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ABSTRACT

We study the spacetimes of the near-horizon regions in D3-brane, M2-brane and M5-

brane configurations, in cases where there is a pp-wave propagating along a direction in

the world-volume. While non-extremal configurations of this kind locally have the same

Carter-Novotný-Horský-type metrics as those without the wave, taking the BPS limit re-

sults instead in Kaigorodov-type metrics, which are homogeneous, but preserve 1
4 of the

supersymmetry, and have global and local structures that are quite different from the cor-

responding anti-de Sitter spacetimes associated with solutions where there is no pp-wave.

We show that the momentum density of the system is non-vanishing and held fixed under

the gravity decoupling limit. In view of the AdS/CFT correspondence, M-theory and type

IIB theory in the near-horizon region of these boosted BPS-configurations specifies the cor-

responding CFT on the boundary in an infinitely-boosted frame with constant momentum

density. We model the microstates of such boosted configurations (which account for the

microscopic counting of near-extremal black holes in D = 7, D = 9 and D = 6) by those

of a boosted dilute massless gas in a d = 4, d = 3 and d = 6 spacetime respectively. Thus

we obtain a simple description for the entropy of 2-charge black holes in D = 7, 9 and

6 dimensions. The paper includes constructions of generalisations of the Kaigorodov and

Carter-Novotný-Horský metrics in arbitrary spacetime dimensions, and an investigation of

their properties.
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1 Introduction

One of the important implications of the non-perturbative aspects of M-theory is the count-

ing of microstates for near-BPS configurations such as black holes and p-branes. For near-

BPS black holes in D = 5 and D = 4, this counting can be carried out precisely, both

from the D-brane perspective [1, 2, 3, 4, 5] as well as by the counting of the small-scale

oscillations of the effective string theory in the NS-NS sector [6, 7, 8, 9, 10]. Interestingly,

these examples reduce to the counting of the degrees of freedom of an effective string the-

ory, i.e. a (1+1)-dimensional conformal field theory (CFT). (These degrees of freedom are

effectively modelled by those of a dilute gas of massless particles in 1+1 dimensions.) On

the other hand, the entropy of the D3-brane, M2-brane, and M5-brane, can be modelled

(up to a prefactor) by a dilute gas in d = 4, d = 3 and d = 6 respectively [11, 12, 13].

Maldacena’s conjecture that relates Type IIB string theory on anti-de Sitter (AdS)

spacetime to conformal field theory (CFT) on its boundary (the “AdS/CFT correspon-

dence”) [14], which has been investigated by earlier works [11, 15, 16], has initiated broad

efforts to test it at the level of the spectrum and correlation functions. One of the important

implications of the conjecture is the fresh perspective that it sheds on the microscopics of

black holes. It was observed in [17, 18] that the black holes in D = 5 and D = 4 are related

to the three-dimensional BTZ black hole [19] (see also [20]). This leads to a new derivation

of black hole entropy[21, 22], by studying the decoupling regime of the near-horizon black

hole geometry. The central observation is that, when embedded in a higher-dimensional

space, the near-horizon geometry of black holes in D = 5 [21, 23] and D = 4 [24, 25] con-

tains locally the three-dimensional anti-de Sitter spacetime (AdS3), whose quantum states

are described by a two-dimensional conformal field theory on its asymptotic boundary [26].

The counting of states in this CFT is then used to reproduce the black hole entropy for

near-extremal static [21, 24] and rotating [23, 25] black holes in D = 4 and D = 5 respec-

tively.

In this paper, we address a number of related issues:

• Near-horizon geometry of boosted p-branes/CFT in infinite-momentum frame

We address the AdSD/CFT correspondence to cases where there is a pp-wave propagat-

ing along a direction in the world-volume of the classical p-brane configuration. One has to

distinguish two cases, depending upon whether or not the configuration is BPS saturated.

In the non-BPS case, the effect of the inclusion of the pp-wave is locally equivalent to per-

forming a Lorentz boost transformation along the direction of propagation of the wave. (If
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the direction along which the pp-wave propagates is uncompactified, then the equivalence

is in fact valid globally, while if the direction is wrapped on a circle, it is only valid locally.)

For this reason, p-branes with superimposed pp-waves propagating on their world-volumes

are often referred to as boosted p-branes; one should bear in mind though that the global

structure may not be precisely describable by a Lorentz boost. In the case of BPS p-branes,

on the other hand, the inclusion of the pp-wave leads to a metric that is not even locally

equivalent to the one where there is no wave. This is because in the BPS limit the Lorentz

boost that relates the two metrics becomes singular, corresponding to a boost with velocity

approaching the speed of light. Thus in the BPS limit one has two distinct configurations,

which are not even locally equivalent, corresponding to the cases with and without the pp-

wave. In this case, although the term “boosted p-brane” is sometimes used, the expression

is somewhat of a misnomer.

For the BPS D3-brane, M2-brane and M5-brane configurations where there is no pp-

wave, the near-horizon geometries (corresponding to the decoupling limit) are those of

AdS5 × S5, AdS4 × S7 or AdS7 × S4 respectively [27, 28]. Equivalently, one can think

of performing a compactification on the 5-spheres, 7-spheres or 4-spheres that foliate the

space transverse to the p-brane, in which case, in the near-horizon regime, the corresponding

AdS spacetimes arise as solutions of the compactified theories. On the other hand, with

the inclusion of a pp-wave propagating on the BPS p-brane we find that the AdS metric

is replaced by a new type of metric, which in four dimensions was first constructed by

Kaigorodov [29]. (The four-dimensional metric is of type N in the Petrov classification.

See also discussions in [30, 31, 32].) In this paper, we construct arbitrary-dimensional

generalisations of the Kaigorodov metric, which include the D = 5, 4 and 7 cases arising

in the near-horizon regions of the boosted D3-brane, M2-brane and M5-brane. Like AdS,

these are homogeneous Einstein metrics, but they differ significantly in both their local

and global structures. In particular, although they approach AdS locally at infinity, their

boundaries are related to those of the AdS metrics by an infinite Lorentz boost. Thus

one may say that the boundary of the generalised Kaigorodov metric is in an infinite-

momentum frame. Furthermore, we show that in the gravity decoupling limit, in order to

maintain the structure of the Kaigorodov metric, the momentum density (momentum per

unit p-volume) must be held fixed. (The metric recovers the form of the AdS spactime

if instead the momentum density vanishes.) A consequence of this generalisation of the

spacetime is that the boundary theory will now be a CFT with an infinite boost, but with

a constant momentum density. This new correspondence implies that the entropy of the
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near-extremal D3-brane or M-brane with pp-wave can be modelled by a dilute massless gas

in an appropriately-boosted frame of the world-volume spacetime of the p-brane. We show

that this is indeed the case, and that the contribution to the entropy in the boosted case

is precisely accounted for by the Lorentz contraction factor 1/γ along the boost direction,

implying that the entropy density (entropy per unit p-volume) is enlarged by a factor of γ.

(This observation has also been made in [33, 34].)

The situation is somewhat different in the case of non-extremal p-branes. We show that

the spherical reductions of the configurations with pp-waves give rise to inhomogeneous

Einstein metrics, which generalise the Carter-Novotný-Horský metric [35, 36] of four di-

mensions. We again construct arbitrary-dimensional generalisations, which encompass the

cases that arise from the spherical reductions of the D3-brane, M2-brane and M5-brane,

and we study some of the pertinent properties of these metrics. As we noted above, in these

non-extremal configurations there is locally no distinction between the case where there

is a superimposed pp-wave, and the case with no pp-wave. This is because a coordinate

transformation allows the harmonic function associated with the pp-wave to be set to unity.

Consequently the local form of the Carter-Novotný-Horský metrics is the same whether or

not a pp-wave is included in the original p-brane solution. The coordinate transformation

becomes singular in the extremal limit, which explains why there are two distinct cases in the

extremal situation, leading either to the AdS or else to the generalised Kaigorodov metrics

after spherical reduction, but only the single case of the generalised Carter-Novotný-Horský

metrics in the spherically-reduced non-extremal situations.

We may summarise the situation in the following Table. If we begin with a non-dilatonic

p-brane in D̃ dimensions, and perform a dimensional reduction on the foliating (D̃− p− 2)-

spheres in the transverse space, then according to whether the p-brane is extremal or non-

extremal, and whether or not there is a superimposed pp-wave, the lower-dimensional metric

(of dimension n = p+ 2) will be of the form:

No Wave Wave

Extremal AdSn Kn

Non-extremal Cn Cn

Table 1: Spherical reductions of non-dilatonic p-branes

Here, Kn denotes the n-dimensional generalisation of the Kaigorodov metric, obtained
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in Appendix A, and Cn denotes the n-dimensional generalisation of the Carter-Novotný-

Horský metric, obtained in Appendix C.

