) are satisfied since for our ansatz

Ā(2) ∧A(2) = 0 (13)
2An alternative possibility, developed in [14, 12], is to introduce an auxiliary field in the supergravity

theory, with the gauge coupling constant (or mass parameter) arising as an integration constant when the

auxiliary field is eliminated.
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and ∗̃A(2) = iA(2). The only remaining non-trivial equation in (7) is the Einstein equation.

In vielbein components, the non-vanishing components of the Ricci tensor for the metric

ansatz

dŝ2 = e−2k |z| ds2 + dz2 (14)

are given by

R̂ab = e2k |z| Rab − (D − 1) k2 ηab + 2k δ(z) ηab ,

R̂zz = −(D − 1) k2 + 2k (D − 1) δ(z) , (15)

where, for future reference, we have given the general expressions for a reduction from D

to (D − 1) dimensions. Substituting into the five-dimensional Einstein equations, we find

that the “internal” (zz) component is identically satisfied, whilst the lower-dimensional

components imply k2 = g2 (consistent with (12)), and

Rµν − 1
2R gµν = 1

2(Fµρ Fν
ρ − 1

4F 2 gµν) , (16)

where Rµν is the four-dimensional Ricci tensor. Thus we have shown that the ansatz

(6), when substituted into the equations of motion for the five-dimensional N = 2 gauged

supergravity, gives rise to the equations of motion (10) and (16) of four-dimensional Einstein-

Maxwell supergravity.

The fact that the Kaluza-Klein reduction that we have performed here gives a consistent

reduction of the five-dimensional equations of motion to D = 4 is somewhat non-trivial,

bearing in mind that the five-dimensional fields in (6) are required to depend on the co-

ordinate z of the fifth dimension. The manner in which the z-dependence matches in the

five-dimensional field equations so that consistent four-dimensional equations of motion

emerge is rather analogous to the situation in a non-trivial Kaluza-Klein sphere reduction,

although in the present case the required “conspiracies” are rather more easily seen.

As in the original Randall-Sundrum model [1], an external delta-function source is

needed at z = 0, to compensate the delta function in the five-dimensional Ricci tensor

given by (15) that results from having introduced the modulus signs in |z| in (6). Smooth

gravity trapping solutions remain elusive, and may be incompatible with supersymmetry in

D ≥ 5 [15, 16, 17]. Of course if we omitted the modulus signs, our ansatz (6) would satisfy

the bulk supergravity equations everywhere.3

3We should emphasise that from a purely mathematical point of view all the Kaluza-Klein reductions

that we consider in this paper can be recast as fully exact consistent reductions, with no delta-function

sources needed, if we omit the modulus signs on z everywhere. There would also then be no sign-reversal of
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One indication of the localisation of gravity in the usual Randall-Sundrum model is the

occurrence of the exponential factor in the metric ds2
5 = e−2k |z| dxµ dxµ + dz2, which falls

off as one moves away from the wall. It is therefore satisfactory that we have found that

this same exponential fall-off occurs for the complete reduction ansatz (6), which we derived

purely on the basis of the requirement of consistency of the embedding.

In our derivation of the reduction ansatz we have concentrated on the bosonic sec-

tors of the four-dimensional and five-dimensional supergravities. Since we have proved

the consistency in the bosonic sector, and since we know that the background where the

four-dimensional metric is flat admits Killing spinors (namely the ε+ spinors given in (2)),

it follows that there must exist a straightforward extension of our ansatz to include the

fermions. In fact we can easily see that the exponential z dependence matches properly in

all the equations, with the vielbein and gauge fields having e−k |z| factors in the reduction,

while the Killing spinors have e−
1
2k |z| factors.