Using the fact that horizon area, and hence entropy, is preserved under dimensional

reduction, we show how the entropies of certain of the black holes can be related to the

entropies calculated in the associated generalised Kaigorodov or Carter-Novotný-Horský

metrics. The results that we obtain in this paper are generalisations of results obtained

previously for the BTZ metrics. In particular, the extremal BTZ metric (where the angular

momentum J and mass M are related by J = M ℓ, where −2ℓ−2 is the cosmological

constant) is equivalent to K3, the specialisation of the generalised Kaigorodov metrics to the

case D = 3. Likewise, the non-extremal BTZ metric is equivalent to C3, the specialisation

of the generalised Carter-Novotný-Horský metrics to the case D = 3.

•Black-hole microstate counting for D > 5.

The above aspect of the AdS/CFT correspondence allows for a study of the microscopics

of general static near-extremal black holes in D = 7, 9 and 6. In other words, if the entire

spatial world-volume of a near-extremal D3-brane, M2-brane or M5-brane configuration

with a pp-wave is compactified on a torus, we obtain a two-charge static near-extremal

black hole in D = 7, D = 9 or D = 6 respectively. (In 6 ≤ D ≤ 9, such two-charge black

holes are generating solutions for the most general black holes of the toroidally compactified

heterotic and Type II string theories [37, 38].) We are able to model the statistical entropy

of such near-extremal black holes as a boosted dilute gas of massless particles.

Each of the two-form field strengths in a maximal supergravity can be used to construct

a single-charge black hole solution. These solutions form a multiplet under the Weyl sub-

group of the U-duality group [39]. In D = 7, 9 and 6, certain members of the multiplet

can be double-dimensionally oxidised to become the D3-brane, M2-brane and M5-brane

respectively. The entropy of such a black hole in the near-extremal regime can then be

modelled by a dilute gas in the world-volume of the corresponding p-brane. In 6 ≤ D ≤ 9,

one can construct 2-charge black holes that are generating solutions for the most general

black holes. The 2-charge solutions associated with different field configurations also form

multiplets under the Weyl subgroup of the U-duality group. Some configurations can be

viewed as intersections of p-branes in higher dimensions. In this paper, we focus on the cases

which correspond to “boosted” D3-brane and M-branes. In other words, the second charge

is carried by the Kaluza-Klein vector. In these cases, we show that the contribution to the

entropy of the system due to the Kaluza-Klein charge can be understood as a simple con-

sequence of the Lorentz contraction resulting from the boost. Thus the previously-known
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dilute gas model for the D3-brane and M-branes can be used to understand microscopically

the two-charge black holes, except that the dilute gas is now in a boosted frame, rather

than in the rest frame. In particular, when the momentum of the system is held fixed as

the boost becomes large, it is associated with the Kaluza-Klein charge in the supergravity

picture. This observation is consistent with the conjecture that M-theory or type IIB theory

on KD × SP is dual to a CFT in an infinite-momentum frame. It is worth remarking that

the approach we have adopted here for studying 2-charge black holes, by considering the

case where one of the charges is carried by a Kaluza-Klein vector, seems to be the easiest

way of tackling the problem. Other 2-charge black holes, whose higher-dimensional inter-

pretation would be as intersections of p-branes, are related to the ones we study here by

U-duality transformations. The method we adopt here, combined with U-duality, seems to

provide the easiest way for providing an interpretation for the entropy of the black holes

that correspond to intersections of p-branes,

The paper is organised as follows. In section 2, we discuss the extremal and non-

extremal M2-branes, with the inclusion of a pp-wave, and show how their dimensional

reductions on S7 give rise to the four-dimensional Kaigorodov and Carter-Novotný-Horský

metrics respectively. We compare the entropy and temperature of the D = 9 two-charge

black hole obtained by compactification on T 2 with the corresponding results for the S7

compactification, and show that they agree in the near-extremal regime. In section 3, we

generalise the results to the case of the M5-brane and the D3-brane. In section 4, we

give a brief discussion of reductions to D = 3 and D = 2, which include in particular the

BTZ black hole in D = 3. Appendix A contains our results for the generalisation of the

Kaigorodov metric to arbitrary spacetime dimensions, and in Appendix B we construct its

Killing vectors and Killing spinors. In Appendix C we generalise the Carter-Novotný-Horský

metric to arbitrary dimensions, and construct its Killing vectors.

2 M2-brane with a pp-wave

2.1 Extremal case

We first consider the intersection of an extremal M2-brane and a gravitational pp-wave in

D = 11 supergravity. The classical solution is given by

ds211 = H−2/3(−K−1 dt2 +K (dx1 + (K−1 − 1) dt)2 + dx22) +H1/3 (dr2 + r2 dΩ2
7) ,

F4 = dt ∧ dx1 ∧ dx2 ∧ dH−1 , (2.1)
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H = 1 +
Q1

r6
, K = 1 +

Q2

r6
.

It is worth mentioning that the harmonic function of a single wave in D = 11, which

would give rise to a D0-brane in D = 10, would depend on (r2 + x22)
7/2 rather than just

r6. The above solution describes a pp-wave, uniformly distributed along the world-volume

coordinate x2, and propagating in the direction of the world-volume coordinate x1.

Performing a double-dimensional reduction on the spatial coordinates x1 and x2, one

obtains a 2-charge black hole in D = 9 maximal supergravity, with the two charges carried

by the winding vector A(1)12, coming from the dimensional reduction of A(3) in D = 11, and

the Kaluza-Klein vector A1
(1). (In this paper, we adopt the notation of [37, 40] for the lower-

dimensional fields in maximal supergravities.) Note that in (2.1) we have, for simplicity,

chosen the special case where the wave propagates along the x1 direction. In general, the

wave can propagate in an arbitrary direction in the (x1, x2) plane. This is reflected in the

fact that in D = 9 maximal supergravity there are two Kaluza-Klein vectors A1
(1) and A2

(1),

which form a doublet under the GL(2, IR) global symmetry of D = 9 maximal supergravity.

To get the general solution, we can start with the above simple 2-charge solution, involving

{A(1)12,A1
(1)}, and apply an SL(2, IR) global symmetry transformation, under which A(1)12

is a singlet. Then we oxidise the solution back to D = 11, and thus obtain the solution

of the intersection of M2-brane and a wave that propagates on a general direction in the

world-volume of the M2-brane. However, since the GL(2, IR) global symmetry is nothing

but the residual part of the internal general coordinate transformations of D = 11 super-

gravity, it follows that such a wave propagating in a general world-volume direction can

be obtained from (2.1) by an appropriate general coordinate transformation. It should be

noted however that the general coordinate transformation may have the effect of altering

the global structure of the solution.

We are interested in the near-horizon geometry of the M2-brane with pp-wave (2.1).

The near horizon is defined to be the regime where Q1/r
6 >> 1, and hence the membrane

harmonic function has the form H ∼ Q1/r
6 in this region. Note that the size of the non-

vanishing wave charge (momentum) Q2 is unimportant, since we have K → K − 1 under

the general coordinate transformation [17]

t −→ 3
2 t− 1

2x1, x1 −→ 1
2t+

1
2x1 . (2.2)

It is worth mentioning that this near-horizon structure can also be obtained by a number of

somewhat different procedures, using U-duality symmetries or T-duality transformations to

change the values of the constant terms in the harmonic functions in any p-brane solution
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[17, 41, 42, 43]. (For the harmonic function K, as we have seen, it can be achieved by a mere

coordinate transformation.) The simplest way to remove the constant “1” in the harmonic

function H in (2.1) is to perform a dimensional reduction of (2.1) on the entire set of three

world-volume coordinates of the M2-brane, including the time direction. This gives rise to

an instanton solution of an eight-dimensional Euclidean-signatured supergravity, which has

an SL(2, IR) symmetry that can be used to rescale and shift the harmonic function H by

constants while leaving the structure of the solution unaltered [43]. Having performed the

symmetry transformation that leads to H → H − 1, we can oxidise the solution back to

D = 11, obtaining the near-horizon structure of (2.1). It is not clear however about the

significance and the physical interpretation of such a transformation.

The metric of the near horizon of (2.1) is given by

ds211 = Q
−2/3
1 r4 (−K−1 dt2+K (dx1+(K−1−1)dt)2+dx2)+Q

1/3
2 r−2dr2+Q

1/3
1 dΩ2

7 . (2.3)

Thus we see that the spacetime is a product M4 × S7. It is of interest to study this new

vacuum of M-theory in more detail, and in particular to study the structure of M4. Since

the coefficient of the S7 metric dΩ2
7 is a constant, it follows that M4 must be an Einstein

metric, a solution of D = 4 gravity with a pure cosmological term:

e−1L4 = R− 2Λ , (2.4)

with Λ = −12Q
−1/3
1 . Here, we choose to take the internal metric to be ds27 = Q

1/3
1 dΩ2

7.