2.2 Lifting the Einstein-Maxwell embedding to D = 10

The consistent Kaluza-Klein reduction ansatz giving the embedding of the five-dimensional

N = 2 gauged supergravity in type IIB supergravity was derived in [7]. The internal

reduction manifold is a 5-sphere, which can conveniently be described as a foliation by

S3 × S1 surfaces. In this description, the unit S5 is given by

dΩ2
5 = dξ2 + sin2 ξ dτ2 + cos2 ξ dΩ2

3 , (17)

where 0 ≤ ξ ≤ 1
2π, 0 ≤ τ < 2π, and dΩ2

3 is the metric on the unit 3-sphere. The SU(2)×U(1)

gauge fields parameterise transitively-acting translations on this group submanifold, whilst

the dilaton φ parametrises inhomogeneous distortions of the 5-sphere. Lifting our ansatz

(6) to D = 10 is rather simple, since the scalar and SU(2)×U(1) gauge fields vanish. From

[7], we therefore find that (6) lifts to D = 10 to give

dŝ2
10 = e−2k |z| ds2

4 + dz2 + g−2
(
dξ2 + sin2 ξ dτ2 + cos2 ξ dΩ2

3

)
,

Ĥ(5) = 4g ε(5) + 4g−5 sin ξ cos3 ξ dξ ∧ dτ ∧ Ω(3) , (18)

Â(2) = −1
2g−1 sin ξ e−k |z|−i τ (F(2) − i ∗F(2)) ,

where hats denote ten-dimensional quantities, ε5 = e−4k |z| ε4∧dz, with ε4 being the volume

form of the four-dimensional metric ds2
4, and Ω(3) is the volume form of the unit 3-sphere.

the gauge-coupling constant g on passing through z = 0. However, since our goal is to describe supergravity

localised on the domain wall, it is appropriate here to introduce the modulus signs, and pay the price of

needing delta-function sources.
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The complex 2-form Â(2) is defined by

Â(2) = ARR
(2) + iANS

(2) , (19)

where ARS
(2) and ANS

(2) are the R-R and NS-NS 2-form potentials of the type IIB theory. Ĥ(5)

is the self-dual 5-form of the type IIB theory, and the ten dimensional dilaton and axion

are set to zero.

2.3 Reissner-Nordström black holes on the brane

Having shown that four-dimensional ungauged Einstein-Maxwell supergravity arises as a

consistent reduction of N = 4 gauged five-dimensional supergravity, which in turn is a

consistent S5 reduction of type IIB supergravity, we can now take any solution of the four-

dimensional theory and lift it back to D = 5 and D = 10. Examples of particular interest

are the BPS Reissner-Nordström black holes in four dimensions, given by

ds2
4 = −H−2 dt2 + H2 dyi dyi ,

F(2) = 2dt ∧ dH−1 , (20)

where H(yi) is any harmonic function in the transverse 3-space.4 This solution lifts straight-

forwardly to D = 5, using the ansatz (6):

ds2
5 = e−2k |z| (−H−2 dt2 + H2 dyi dyi) + dz2 ,

A(2) =
√

2 e−k |z| (dt ∧ dH−1 + i
2 εijk ∂iH dyj ∧ dyk) . (21)

The solution could be thought of as a string, from the viewpoint of the five-dimensional

bulk theory. After lifting further to type IIB supergravity, using (18), we obtain

dŝ2
10 = e−2k |z| (−H−2 dt2 + H2 dyi dyi) + dz2 + g−2

(
dξ2 + sin2 ξ dτ2 + cos2 ξ dΩ2

3

)
,

Ĥ(5) = 4g e−4k |z| H2 dt ∧ d3y ∧ dz + 4g−5 sin ξ cos3 ξ dξ ∧ dτ ∧Ω(3) , (22)

Â(2) = −g−1 sin ξ e−k |z|−i τ (dt ∧ dH−1 + i
2 εijk ∂iH dyj ∧ dyk) ,

where k and g are related by (12).