After the S7 reduction, we obtain the four-dimensional metric

ds24 = Q
1/3
1

(
− e10ρ dt2 + e−2ρ (dx1 + e6ρ dt)2 + e4ρ dx22 + dρ2

)
, (2.5)

where eρ = r. (Note that inside the parentheses we have absorbed the charge parameters

by rescaling the world-volume coordinates. See [44] for a detailed discussion of spherical

dimensional reduction.)

It is straightforward to verify that (2.5) is an homogeneous Einstein metric, but that it

is not AdS4; in fact, it is a metric discovered first by Kaigorodov [29]. We shall denote this

metric as K4. In Appendices A and B, we discuss the properties of this metric, and we derive

its higher-dimensional generalisations. Included in this is a discussion of the symmetries of

the generalised Kaigorodov metrics, and a construction of their Killing spinors and Killing

vectors. To be specific, the K4 metric (2.5) has a 5-dimensional isometry group, and it

preserves 1/4 of the supersymmetry.

8



2.2 Decoupling limit

It is instructive to study whether there also exists a limit in this M2-brane/wave solution

where the field theory on the brane decouples from the bulk. To do this, we note that the

metric in (2.1) can be expressed, after the coordinate transformation (2.2), as

ds211 = H−2/3 (K dx21 + 2dx1 dt+ dx22) +H1/3 (dr2 + r2dΩ2
7) , (2.6)

where H = 1 + Q1/r
6 and K = Q2/r

6. The membrane charge Q1 is subject to the Dirac

quantisation condition in the presence of a 5-brane. This implies that Q1 = N ℓ6p, where N

is an integer and we define the eleven-dimensional Plank length ℓp = κ
2/9
11 . The charge Q1 is

associated with a momentum density P , viz, Q1 ∼ P ℓ9p. In the asymptotic region r → ∞,

the solution (2.6) is Minkowskian, i.e. ds2 = 2dx1 dt+ dx22 + dr2 + r2dΩ2
7. Note that in this

region x1 and t become light-cone coordinates.

Following [14], we consider the limit ℓp → 0, while keeping U = 2r2/(N ℓ3p) fixed. In

this limit, we have

Nℓ6p/r
6 >> 1 , (2.7)

and hence we can ignore the constant 1 in H. The metric (2.6) becomes

ds211 = ℓ2pN
1/3

(
1
4

[ 8P

N3/2

dx21
U

+ U2 (2dx1 dt+ dx22) +
dU2

U2

]
+ dΩ2

7

)
. (2.8)

Note that the radius of the Kaigorodov metric is half of that of the seven-sphere. If the

momentum density P of the wave vanishes, then ds2/ℓ2p is a metric on AdS4 × S7 that

depends only on N , but is independent of ℓp. The limit where gravity decouples is achieved

by taking ℓp to approach zero [14]. In our case, in order instead to maintain the form of

the Kaigorodov metric, the momentum density P must be non-vanishing and fixed. The

metric ds2/ℓ2p then becomes K4 × S7, which is independent on ℓp.

Thus we see that the decoupling limits in the two cases of the M2-brane and the boosted

M2-brane are the same, and in both cases the radius of the seven-sphere is the same, namely

R7 = N1/3 ℓp. Furthermore, in both cases the momentum density is fixed, but with the

difference that in the AdS case the momentum density is zero, whilst in the Kaigorodov case

the momentum is non-vanishing. It was conjectured in [14] that M-theory on AdS4 × S7

is dual to a 2 + 1 dimensional conformal theory. In the case of K4 × S7, the K4 can be

viewed as infinitely-boosted AdS4, and the gravitational decoupling limit that maintains the

Kaigorodov metric requires that the momentum density remains fixed and non-vanishing.

We expect that M-theory on such a metric is dual to the conformal field theory in the

infinitely-boosted frame, with constant momentum density. A natural consequence of this
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conjecture is that the entropy of the boosted M2-brane in the near-extremal regime can

be modelled by a dilute gas in a highly-boosted frame for the three-dimensional spacetime,

with constant momentum density. We shall show later that this is indeed the case.

2.3 Non-extremal case

We now turn our attention to the non-extremal M2-brane with a superimposed gravitational

pp-wave. The solution is given by

ds211 = H−2/3(−K−1 e2f dt2 +K(dx1 + cothµ2 (K
−1 − 1)dt)2 + dx22)

+H1/3(e−2fdr2 + r2dΩ2
7) ,

A(3) = coth µ1H
−1 dt ∧ dx1 ∧ dx2 , (2.9)

where

H = 1 +
κ
4/3
11 k

r6
sinh2 µ1 , K = 1 +

κ
4/3
11 k

r6
sinh2 µ2 , e2f = 1− κ

4/3
11 k

r6
, (2.10)

The horizon of the boosted M2-brane is at r+ = κ
2/9
11 k1/6. Note that in this non-extremal

case, the effect of the superimposed pp-wave can be removed by a coordinate transformation.

Specifically, the coordinate transformation (C.3) given in Appendix C maps the metric (2.9)

into the unboosted non-extremal M2-brane, with the metric

ds211 = H−2/3(−e2f dt′
2
+ dx′1

2
+ dx22) +H1/3(e−2fdr2 + r2dΩ2

7) . (2.11)

Note that the transformation (C.3) is incompatible with any periodic identification of the

x1 coordinate. Therefore it is only in the case of a wave propagating along an infinite (i.e.

unwrapped) world-volume direction on the M2-brane that it can be transformed into a solu-

tion with no wave. Note also that the coordinate transformation (C.3), which corresponds

to a Lorentz boost in the (t, x1) plane with velocity tanhµ2 (see (C.4)), becomes singular

in the extremal limit where µ2 → ∞.

The Hawking temperature and entropy per unit 2-volume of the metric (2.9) are easily

calculated to be

T =
3

2πr+
(coshµ1 coshµ2)

−1 ,

S

L1 L2
=

Area

4κ211 L1 L2

=
k7/6

4κ
4/9
11

Ω7 cosh µ1 cosh µ2 . (2.12)
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The physical interpretations of the µ1 and µ2 dependences in the entropy formula in (2.12)

are quite different. When there is no boost, i.e. µ2 = 0, in the near-extremal regime, the

entropy can be modelled as dilute gas in the M2-brane world-volume [12, 13], as we shall

review presently. On the other hand, the µ2 dependence is more easily understood. In fact,

as we discuss in appendix C, cosh µ2 is precisely the γ-factor of the Lorentz boost (C.3)

along the x1 direction, associated with the propagation of the pp-wave (see (C.4)). The

entropy of a closed system, which is a measure of the distribution of occupancy numbers

of the states, is a Lorentz invariant quantity. However, the entropy density S/(L1 L2) by

contrast is not Lorentz invariant, since under the Lorentz boost we have L1 → L′
1 = γ−1 L1

and L2 → L′
2 = L2. It follows that under the boost, the new entropy density becomes

S/(L′
1 L

′
2), which is γ times the original density. Thus after a notational change, in which

the primed periods L′
i are replaced by the unprimed periods Li, we obtain the entropy

formula given in (2.12). This provides a simple explanation for how the entropy depends

on the extra charge.1 In particular, in the near-extremal regime the microscopic entropy

of the boosted M2-brane can be modelled by a dilute massless gas in a boosted frame with

boost parameter γ = cosh µ2.

2.4 T 2 reduction

Since the solution has translational isometries on the world-volume spatial coordinates

(x1, x2), we can perform dimensional reductions on these two coordinates, thereby obtaining

a 2-charge non-extremal isotropic black hole in D = 9. The relevant part of the D = 9

dimensional Lagrangian that describes this solution is [37, 40]

e−1κ29 L = R− 1
2(∂

~φ)2 − 1
4e

~a12·~φ (F(2)12)
2 − 1

4e
~b1·~φ (F1

(2))
2 , (2.13)

where ~φ = (φ1, φ2), ~a12 = (1, 3/
√
7) and ~b1 = (−3/2,−1/(2

√
7)). The D = 9 dimensional

gravitational constant is related to the one in D = 11 as follows

κ29 =
κ211
L1L2

, (2.14)

1Note also that the fact that the charge Q2 has an interpretation as the momentum density of the wave

in the higher dimension is also easily understood. Upon performing the Lorentz boost, the transformation

from the zero-momentum frame to a frame with velocity v = tanhµ2 gives a momentum proportional to

γ v = coshµ2 tanhµ2 = sinhµ2, and the momentum density acquires a further coshµ2 dilatation factor,

giving an overall sinh 2µ2 dependence. This is exactly the way in which the charge depends on µ2, as can

be seen from (2.16).
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where L1 and L2 are the periods of the coordinates x1 and x2 respectively. The non-extremal

D = 9 black hole solution is [45, 46]

ds29 = −(HK)−6/7 e2f dt2 + (HK)1/7(e−2f dr2 + r2dΩ2
7) ,

~φ = 1
2~a12 logH + 1

2
~b1 logK ,

A(1)12 = coth µ1H
−1 dt, A1

(1) = coth µ2K
−1 dt , (2.15)

which has mass and charges given by

M = k κ
4/3
11 (6 sinh2 µ1 + 6 sinh2 µ2 + 7)L1 L2Ω7 ,

Q1 = 3k κ
4/3
11 sinh 2µ1 , Q2 = 3k κ

4/3
11 sinh 2µ2 , (2.16)

where Ω7 is the volume of the unit seven-sphere.

The Hawking temperature and entropy are easily calculated to be

T =
3

2πr+
(cosh µ1 cosh µ2)

−1 ,

S =
1

4κ29
r7+Ω7 cosh µ1 cosh µ2 =

k7/6 L1 L2

4κ
4/9
11

Ω7 coshµ1 coshµ2 . (2.17)

Note that the entropy and temperature are the same as those given in (2.12).

The number of charges of generating solutions of the most general black holes in D = 5

and D = 4 are N = 3 and N = 4 respectively;2 their global spacetime structure is the

same as that of the Reissner-Nordström black holes, since the moduli of these solutions are

finite near the horizon. As a consequence, the entropy is non-vanishing even in the extremal

limit. In D ≥ 6, the number of charges of generating black hole solutions is N = 2. These

black holes are dilatonic, meaning that the dilaton diverges on the horizon in the extremal

limit, and consequently the entropy vanishes in the extremal limit. Thus the entropy in

the near-extremal regime can best be characterised by its relation to the temperature. The

single-charge black holes in D = 9, D = 7 and D = 6 can be viewed as being essentially

equivalent to the M2-brane, D3-brane and M5-brane, since they are the double-dimensional

reductions of these branes. The entropy and temperature satisfy the ideal-gas relationship

S ∼ T p in the near extremal regime, where p is the world-volume spatial dimension of the

M-brane or D3-brane [12, 13].3

2Actually, in D = 4 the generating solution for the most general black holes is specified by N = 5 charges;

however, the metric is still of the Reissner-Nordström-type [6].
3The relation is obtained by using the expressions given in (2.17) for the entropy and temperature of the

black hole, with µ2 set to zero (so that there is no boost charge) and taking the limit where µ1 becomes

large, while keeping the charge Q1, given in (2.16), fixed. The approximation becomes a good one when

cosh µ1 and sinhµ1 can be approximated by 1
2
eµ1 .
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When the M2-brane contains also a pp-wave, and hence gives rise to a 2-charge black hole

in D = 9, the relation changes drastically; it becomes instead S ∼ T 1/5. (The calculation

in this case is similar to the previous one, except that now µ2 is also taken to be large, and

both the charges Q1 and Q2 are held fixed.) In general, a 2-charge black hole in maximal

supergravity has entropy and temperature that satisfy the relation S ∼ T 1/(D−4). As we

discussed below (2.12), the entropy density formula with the inclusion of the extra Kaluza-

Klein charge is precisely accounted for by the effect of the Lorentz contraction along the

direction of the boost.

In the next subsection, we shall show that the calculation of the entropy of the 2-charge

D = 9 black hole in the near-extremal regime can be mapped into a calculation of the

entropy of the Carter-Novotný-Horský solution to D = 4 gravity with a pure cosmological

constant.

2.5 S7 reduction

We may now look at the M2-brane with pp-wave from another angle. Note that near to the

horizon, we have H = 1 + (r+/r)
6 sinh2 µ1. It follows that we have H ∼ (r+/r)

6 sinh2 µ1

in this region, provided that the solution is nearly extremal, namely µ1 >> 1. In other

words, in the near-extremal regime the 1 in harmonic function H can be dropped near the

horizon. (As in the case of extremal solutions, the 1 in the harmonic function can in fact be

removed by U-duality or T-duality transformations.) As in the extremal case, the metric

then becomes a product, M4 × S7. Thus we can compactify on the 7-sphere, and obtain a

configuration in D = 4 that is a solution of Einstein gravity with a pure cosmological term.

It is convenient to take the internal S7 metric to be ds27 = κ
4/9
11 (k sinh2 µ1)

1/3 dΩ2
7, i.e.

the radius of the S7 is

R7 = κ
2/9
11 (k sinh2 µ1)

1/6 . (2.18)

It follows that the four-dimensional gravitational constant is given by

κ24 =
κ211
VS7

=
κ
4/9
11

(k sinh2 µ1)7/6 Ω7
. (2.19)

The four-dimensional metric resulting from the S7 reduction is given by

ds24 = (κ
4/3
11 k sinh2 µ1)

−2/3 r4 (−K−1 e2f dt2 +K(dx1 + coth µ2 (K
−1 − 1) dt)2 + dx22)

+(κ
4/3
11 k sinh2 µ1)

1/3 e−2f dr2

r2
. (2.20)

This is a solution to the Einstein equations coming from the Lagrangian e−1 κ4 L = R−2Λ,

where Λ = −12(κ
4/3
11 k sinh2 µ1)

−1/3. The metric (2.20) is no longer homogeneous when the
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non-extremality factor e2f is present. It is in fact an Einstein metric found by Carter [35],

and by Novotný and Horský [36]. (See also [31]).) In the asymptotic regime r → ∞ we have

e2f → 1, and the metric becomes the Kaigorodov metric, discussed in the previous section.

The entropy of the solution (2.20) is given by a quarter of the area of the horizon, which

is spanned by the spatial coordinates x1 and x2:

S =
Area

4κ24

=
L1L2

4κ
4/9
11

k7/6 Ω7 sinhµ1 cosh µ2 . (2.21)

In the near-extremal limit µ1 >> 1 we have sinhµ1 ∼ cosh µ1, and hence the four-

dimensional entropy (2.21) is the same as the entropy (2.17) of the nine-dimensional black

hole. Analogously, the Hawking temperature that one calculates for the four-dimensional

metric (2.20) is the same as the expression given in (2.17) for the D = 9 black hole, except

that again the cosh µ1 factor is replaced instead by sinhµ1. Again, this means that the

D = 9 black-hole calculation and the D = 4 calculation with the Carter-Novotný-Horský

metric agree in the near-extremal limit when µ1 >> 1.

The agreement of the entropies stems from the fact that dimensional reduction and

oxidation leave entropies invariant. To see this, let us consider a metric in D̃ dimensions

with an horizon of area A
D̃
. The entropy is then given by S = Ã

D̃
/(4κ2

D̃
). If we perform

a dimensional reduction on an internal space that has volume V , to give rise to a D-

dimensional metric, then the area of the horizon is A = Ã/V , and hence the entropy

becomes S = A/(4κ2D) = Ã/(4κ2D V ). Thus the entropy is preserved under dimensional

reduction, since κ2
D̃

= κ2D V . It is for this same reason that the entropy of black holes in

D = 5 andD = 4 can be mapped to the problem of BTZ black holes in D = 3. Of course the

agreement that we are seeing here operates only in the near-extremal regime where µ1 >> 1,

since we made the approximation that the constant term in the harmonic function H could

be neglected, in our derivation of the four-dimensional Carter-Novotný-Horský metric by

reduction on the seven-sphere.4

4In [17, 18], the solutions for Reissner-Nordström-type black holes in D = 5 and D = 4 were mapped into

three-dimensional BTZ solutions, where the entropy was shown to agree with the original black-hole results

in D = 5 and D = 4. The mappings were implemented using duality symmetries to shift the constant term

in the harmonic function H to zero. Although it was shown in [17, 18] that a mapping could be found that

leads to an exact agreement for the two entropy calculations, it would seem that other valid mappings could

instead have been performed for which the agreement would be seen only in the near-extremal limit.
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2.6 Microscopic entropy and boosted dilute gas

The correspondence of M-theory on K4 × S7 and CFT on an infinite momentum frame

provides a possible microscopic interpretation of 2-charge black holes in D = 9. As we have

mentioned, in the case where there is no pp-wave propagating on the M2-brane, the entropy

and temperature in the near-extremal regime satisfy the ideal-gas relation S ∼ T 2 in two-

dimensional space [12]. When the pp-wave is superimposed in the M2-brane, the entropy

is a natural consequence of the Lorentz contraction along the direction of the associated

boost, which leads to the appropriate dilation of the entropy density, as discussed in detail in

section 2.3. Thus in the near-extremal regime, the entropy can be modelled microscopically

as a dilute massless gas in a boosted frame, viz. S = coshµ2 Sdilute gas. This formula applies

to any boost. If the boost is finite, then in the limit towards extremality, the momentum of

the system becomes zero, and it corresponds to the single-charge solution. If on the other

hand, we hold the momentum density k e2µ2 fixed and finite while boosting the system

towards speed of light, it corresponds to the near-extremal regime of the 2-charge black

hole in D = 9, and the extra charge is associated with the momentum. Note that this is a

natural consequence of the conjecture that M-theory on the K4 × S7 background is dual to

the 2 + 1 dimensional conformal field theory in an infinitely-boosted frame with constant

momentum density, where K4 is the four-dimensional Kaigorodov metric.