3 Simple supergravities embedded in gauged supergravities

In this section we shall discuss several examples of the embedding of an ungauged simple

supergravity in a gauged supergravity in one higher dimension. We already discussed the

4We could also, of course, consider magnetically-charge BPS black holes, and non-extremal black holes.
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embedding of four-dimensional simple supergravity in the introduction. Now, we shall

consider two further examples, which are of greater interest in the sense that they contain

bosonic fields other than just the metric itself, and so they admit BPS brane solutions.

3.1 Embedding minimal D = 6 supergravity in D = 7 and D = 11

Here, we shall show how simple ungauged supergravity in D = 6, whose bosonic sector

comprises the metric and a self-dual 3-form, can be embedded in seven-dimensional N =

2 gauged SU(2) supergravity. The bosonic sector of the seven-dimensional theory [18]

comprises the metric, a dilatonic scalar φ, the SU(2) Yang-Mills gauge potentials Ai
(1), and

a 3-form potential A(3). In the language of differential forms, which we shall use here, it

can be described by the Lagrangian [9]

L7 = R ∗̃ 1l− 1
2 ∗̃ dφ ∧ dφ− g2 (1

4X−8 − 2X−3 − 2X2) ∗̃ 1l− 1
2X4 ∗̃F(4) ∧ F(4)

−1
2X−2 ∗̃F i

(2) ∧ F i
(2) + 1

2F i
(2) ∧ F i

(2) ∧A(3) − 1
2
√

2
g F(4) ∧A(3) , (23)

where X ≡ e−φ/
√

10 and F(4) = dA(3), together with the self-duality condition

X4 ∗F(4) = − 1√
2
g A(3) + 1

2ω(3) , (24)

where ω(3) ≡ Ai
(1) ∧ F i

(2) − 1
6g εijkA

i
(1) ∧Aj

(1) ∧Ak
(1). In (23), ∗̃ denotes the Hodge dual in the

seven-dimensional metric.

We find that we can consistently reduce this theory to D = 6, using an ansatz where

Ai
(1) = 0 and φ = 0, together with

ds2
7 = e−2k |z| ds2

6 + dz2 ,

A(3) =
1
2k

e−2k |z| F3 , (25)

where F(3) is a 3-form in the six-dimensional world-volume of the 4-brane wall. Thus F(4) =

ε(z) e−2k |z| F(3) ∧ dz + 1/(2k) e−2k |z| dF(3) and so substituting into (24) we deduce that F(3)

must be either self-dual or anti-self dual, and dF(3) = 0. Without loss of generality we shall

take F(3) to be self-dual, and so we have

g =

{
+2
√

2 k , z > 0 ,

−2
√

2 k , z < 0 .
(26)

We find that all the seven-dimensional equations of motion (given, in our present notation,

in [9]), are satisfied provided that ds2
6 and F(3) satisfy the six-dimensional equations

Rµν = 1
4Fµρσ Fν

ρσ , F(3) = ∗F(3) , dF(3) = 0 . (27)
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These are the bosonic field equations of six-dimensional minimal ungauged supergravity.

This embedding of the minimal ungauged six-dimensional supergravity can be lifted

further, from D = 7 to D = 11, by making use of the consistent S4 reduction of D =

11 supergravity. The reduction to the maximal N = 4 gauged theory was obtained in

[8], and the reduction to the half-maximal N = 2 gauged theory that we are considering

here was constructed in [9]. In this embedding, the internal 4-sphere is described as a

foliation of S3 surfaces, with the SU(2) Yang-Mills potentials parameterising transitively-

acting translations on the group submanifold. The dilaton parameterises inhomogeneous

deformations of the 4-sphere. Since both Ai
(1) and φ vanish in our D = 7 to D = 6 reduction

ansatz (25), the lifting to D = 11 is quite simple. Using the results in [9], we obtain the

following expressions for the eleven-dimensional fields dŝ2
11 and Â(3):

dŝ2
11 = e−2k |z| ds2

6 + dz2 + 2g−2
(
dξ2 + cos2 ξ dΩ2

3

)
,

Â(3) =
1
2k

sin ξ e−2k |z| F3 + 2
√

2 g−3 sin ξ (2 + cos2 ξ)Ω(3) , (28)

where Ω(3) is the volume form of the unit 3-sphere, and again g is related to k by (26). Note

that the last term just gives a standard contribution proportional to the S4 volume form

Ω(4) = cos3 ξ dξ ∧Ω(3) in the field strength F̂(4) = dÂ(3).