3 M5-brane or D3-brane with a pp-wave

3.1 M5-brane

The discussion in the previous section can be equally applied to the M5-brane and the

D3-brane. We shall first look at the extremal M5-brane in the presence of a pp-wave. The

supergravity solution is given by

ds211 = H−1/3(−K−1 dt2 +K (dx1 + (K−1 − 1) dt)2 + dx22 + · · · + dx25)

+H2/3 (dr2 + r2 dΩ2
4) ,

F4 = ∗(dH−1 ∧ d6x), (3.1)

H = 1 +
Q1

r3
, K = 1 +

Q2

r3
,

where d6x is the volume form on the 5-brane world-volume. To be precise, the solution

describes a 5-brane in D = 11, with a wave, uniformly distributed on the world-volume

coordinates (x2, . . . , x5), and propagating in the world-volume direction x1.
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The dimensional reduction of (3.1) on all five spatial 5-brane world-volume coordinates

gives rise to a 2-charge black hole in D = 6. One charge is the magnetic charge carried by

the 4-form field strength F4, and the other is the electric charge carried by the Kaluza-Klein

2-form field strength F1
(2). We are also interested in the S4 reduction, and, in particular,

the reduction in the near-horizon limit r → 0. In this regime, we have Q1/r
3 >> 1, and

hence the constant 1 in the harmonic function H can be dropped. The space then becomes

a product K7 × S4, viz

ds211 = Q
−1/3
1 r (−K−1 dt2 +K (dx1 + (K−1 − 1)dt)2 + dx22 + · · ·+ dx25)

+Q
2/3
1 r−2dr2 +Q

2/3
1 dΩ2

4 . (3.2)

Compactifying the solution on the S4, with ds24 = Q
2/3
1 dΩ2

4, we obtain the seven-dimensional

Einstein metric

ds27 = Q
2/3
1

(
− e4ρ dt2 + e−2ρ (dx1 + e3ρ dt)2 + eρ (dx22 + · · · dx25) + dρ2

)
. (3.3)

This is precisely the generalised Kaigorodov metric in D = 7, which is derived and its

properties discussed in detail in Appendices A and B. The metric (3.3), which we denote

by K7, is homogeneous and Einstein, and is a solution to D = 7 gravity with a pure

cosmological term5 e−1L7 = R− 5Λ with Λ = −24Q
−2/3
1 .

We shall now consider the limit where the dynamics of the 5-brane decouples from the

bulk. Note that we have Q1 = Nℓ3p and Q2 = P ℓ9p, where P is the momentum density of

the five-dimensional world spatial volume. Following [14], we consider the limit ℓp → 0 with

U = 1
2

√
r/(N ℓ3p) fixed. In this case, we have that Nℓ3p/r

3 >> 1, and hence 1 in function H

can be dropped, giving rise to the metric

ds211 = ℓ2pN
2/3

(
4
[ P

64N3

dx21
U4

+ U2 (2dx1 dt+ dx22 + · · ·+ dx25) +
dU2

U2

]
+ dΩ2

4

)
. (3.4)

Thus the decoupling limit for the M5-brane/wave system is the same as for the pure M5-

brane, but giving rise to K7×S4 or AdS7×S4 respectively. In the latter case, the momentum

density P vanishes, whilst in the former case the momentum density is fixed but non-

vanishing. Thus we expect that M-theory on K7 ×S4 is dual to the (0, 2) conformal theory

in an infinitely-boosted frame, with constant momentum density.

5Note that in D dimensions, the Einstein-Hilbert action with cosmological term L = eR − e (D − 2) Λ

gives rise to the Einstein equations Rµν = Λ gµν . Thus the somewhat unusual-looking normalisation for the

cosmological term in the action is needed in order to have a canonical-looking form for the Ricci tensor for

the Einstein metric.
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The discussion for the non-extremal case is straightforward. The solution in D = 11 is

given by

ds211 = H−1/3(−K−1 e2f dt2 +K(dx1 + coth µ2 (K
−1 − 1)dt)2 + dx22 + · · ·+ dx25)

+H2/3(e−2fdr2 + r2dΩ2
4) ,

F(4) = coth µ1 ∗(dH−1 ∧ d6x) , (3.5)

where

H = 1 +
κ
2/3
11 k

r3
sinh2 µ1 , K = 1 +

κ
2/3
11 k

r3
sinh2 µ2 , e2f = 1− κ

2/3
11 k

r3
, (3.6)

The horizon of the boosted M5-brane is at r+ = κ
2/9
11 k1/3. (Again, as we discussed for the

M2-brane, locally in this non-extremal case the harmonic function K associated with the

wave can be set to 1 by the coordinate transformation (C.3).)

First, let us consider the double-dimensional reduction on the world-volume coordinates

(x1, x2, . . . , x5). This gives rise to a 2-charge non-extremal isotropic black hole in D = 6.

The relevant Lagrangian is given by [37, 40]

e−1 κ26 L6 = R− 1
2(∂

~φ)2 − 1
48e

~a·~φ (F(4))
2 − 1

4e
~b1·~φ (F1

(2))
2 , (3.7)

where ~φ = (φ1, . . . , φ5) and

~a = (−1
2 ,−3/(2

√
7),−

√
3/7,−

√
3/5) ,

~b1 = (−3
2 ,−1/(2

√
7),−1/

√
21,−1/

√
15) . (3.8)

The six-dimensional gravitational constant is given by κ26 = κ211/(L1 · · ·L5), where Li is the

period of the coordinate xi.

The six-dimensional non-extremal black hole is given by [45, 46]

ds26 = −(HK)3/4 e2f dt2 + (HK)1/4(e−2f dr2 + r2dΩ2
4) ,

~φ− 1
2~a logH + 1

2
~b1 logK ,

F(4) = coth µ1 e
−~a·~φ ∗(dH−1 ∧ dt) A2

(1) = coth µ2K
−1 dt . (3.9)

It is straightforward to see that its entropy is

S =
Area

4κ26
,

=
L1 · · ·L5

κ
10/9
11

Ω4 k
4/3 coshµ1 coshµ2 . (3.10)
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As in the extremal case, we can also consider the S4 reduction of the non-extremal

boosted M5-brane. In particular, we consider the near-extremal case, for which the con-

stant 1 in the harmonic function H can be neglected near the horizon. The space becomes

a product M7 × S4. The metric of the internal 4-sphere is ds24 = κ
4/9
11 (k sinh2 µ1)

2/3 dΩ2
4,

and thus its radius is R4 = κ
2/9
11 (k sinh2 µ1)

1/3. It follows that the seven-dimensional grav-

itational constant is given by

κ27 =
κ211
VS4

=
κ
10/9
11

(k sinh2 µ1)4/3 Ω4
. (3.11)

By performing a dimensional reduction on the four-sphere we arrive at the seven-

dimensional metric

ds27 = (κ
2/3
11 k sinh2 µ1)

−1/3 r
(
−K−1 e2f dt2 +K(dx1 + cothµ2 (K

−1 − 1) dt)2

+dx22 + · · ·+ dx25

)
+ (κ

2/3
11 k sinh2 µ1)

2/3 e−2f dr2

r2
. (3.12)

This solution is still an Einstein metric, but it is no longer homogeneous. It is in fact the

seven-dimensional generalisation of the Carter-Novotný-Horský metric, which we obtain

in Appendix C. In the asymptotic regime r → ∞ the metric approaches the generalised

homogeneous Kaigorodov metric discussed in Appendices A and B. The entropy of the

metric (3.12) is given by

S =
Area

4κ27

=
L1 · · ·L5

κ
10/9
11

Ω4 k
4/3 sinhµ1 cosh µ2 , (3.13)

which agrees with (3.10) in the near-extremal limit µ1 >> 1. Note that when there is no

boost on the M5-brane, the entropy and temperature satisfy the ideal-gas relation S ∼ T 5

of five-dimensional space, in the near-extremal regime [12]. When the solution is largely-

boosted, this relation becomes S ∼ T 1/2. The µ2 dependence of the entropy density is again

the natural consequence of the Lorentz contraction on the world-volume, associated with

the boost, and hence the entropy density is enlarged by coshµ2, which is the γ-factor of the

Lorentz boost. Thus the near-extremal entropy can be modelled by a dilute massless gas in a

boosted frame. A particular interesting case is to highly boost the dilute gas while hold the

momentum density k e2µ2 fixed. This corresponds to the near-extremal 2-charge black holes

in D = 6. This boosted dilute gas model of the 2-charge black hole entropy is consistent

with the conjecture that M-theory on K7 × S4 is dual to the CFT in an infinitely-boosted

frame, with constant momentum density.
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3.2 D3-brane

The D3-brane is supported by the self-dual 5-form in the type IIB theory. The solution for

an extremal D3-brane in the presence of a gravitational pp-wave is given by

ds211 = H−1/2(−K−1 dt2 +K (dx1 + (K−1 − 1) dt)2 + dx22 + dx23)

+H1/2 (dr2 + r2 dΩ2
5) ,

F5 = dH−1 ∧ d4x+ ∗(dH−1 ∧ d4x), (3.14)

H = 1 +
Q1

r4
, K = 1 +

Q2

r4
,

where d4x is the volume form on the world-volume of the D3-brane. Note that the wave

is uniformly distributed on the plane (x2, x3) in the world-volume, and it propagates along

the x1 direction.

The dimensional reduction of (3.14) on all three spatial 3-brane world-volume coordi-

nates gives rise to a 2-charge black hole in D = 7. In the case instead of the S5 reduction of

the near-horizon limit r → 0, the constant 1 in the harmonic function H can be dropped,

and the spacetime then becomes a product K5×S5, where K5 is the generalised Kaigorodov

metric in D = 5:

ds210 = Q
−1/2
1 r2 (−K−1 dt2 +K (dx1 + (K−1 − 1)dt)2 + dx22 + dx23)

+Q
1/2
1 r−2dr2 +Q

1/2
1 dΩ2

4 . (3.15)

Compactifying the solution on the S5, with ds25 = Q
1/2
1 dΩ2

5, we obtain the five-dimensional

Einstein metric

ds25 = Q
1/2
1

(
− e6ρ dt2 + e−2ρ (dx1 + e4ρ dt)2 + e2ρ (dx22 + dx23) + dρ2

)
. (3.16)

This is precisely the generalisation of the Kaigorodov metric to D = 5, derived in Appendix

A, which is a solution to D = 5 gravity with a pure cosmological term e−1L5 = R − 3Λ

with Λ = −16Q1−1/2.

We may again consider the limit where the dynamics of the D3-brane decouples from the

bulk. Note that we have Q1 = Nℓ4p and Q2 = Pℓ8p, where ℓp = κ
1/4
10 and P is the momentum

density of the world-volume spatial dimensions. Note also that we have ℓ2p = g1/2 α′ where

g is the string coupling constant. In the limit ℓp → 0, with U = r/(
√
N ℓ2p) fixed, one has

Nℓ4p/r
4 >> 1, and hence the 1 in the harmonic function H can be dropped [14], giving rise

to the metric

ds210 = ℓ2pN
1/2

( P

N2

dx21
U2

+ U2 (2dx1 dt+ dx22 + dx23) +
dU2

U2
+ dΩ2

5

)
. (3.17)
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Thus we see that in this limit, the metric ds10/ℓ
2
p is independent on ℓp, and the system has a

fixed wave-momentum P . If P is zero, it reduces to the previously-known AdS5×S5 metric.

When P is instead non-vanishing, we have K5×S5. Since the generalised Kaigorodov metric

K5 is an infinitely-boosted AdS5, we expect that string theory on this K5 × S5 background

is dual to N = 4, D = 4 Yang-Mills theory on an infinitely-boosted frame, with constant

momentum density P .

Analogously, we may again consider also the non-extremal solution with a superimposed

gravitational pp-wave,

ds211 = H−1/2(−K−1 e2f dt2 +K(dx1 + coth µ2 (K
−1 − 1)dt)2 + dx22 + dx23)

+H1/2(e−2fdr2 + r2dΩ2
5) ,

F5 = coth µ1(dH
−1 ∧ d4x+ ∗(dH−1 ∧ d4x)) , (3.18)

where

H = 1 +
κ10 k

r4
sinh2 µ1 , K = 1 +

κ10 k

r4
sinh2 µ2 , e2f = 1− κ10 k

r4
. (3.19)

The horizon of the non-extremal boosted D3-brane is at r+ = κ
1/4
10 k1/4. As for the non-

extremal M-branes discussed previously, the coordinate transformation (C.3) locally maps

the solution (3.18) to the unboosted one, where K = 1.

First, let us consider the double-dimensional reduction on the world-volume coordinates

(x1, x2, x3). This gives rise to a 2-charge non-extremal isotropic black hole in D = 7. The

relevant Lagrangian that describes this solution is

e−1 κ27 L7 = R− 1
2(∂

~φ)2 − 1
44e

~a34·~φ (F(2)34)
2 − 1

4e
~a12·~φ (F(2)12)

2 , (3.20)

where ~φ = (φ1, . . . , φ4) and

~a12 = (1, 3/
√
7,−1/

√
21,−1/

√
15) ,

~a34 = (−1
2 ,−3/(2

√
7), 4/

√
21, 4/

√
15) . (3.21)

The seven-dimensional gravitational constant is given by κ27 = κ210/(L1L2L3), where Li is

the period of the coordinate xi.

The seven-dimensional non-extremal 2-charge black hole is given by

ds27 = −(HK)4/5 e2f dt2 + (H K)1/5(e−2f dr2 + r2dΩ2
5) ,

~φ = 1
2~a34 logH + 1

2~a12 logK ,

A(1)34 = coth µ1H
−1 dt , A(1)12 = coth µ2K

−1 dt . (3.22)
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It is straightforward to see that the entropy of the black hole is

S =
Area

4κ27
,

=
L1L2L3

κ
3/4
10

Ω5 k
5/4 coshµ1 cosh µ2 . (3.23)

Let us now consider instead the S5 reduction of the boosted D3-brane. In the near-

extremal limit, the constant 1 in H can be dropped near the horizon, and hence the

spacetime becomes a product M5 × S5. The metric of the internal 5-sphere is ds25 =

κ
1/2
10 (k sinh2 µ1)

1/2 dΩ2
5, and so its radius is R5 = κ

1/4
10 (k sinh2 µ1)

1/4. It follows that the

five-dimensional gravitational constant is given by

κ25 =
κ210
VS5

=
κ
3/4
11

(k sinh2 µ1)5/4 Ω5
. (3.24)

Implementing the S5 reduction, we obtain the five-dimensional generalisation of the

Carter-Novotný-Horský metric, derived in Appendix C:

ds25 = (κ10 k sinh2 µ1)
−1/2 r2

(
−K−1 e2f dt2 +K(dx1 + coth µ2 (K

−1 − 1) dt)2

+dx22 + dx23

)
+ (κ10 k sinh2 µ1)

2/3 e−2f dr2

r2
. (3.25)

Again this solution is still Einstein, but it is no longer homogeneous. In the asymptotic

region r → ∞, the metric approaches the generalised homogeneous Kaigorodov metric. The

entropy of the metric (3.25) is given by

S =
Area

4κ25

=
L1L2L3

κ
3/4
10

Ω4 k
5/4 sinhµ1 coshµ2 , (3.26)

which agrees with (3.23) in the near-extremal limit µ1 >> 1. In the case where the wave

is absent, the entropy and temperature satisfy the ideal-gas relation S ∼ T 3; however, the

presence of the wave alters the relation, and it becomes S ∼ T 1/3. As in the previous cases,

the µ2 dependence of the entropy density is a natural consequence of the Lorentz contraction

along the direction of the boost on the world-volume, implying that the entropy density

is enlarged by the factor cosh µ2, which is the γ-factor of the Lorentz boost. Thus in the

near extremal regime, the system can be modelled by an ideal gas in a boosted frame in

four dimensional spacetime. When the system is highly boosted, but with the momentum

density k e2µ2 held fixed, then it gives rise to the entropy of the near-extremal 2-charge

black hole in D = 7. This is consequence of the correspondence that type IIB supergravity
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on K5 × S5 is dual to the D = 4, N = 4 Yang-Mills theory in an infinitely-boosted frame,

with constant momentum density, where K5 is the five-dimensional generalisation of the

Kaigorodov metric.

4 Dyonic string with pp-wave

Lower dimensional examples such as AdS3 and AdS2 also arise as the near-horizon limits of

supergravity p-branes. AdS3 × S3 is the near horizon of the dyonic string in D = 6. When

a wave is propagating on the worldsheet of the string with momentum density P , it gives

rise to a 3-charge non-dilatonic black hole in D = 5. The metric of the spacetime AdS3×S3

plus a wave is given by

ds6 = ℓ2p
√
N1N2

( P

N1N2
dx2 +

2r2

N1N2 ℓ4p
dx dt+

dr2

r2
+ dΩ2

3

)
, (4.1)

where ℓp = κ
1/2
6 , and N1, N2 are the electric and magnetic charges of the dyonic string, and

P is the momentum density of the wave. Note that if P = 0, the three-dimensional metric

obtained by dimensional reduction on S3 is AdS3, in horospherical coordinates. When P

is non-vanishing, owing to the degeneracy of three-dimensional gravity,6 the metric is still

locally AdS3, but the global structure is different; this is the D = 3 case of the generalised

Kaigorodov metrics obtained in Appendix A. This metric is equivalent to the BTZ black-hole

metric [19], in the extremal limit where J = M ℓ (here −2ℓ−2 is the cosmological constant).