Using these results, we can embed any solution of minimal ungauged six-dimensional

supergravity in a “Randall-Sundrum 5-brane wall” solution of seven-dimensional N = 2

gauged supergravity, and then in turn we can embed this in D = 11 supergravity. In

particular, we can consider a BPS self-dual string solution living in the 5-brane wall. As a

solution of the minimal six-dimensional supergravity, this is given by

ds2
6 = H−1 (−dt2 + dx2) + H dyi dyi ,

F(3) = dt ∧ dx ∧ dH−1 − 1
6∂iH εijk` dyj ∧ dyk ∧ dy` , (29)

where H(yi) is harmonic in the transverse space. Lifted to D = 7 using the ansatz (25),

this gives

ds2
7 = e−2k |z|

(
H−1 (−dt2 + dx2) + H dyi dyi

)
,

A(3) =
1
2k

e−2k |z|
(
dt ∧ dx ∧ dH−1 − 1

6∂iH εijk` dyj ∧ dyk ∧ dy`
)

, (30)

as an embedding of the self-dual string in a 5-brane wall solution of seven-dimensional

gauged supergravity.

This solution can then be further lifted back to D = 11 using (28), yielding

dŝ2
11 = e−2k |z|

(
H−1 (−dt2 + dx2) + H dyi dyi

)
+ 2g−2 (dξ2 + cos2 ξ dΩ2

3) ,
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Â(3) =
1
2k

sin ξ e−2k |z|
(
dt ∧ dx ∧ dH−1 − 1

6∂iH εijk` dyj ∧ dyk ∧ dy`
)

+2
√

2 g−3 sin ξ (2 + cos2 ξ)Ω(3) , (31)

where the relation between k and g is given in (26).

3.2 Embedding minimal D = 5 supergravity in D = 6 and D = 10

In this section, we shall show that minimal ungauged five-dimensional supergravity can be

obtained as a consistent Kaluza-Klein reduction of N = 2 SU(2)-gauged supergravity in

D = 6.

The bosonic fields in this theory comprise the metric, a dilaton φ, a 2-form potential A(2),

and a 1-form potential B(1), together with the gauge potentials Ai
(1) of SU(2) Yang-Mills.

The bosonic Lagrangian [19], converted to the language of differential forms, is [10]

L6 = R ∗̃1l− 1
2 ∗̃dφ ∧ dφ− g2

(
2
9X−6 − 8

3X−2 − 2X2
)
∗̃1l

−1
2X4 ∗̃F(3) ∧ F(3) − 1

2X−2
(
∗̃G(2) ∧G(2) + ∗̃F i

(2) ∧ F i
(2)

)
(32)

−A(2) ∧ (1
2dB(1) ∧ dB(1) + 1

3g A(2) ∧ dB(1) + 2
27g2 A(2) ∧A(2) + 1

2F i
(2) ∧ F i

(2)) ,

where X ≡ e−φ/(2
√

2), F(3) = dA(2), G(2) = dB(1) + 2
3g A(2), F i

(2) = dAi
(1) + 1

2g εijkA
j
(1) ∧ Ak

(1),

and here ∗̃ denotes the six-dimensional Hodge dual.