The boundaries of the AdS3 and three-dimensional Kaigorodov (or extremal BTZ) met-

rics are different: In horospherical coordinates, the boundary of AdS3 is a two-dimensional

Minkowski spacetime, whilst in the above metric, the boundary is two-dimensional a space-

time in the infinite-momentum frame. The gravitational decoupling limit is ℓp → 0, while

keeping U = r/
√
N1N2 ℓ4p fixed.

The different global structures of the horospherical AdS3 and the spacetime arising in

the case where there is a pp-wave can also be seen from the entropy/temperature relation

in the near-extremal regime. When there is a wave propagating on AdS3, we have S ∼ T 0.

On the other hand when the wave is absent, we have S ∼ T , which is the ideal-gas relation

in one dimension. When the extra Kaluza-Klein charge is included, the new parameter

µ2 in (3.26) is again the natural consequence of the associated Lorentz contraction of the

volume, implying the dilation of the entropy density by a factor of γ = coshµ2. Thus the

6In three dimensions the Riemann tensor is characterised completely by the Ricci tensor, and consequently

any three-dimensional Einstein metric with negative cosmological constant is locally equivalent to AdS3.
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microscopic entropy of the classical solution with the presence of the wave can be modelled

by a dilute massless gas in a two-dimensional spacetime in a boosted frame. In particular

the three-charge BPS black hole in D = 5 has non-vanishing entropy, which corresponds

microscopically to a dilute gas in an infinitely-boosted frame, but with the momentum

density held fixed.

AdS2 spacetime arises in supergravity as the near-horizon geometry of the extremal

Reissner-Nordström-type black hole in D = 5 and D = 4. Its boundary is one dimensional,

and hence there can be no propagating wave.

5 Conclusions and Discussion

In this paper, we have studied the three cases of single-charge non-dilatonic p-branes, namely

the M2-brane and M5-brane of M-theory, and the D3-brane of the type IIB string, in the

presence of a gravitational pp-wave propagating in the world-volume. When dimensionally

reduced on all the spatial world-volume coordinates, these configurations give rise to 2-

charge black holes in D = 9, 6 and 7. One of the charges comes from the original 4-form or

5-form antissymmetric tensor charge in D = 11 or D = 10, while the other is carried by a

Kaluza-Klein vector. If the configuration is non-extremal, the effect of the inclusion of the

pp-wave is locally equivalent to a Lorentz boost on the world-volume of the p-brane, but for

extremal configurations the corresponding boost would be singular, with a boost velocity

equal to the speed of light.

The near-horizon structure of the M2-brane, M5-brane or D3-brane with a pp-wave

is of a product form, M4 × S7, M7 × S4 or M5 × S5, where in the extremal case Mn

is the n-dimensional generalisation Kn of the four-dimensional Kaigorodov metric. In

the non-extremal case Mn is the n-dimensional generalisation Cn of the four-dimensional

Carter-Novotný-Horský metric. The metrics Kn, which we construct in Appendix A, are

homogeneous Einstein metrics. The metrics Cn, which we construct in Appendix C, are

inhomogeneous Einstein metrics. Since the local structure of the non-extremal p-branes is

the same whether or not there is a pp-wave present, there are only global differences be-

tween the structures of the generalised Carter-Novotný-Horský metrics that correspond to

the p-branes with and without the pp-wave. On the other hand in the extremal case there

is no non-singular boost that can relate the solution with the pp-wave to the one without,

and for this reason the generalised Kaigorodov metric Kn is not even locally the same as

the AdSn metric which would arise in the Mn×Sphere product in the near-horizon limit
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of the extremal p-brane with no pp-wave. In Appendix B we construct the Killing vectors

and Killing spinors on the generalised Kaigorodov metrics. In particular, we find that Kn

admits just 1/4 of the maximal number of Killing spinors that occur on AdSn.

We have argued that by considering the extremal M2-brane, M5-brane or D3-brane in

the presence of a pp-wave, the conjectured relations between supergravity in AdSn and con-

formal field theories on its boundary can be generalised to relations between supergravity

on the Kaigorodov-type metric Kn and a CFT on its boundary. Specifically, this boundary

is related to the usual AdSn boundary by an infinite Lorentz boost, and so the expected

conformal field theories will now be related to those of the AdSn backgrounds by a singular

passage to the infinite-momentum frame. The decoupling limit, where the gravitational

constant is sent to zero, requires holding the momentum density of the wave fixed. This

correspondence is consistent with the supersymmetries of the two theories. In the super-

gravity picture, the Kaigorodov metric preserves just 1/4 of the supersymmetry. On the

rest-frame CFT side, the superconformal invariance enhances supersymmetry by doubling

the number of conserved supercharges. In the infinitely-boosted frame, the non-vanishing

momentum implies that half of the original supersymmetry, as well as the superconformal

symmetry is also broken. Thus it follows that the theory has just 1/4 of the conserved

supercharges.

We also considered the macroscopic and microscopic entropies of 2-charge black holes

in D = 9, 7 and 6 in their near-extremal regimes. We showed that these entropies are

related to those of the corresponding single-charge black holes by factors that can be ac-

counted for as Lorentz contractions of the world-volume along the direction of the boost

that relates the solutions with and without the pp-wave. Consequently, the microscopic

entropy of such a near-extremal black hole can be described in terms of a boosted dilute

gas of massless particles on the world-volume of the original p-brane. In other words, we

have S = coshµ2 Sdilute gas, for any boost parameter γ = coshµ2. (We also showed that

the macroscopic entropy of the 2-charge black holes in their near-extremal regimes can also

be calculated in the associated generalised Carter-Novotný-Horský metrics, obtained by

dimensionally-reducing the original p-brane plus pp-wave solutions on the foliating spheres

of the transverse space.) If we consider a dilute gas on the world-volume of the p-brane in a

highly-boosted frame, but with the momentum density fixed, then the entropy and temper-

ature satisfy a relation S ∼ T 1/(d̃−2), where d̃ is the dimension of the foliating sphere of the

space transverse to the p-brane. This observation suggests that the co-dimension (d̃ + 1)

of the p-brane seems to be encoded in the CFT theory on an infinitely-boosted frame with
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constant momentum density.

It is worth remarking that the Kaigorodov metric in D = 4 arises as the near-horizon

geometry of the intersection of an M2-brane and a pp-wave, which is the oxidisation of

a ten-dimensional D0-brane. This may lead to a connection between the CFT and the

M(atrix) model on an AdS background.

We should like to conclude with proposals for future study, beyond the scope of this

paper. In the CFT in the infinitely-boosted frame, the only surviving states are those

with purely transverse polarisations, and their correlation functions should reflect this fact.

Note also that in the rest-frame CFT the correlation functions are usually calculated in

a Euclideanised spacetime, while in the current context the Minkowskian nature of the

spacetime becomes crucial. On the dual side, this information about the field excitations is

encoded in the perturbations of the background of the Kaigorodov-type metrics (the near-

horizon region of BPS p-branes with pp-waves). It is thus of interest to address these issues

both in the CFT and on the gravity side, in order to shed further light on the nature of the

correspondence in the infinitely-boosted frame.

Acknowledgments

We are very grateful to Gary Gibbons and Steven Siklos for discussions about the

Kaigorodov metric, to Igor Klebanov and Juan Maldacena for discussions on CFT in boosted

frames, and decoupling limits, and Glen Agnolet, Mike Duff, Zachary Guralnik, Randy

Kamien, Tom Lubensky and Akardy Tseytlin for discussions.