We find that the following Kaluza-Klein ansatz gives a consistent reduction to minimal

five-dimensional ungauged supergravity. Firstly, we set the potentials Ai
(1) and B(1) to zero,

and also set φ = 0. The remaining fields are then taken to be

ds2
6 = e−2k |z| ds2

5 + dz2 ,

G(2) =

√
2
3

e−k |z| F(2) , (33)

A(2) =

√
3
2

g−1 e−k |z| F(2) ,

and the gauge-coupling g is taken to be

g =

{
+ 3√

2
k , z > 0 ,

− 3√
2
k , z < 0 .

(34)

We find that all the six-dimensional equations of motion (given, in our notation, in [10]),

are then satisfied, provided that the fields ds2
5 and F(2) satisfy the equations of motion of

ungauged minimal five-dimensional supergravity:

Rµν − 1
2R gµν = 1

2(Fµρ Fν
ρ − 1

4F 2 gµν) ,

d∗F(2) =
1√
3

F(2) ∧ F(2) , dF(2) = 0 . (35)
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This embedding of minimal ungauged five-dimensional supergravity on a “Randall-

Sundrum 4-brane wall” solution of N = 2 gauged six-dimensional supergravity can be

further lifted to D = 10, using the fact that the six-dimensional gauged theory can be

obtained via a local S4 reduction from the massive type IIA theory [10]. Substituting the

ansatz (35) into the reduction ansatz obtained in [10], we find

dŝ2
10 = (sin ξ)

1
12

[
e−2k |z| ds2

5 + dz2 + 2g−2
(
dξ2 + cos2 ξ dΩ2

3

)]
,

F̂(4) = (sin ξ)1/3
[

20
√

2
3 g−3 cos3 ξ dξ ∧Ω(3)

+ 1√
3

g−1 g−2k |z| ∗F(2) ∧ (
√

2 cos ξ dξ − g sin ξ dz)
]
, (36)

F̂(3) = 1√
3
(sin ξ)−1/3 g−1 e−k |z| F(2) ∧ (

√
2 cos ξ dξ − g sin ξ dz) ,

F̂(2) = 1√
3
(sin ξ)2/3 e−k |z| F(2) ,

eφ̂ = (sin ξ)−5/6 , (37)

where dŝ2
10, φ̂, F̂(2), F̂(3) and F̂(4) are fields of the massive type IIA theory [20], in the notation

used in [10].

In a similar fashion to the previous examples, here we can construct non-dilatonic black

hole or string solutions in the five-dimensional ungauged supergravity, and lift them first to

solutions in the Randall-Sundrum 4-brane wall of the six-dimensional gauged theory, and

then lift these further to D = 10. In ten dimensions, the black holes or strings live in the

intersection of a D4/D8-brane system.

4 Spacetime structure and the AdS horizon

A detailed analysis of the Schwarzschild black hole, embedded in the Randall-Sundrum 3-

brane wall, was carried out in [3]. It was shown that it could be viewed as a black string

living in the five-dimensional AdS spacetime. Interestingly, although gravity is “localised on

the brane” the four-dimensional Schwarzschild black hole has a profound influence on the

spacetime geometry even out at the AdS horizon at z = ±∞, and indeed scalar curvature

invariants diverge there [3]. The solution is not expected to be stable against “pinching

off,” and it was argued in [3] that this would happen near the AdS horizon, leading to a

stable “black cigar.” In this section we shall present a directly parallel discussion for some

of our examples.

In the examples that we have considered in this paper, we can take the p-brane solutions

on the Randall-Sundrum wall to be supersymmetric BPS configurations. It is easily seen

that, as in the Schwarzschild example above, scalar curvature invariants will then diverge on
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the AdS horizon. Indeed, this can already be seen from (15), which shows that if the Ricci

tensor in the (D − 1)-dimensional spacetime of the brane wall is non-vanishing, then the

Ricci tensor of the D-dimensional bulk spacetime will diverge exponentially as |z| −→ ∞.

(This is the same degree of divergence as was encountered for curvature invariants in [3].)

For completeness, it is useful to present the full Riemann curvature for the metric reduction

ansatz (14). In the natural vielbein basis, the orthonormal components of the Riemann

tensor R̂ABCD of the D-dimensional metric are related to the components Rabcd for the

(D − 1)-dimensional metric by

R̂abcd = e2k |z| Rabcd − k2 (ηac ηbd − ηad ηbc) ,

R̂zazb = −k2 ηab + 2k δ(z) ηab . (38)

If we neglect the delta-function terms arising from the discontinuity on the brane at z = 0,

we find that the scalar invariant formed from the square of the Riemann tensor is given by

R̂ABCD R̂ABCD = e4k |z| Rabcd Rabcd − 4k2 e2k |z| R + 2D(D − 1) k4 , (39)

where R is the (D− 1)-dimensional Ricci scalar. Thus we see that in general non-vanishing

curvature in the (D − 1)-dimensional metric on the brane wall leads to exponentially-

diverging curvature on the AdS horizon, just as in [3]. A non-singular solution was con-

structed previously for a pp-wave propagating in AdS spacetime; the resulting metric is the

generalised Kaigorodov metric, which is homogeneous [21]. A detailed analysis of pp-waves

in a Randall-Sundrum brane has been given in [22].

Following [3], one can study geodesic motion in the p-brane metrics living in the Randall-

Sundrum walls. We shall first discuss the example of the BPS black holes living in the

3-brane embedded in AdS5 here. If we consider a single isotropic BPS black hole, then from

(21) the five-dimensional metric will be

ds2
5 = e−2k |z|

[
−

(
(1 +

Q

r

)−2
dt2 +

(
1 +

Q

r

)2
(dr2 + r2 dΩ2

2)
]

+ dz2 . (40)

Solving for geodesics moving in the equatorial plane, one finds that all timelike geodesics

have non-constant z, as do all null geodesics that are not merely null geodesics of the

four-dimensional metric. In the half-space z > 0 (which we may consider without loss of

generality), we then have

e−k z =

{−a sin kλ , timelike ,

−a kλ , null ,
(41)
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where λ is an affine parameter and a is a constant. Associated with the ∂/∂t and ∂/∂ϕ

Killing vectors we have the two first integrals

dt

dλ
= E e2k z

(
1 +

Q

r

)2
,

dϕ

dλ
= Le2k z

(
1 +

Q

r

)−2
r−2 , (42)

where E and L are constants. The radial equation is(dr̃

dν

)2
+

[(
1 +

Q̃

r̃

)−2
+

(
1 +

Q̃

r̃

)−4 L̃2

r̃2
− Ẽ2

]
= 0 , (43)

where we have performed the analogous transformations of the affine parameter to those in

[3], namely

ν =

{− 1
a2 k cot kλ , timelike ,

− 1
a2 k2 λ , null ,

(44)

and defined rescaled quantities

r = a r̃ , Q = a Q̃ , L = a2 L̃ , E = a Ẽ . (45)

As in [3], we have the somewhat intriguing result that after performing the redefinition (44)

of affine parameter, the radial equation (43) has reduced to the standard radial equation

for timelike geodesics in the four-dimensional metric.

From the above results, we see that geodesics reach the horizon at z = ∞ after a finite

affine parameter interval, namely for λ approaching 0 from below. It then follows from (39)

that the curvature diverges on the AdS horizon if Rabcd is non-vanishing for the metric ds2
4

on the brane. This will happen, for example, for geodesics that remain at finite r (i.e. those

describing bound-state orbits). On the other hand the geodesics that reach r = ∞ will have

ek z ∼ −1/(a k λ) and r ∼ −1/(a k2 λ). The square of the four-dimensional Riemann tensor

for the single isotropic black-hole metric ds2
4 is given by

Rabcd Rabcd =
8Q2 (Q2 + 6r2)

H8 r8
, H = 1 +

Q

r
, (46)

which goes like 48Q2/r6 as r tends to infinity. Thus we find from (39) that as the geodesic

approaches the AdS horizon, the square of the five-dimensional Riemann tensor goes like

R̂ABCD R̂ABCD ∼ 40k4 + 48Q2 a2 k8 λ2 , (47)

which therefore remains finite.

As in [3], we can settle the question of whether these geodesics are actually avoiding the

curvature singularity on the horizon by looking at the components of the Riemann tensor
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in an orthonormal frame parallelly propagated along a timelike geodesic. Such a geodesic,

with L = 0, has tangent vector uA given by

u = −(a2 e2k z − 1)1/2 dz − E dt + H2
(
E2 − a2 H−2

)1/2
dr (48)

A unit normal vector nA that is parallelly propagated (uB ∇B nA = 0) along the geodesic

is given by

n = a−1 e−k z
(
E2 − a2 H−2

)1/2
dt− a−1 E e−k z H2 dr . (49)

From (38) we then find that in the bulk,

R̂ABCD uA nB uC nD = e2k z Rabcd ua nb uc nd + k2 . (50)

Using the specific form of the Riemann tensor Rabcd for the single isotropic black hole then

gives

R̂ABCD uA nB uC nD ∼ 2Qak2

λ
(51)

as λ tends to zero, showing that the solution really does have a curvature singularity.

All of the above discussion closely parallels the discussion for the Schwarzschild black

hole in Randall-Sundrum in [3]. In that case, the fact that the solution is non-extremal

means that it is liable to suffer a Gregory-Laflamme [23] type of instability, leading to the

pinching-off of the five-dimensional black string to give a black cigar. Since we can consider

instead an extremal BPS solution, the possibility of such an instability does not then arise.

Thus in comparison to the Schwarzschild embedding, the situation here is close, but no

cigar.

More generally, we can repeat the above analysis for the self-dual string solution in

the 5-brane domain wall, and the black-hole and string solutions in the 4-brane domain

wall. We shall just summarise the results here. All the isotropic solutions in the various

dimensions that we have discussed in this paper take the form, in the bulk,

dŝ2
D = e−2k |z|

(
H−2α dxµ dxµ + H2β (dr2 + r2 dΩ2

n)
)

+ dz2 , (52)

with H = 1 + Q/rn−1, where we have

D = 5 : α = 1 , β = 1 , n = 2 , black hole ,

D = 6 : α = 1 , β = 1
2 , n = 3 , black hole ,

D = 6 : α = 1
2 , β = 1 , n = 2 , string ,

D = 7 : α = 1
2 , β = 1

2 , n = 3 , self-dual string . (53)
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For motion in the equatorial plane of the n-sphere, in the region z > 0, we shall have first

integrals
dt

dλ
= E e2k z H2α ,

dϕ

dλ
= Le2k z H−2β r−2 , (54)

and the z equation will again give

e−k z =

{−a sin kλ , timelike ,

−a kλ , null ,
(55)

We again have that as z approaches infinity, ek z ∼ −1/(a k λ) and r ∼ −1/(a k2 λ). It is

easily seen that in all the cases the square of the hatted Riemann tensor, given by (39), will

again go to zero along a timelike geodesic, as the AdS horizon is reached. Differences emerge,

however, if we now examine the components of the hatted Riemann tensor with respect to

an orthonormal frame parallely propagated along a timelike geodesic. The analogue of the

normal vector n in (49) is

n = a−1 e−k z (E2 − a2 H−2α)1/2 dt− a−1 E e−k z Hα+β dr . (56)

Calculating R̂ABCD uA nB uC nD, we now find

R̂ABCD uA nB uC nD = a2 e4k z R0101 ∼ λn−3 , (57)

where R0101 denotes the vielbein component of the (D − 1)-dimensional Riemann tensor

with 0 being time and 1 being the r diection. Thus in those cases where the transverse space

has dimension 4, so that the n-sphere has n = 3, we find that R̂ABCD uA nB uC nD remains

finite rather than diverging, as λ tends to zero. This occurs in the case of black-holes living

in the 4-brane in D = 6, and self-dual strings living in the 5-brane in D = 7. Although we

have only exhibited one parallely-propagated curvature component, it seems likely that the

same feature will occur for all the components. This is because the λn−3 dependence seen

in (57) simply arises from the trade-off between the diverging e4k z factor and the 1/rn+1

fall-off of the curvature in the (D − 1)-dimensional brane metric.

5 Discussion and conclusion

In this paper, we have shown that ungauged N = 2 supergravity arises on the four-

dimensional Randall-Sundrum 3-brane wall, obtained as a solution of N = 4 SU(2)×U(1)

gauged supergravity in five dimensions. The four-dimensional supergravity emerges through

a Kaluza-Klein mechanism, as a consistent reduction from D = 5. Any solution of the four-

dimensional N = 2 theory can therefore be lifted back to five dimensions, and it acquires
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an interpretation as a solution in the Randall-Sundrum wall. In particular, the N = 2

supergravity is large enough to admit BPS black hole solutions, and so we can view these as

living within the domain wall. Since the five-dimensional N = 4 gauged supergravity can

itself be embedded in the ten-dimensional type IIB theory, via a consistent S5 reduction

[7], the solutions can thereby be lifted to D = 10.

We also considered the consistent embeddings of ungauged minimal supergravities in

gauged supergravities for a variety of dimensions. The most immediately physically rele-

vant example would be the embedding of four-dimensional simple supergravity in N = 2

gauged five-dimensional supergravity. Since the metric is the only bosonic field in the four-

dimensional supergravity, this example does not go beyond previous results, such as in [3],

where Ricci-flat solutions such as the Schwarzschild black hole can be viewed as living on

the 3-brane. In this paper we considered instead the minimal ungauged supergravities in

D = 5 and D = 6. The former contains gravity and a 2-form field strength in its bosonic

sector, while the latter contains gravity and a self-dual 3-form. Both cases, therefore, admit

BPS solutions. We showed that the D = 5 minimal supergravity could be embedded in

six-dimensional N = 2 SU(2)-gauged supergravity, whilst the D = 6 minimal supergravity

could be embedded in seven-dimensional N = 2 SU(2)-gauged supergravity. Thus we were

able to describe higher-dimensional examples of strings and black holes living in “Randall-

Sundrum 4-branes,” and self-dual strings living in “Randall-Sundrum 5-branes.” In each

case, a further lifting can be performed, to D = 10 massive IIA, and to D = 11, respectively.

In particular, we obtain a solution describing a self-dual string living in the world-volume of

an M5-brane. As was shown in [24], half-maximal gauged supergravities can also embedded

in singular warped spacetimes in D = 11 or D = 10. The BPS back hole or string solutions

we obtained in this paper can then live in the world-volumes of intersecting M-branes or

D-branes in higher dimensions.

We concentrated on relatively simple examples of Kaluza-Klein domain-wall reductions

in this paper, but the procedure can be generalised to more complicated cases, with larger

gauged supergravities with more supersymmetries.

An analysis of the spacetime structures of the embedded solutions suggests that when

the metric on the brane wall has non-vanishing curvature, there will in general be curvature

singularities at the AdS horizons, far from the Randall-Sundrum wall. This phenomenon

was studied in [3] for a Schwarzschild black hole. Since in that case the solution is non-

supersymmetric, an instability is expected to set in near the horizon, leading to the degenra-

tion of the five-dimensional black string to a black cigar. No such instability should occur in
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our examples, if we take the solutions on the brane wall to be extremal BPS p-branes. The

divergent curvature on the AdS horizons can be taken as an indication that strong-coupling

effects are setting in, which would mean that the supergravity solution would no longer

be trustworthy in the region near the horizon. However, the analysis that we have carried

out should be valid on and near the domain wall itself, where the ungauged supergravity is

localised.
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