Appendices

A D-dimensional generalisation of the Kaigorodov metric

Let us consider the following family of metrics in D = n+ 3 dimensions:

ds2 = −e2aρ dt2 + e2bρ (dx+ e(a−b)ρ dt)2 + e2cρ dyi dyi + dρ2 , (A.1)

where a, b and c are arbitrary constants. It is easily seen that these encompass the metrics

that we obtained in this paper by the spherical dimensional reduction of the extremal M2-

brane, M-5-brane and D3-brane with pp-waves. Choosing the natural orthonormal basis

e0 = eaρ dt , e1 = ebρ (dx+ e(a−b)ρ dt) , e2 = dρ , ei = ecρ dyi , (A.2)
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where 3 ≤ i ≤ n+2, we find that the torsion-free spin connection, defined by dea = −ωa
b∧eb,

ωab = −ωba, is given by

ω01 =
1
2(a− b) e2 , ω0i = 0 , ω02 = −a e0 + 1

2 (a− b) e1 ,

ω12 = b e1 + 1
2 (a− b) e0 , ω1i = 0 , ω2i = −c ei , ωij = 0 . (A.3)

It is immediately evident from this that the metrics are homogeneous, since all orthonormal

components of the spin connection, and hence of the curvature, are constants. Consequently,

all curvature invariants are constants. We find that the curvature 2-forms, defined by

Θab = dωab + ωa
c ∧ ωcb, are given by

Θ01 =
1
4(a+ b)2 e0 ∧ e1 , Θ02 =

1
4(a

2 + 6ab− 3b2) e0 ∧ e2 − b(a− b) e1 ∧ e2 ,

Θ0i = ac e0 ∧ ei − 1
2c(a− b) e1 ∧ ei , Θij = −c2 ei ∧ ej ,

Θ12 = −1
4(a

2 − 2ab+ 5b2) e1 ∧ e2 − b(a− b) e0 ∧ e2 ,

Θ1i = −bc e1 ∧ ei − 1
2c(a− b) e0 ∧ ei , Θ2i = −c2 e2 ∧ ei . (A.4)

From this, we find that the Ricci tensor has the vielbein components

R00 =
1
2a

2 + 2ab− 1
2b

2 + n ac , R11 = −1
2a

2 − 3
2b

2 − n bc ,

R22 = −1
2(a+ b)2 − n c2 , Rij = −(a+ b+ n c) c δij ,

R01 = −1
2(a− b) (2 b + n c) . (A.5)

Requiring that the metrics be Einstein, namely that the vielbein components of the

Ricci tensor obey Rab = Λ ηab, we find that there are exactly two inequivalent solutions, viz.

AdSn+3 : a = b = c = 2L , (A.6)

Kn+3 : a = (n+ 4)L , b = −nL , c = 2L , (A.7)

where L = 1
2

√
−Λ/(n + 2) and the cosmological constant Λ is negative. The first family

of Einstein metrics corresponds to anti-de Sitter spacetime in D = n+ 3, while the second

family corresponds to D = n + 3 homogeneous Einstein metrics that generalise the Kaig-

orodov metric of four dimensions. Note that this second family, of generalised Kaigorodov

metrics, can be written in the form

ds2 = e−2nLρ dx2 + e4Lρ (2dx dt + dyi dyi) + dρ2 . (A.8)

Substituting the constants a, b and c given by (A.7) into (A.4), we find that the curvature

2-forms Θab for the generalised Kaigorodov metrics can be written in terms of the Weyl
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2-forms Cab =
1
2Cabcd e

c ∧ ed, where Cabcd is the Weyl tensor, as follows

Θab = −4L2 ηac ηbd e
c ∧ ed + Cab . (A.9)

Here, the Weyl 2-forms are given by

C12 = −C02 = nµ (e0 − e1) ∧ e2 ,

C0i = −C1i = µ (e0 − e1) ∧ ei , (A.10)

C01 = Cij = C2i = 0 ,

where µ = 2(n + 2)L2. Thus we see that the Weyl tensor is non-zero in the generalised

Kaigorodov metrics, although it has a a rather simple structure. Note that the vielbein

combination e0−e1 that appears in all the non-vanishing Weyl 2-form components is simply

given by e0 − e1 = −ebρ dx. The vector dual to the 1-form −(e0 − e1) is simply K(0) =

∂/∂t. This is a null Killing vector, and a zero eigenvector of the Weyl tensor, satisfying

Cabcd K
d
(0) = 0. The generalisations of the Kaigorodov metric that we have obtained here can

be interpreted as describing gravitational waves propagating in an anti-de Sitter spacetime

background. (This is discussed for four-dimensional Kaigorodov metric itself in [32].)

In the case of four dimensions, the Kaigorodov metric is of type N in the Petrov classifica-

tion (see, for example, [31]). If we define the dual of the Weyl tensor by C̃abcd =
1
2ǫabef C

ef
cd,

and thence the complex Weyl tensor Wabcd ≡ Cabcd + i C̃abcd, then it is easily seen that we

can write Wabcd in the null form Wabcd = −4Vab Vcd, where the 2-form V = 1
2Vab e

a ∧ eb is

given by

V =

√
−Λ

8
(e0 − e1) ∧ (e2 − i e3) . (A.11)

The null Killing vector K(0) = ∂/∂t is the quadruple Debever-Penrose null vector of the

type-N Weyl tensor [32].

In three dimensions, the Kaigorodov metric becomes simply ds2 = dx2+2e4Lρ dx dt+dρ2.

This can be seen to be equivalent to the extremal limit of the BTZ black-hole metric

described in [19], where the angular momentum J and mass M are related by J = M ℓ, and

−2ℓ−2 is the cosmological constant.

The family of Einstein metrics in (A.6), by contrast, corresponds to the AdS metrics,

with

ds2 = e4Lρ (−dt2 + (dx+ dt)2 + dyi dyi) + dρ2 ,

= e4Lρ (−dt2 + dx′
2
+ dyi dyi) + dρ2 , (A.12)
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where in the second line we have made the coordinate redefinition x′ = x + t to give the

metric its standard horospherical form. The Weyl tensor of course vanishes for this solution,

and so then the curvature 2-forms are simply given by (A.9) with Cab = 0.

Note that the AdS metrics can be obtained from the generalised Kaigorodov metrics by

taking an appropriate singular limit. If we make the redefinitions

x −→ λ√
2
(x+ t) , t −→ 1

λ
√
2
(x− t) , (A.13)

to the coordinates x and t appearing in the generalised Kaigorodov metrics (A.8), and then

send the constant λ to zero, we find that (A.8) limits to the AdS metric given in the second

line of (A.12). Of course the fact that a singular limit is involved in this procedure means

that the AdS and Kaigorodov metrics are inequivalent, as evidenced, for example, by the

fact that the AdS metrics have vanishing Weyl tensor while the generalised Kaigorodov

metrics do not.

B Killing vectors and spinors in the Kaigorodov metrics

It is easily seen by inspection that the following are (12n
2 + 3

2n + 3) Killing vectors of the

generalised Kaigorodov metrics:

K(0) =
∂

∂t
, K(x) =

∂

∂x
, K(i) =

∂

∂yi
,

L(i) = x
∂

∂yi
− yi

∂

∂t
, L(ij) = yi

∂

∂yj
− yj

∂

∂yi
, (B.1)

J =
∂

∂ρ
− a t

∂

∂t
− b x

∂

∂x
− c yi

∂

∂yi
, (B.2)

where a, b and c are given by (A.7). The K(0), K(x) and K(i) Killing vectors mutually

commute, and the rest of the algebra of the Killing vectors is

[J,K(0)] = aK(0) , [J,K(x)] = bK(x) , [J,K(i)] = cK(i) ,

[J,L(i)] = (a− c)L(i) , [J,L(ij)] = 0 ,

[K(x), L(i)] = K(i) , [L(i),K(j)] = δij K(0) , [L(ij),K(k)] = −δik K(j) + δjk K(i) ,

[L(i), L(j)] = 0 , [L(ij), L(k)] = −δik L(j) + δjk L(i) ,

[L(ij), L(kℓ)] = −δik L(jℓ) + δjk L(iℓ) − δjℓL(ik) + δiℓ L(jk) . (B.3)

Since the metrics are homogeneous, these symmetries act transitively on the spacetimes. In

the four-dimensional case, we have the previously-known five-dimensional group of symme-

tries on the Kaigorodov spacetime [29].
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The Killing spinor equation in a D-dimensional spacetime is

Dµ ǫ
± = ±

√

− Λ

D − 1
Γµ ǫ

± , (B.4)

where Dµ = ∂µ + 1
4ω

ab
µ Γab. Thus for the generalised Kaigorodov metrics described above,

the equation becomes Dµ ǫ
± = ±1

2cΓµ ǫ
±.

It is instructive first to consider the integrability conditions for the existence of Killing

spinors. The simplest of these is the 2’nd-order condition that results from taking a commu-

tator of the derivatives D̄±
µ ≡ Dµ ∓ 1

2cΓµ arising in the Killing spinor equation D̄±
µ ǫ± = 0.

Thus we obtain the condition

Hµν ǫ
± ≡ 4[D̄±

µ , D̄
±
ν ] ǫ

± = Rµνρσ Γ
ρσ ǫ± + 2c2 Γµν ǫ

± = 0 . (B.5)

Note that the quantity Hµν can be written simply as Hµν = Cµνρσ Γ
ρσ, where Cµνρσ is

the Weyl tensor, discussed in the previous section. Upon substitution of the Riemann

tensor, (B.5) gives algebraic conditions on the Killing spinors ǫ±, in the form of projection

operators formed from the Γ matrices. These are necessary conditions for the existence

of Killing spinors, and in many cases they are also sufficient. (See [47] for a discussion

of higher-order integrability conditions for Killing spinors.) However, as we shall see, for

the generalised Kaigorodov metrics these 2’nd-order integrability conditions are not in fact

sufficient. Before proceeding to study (B.5), therefore, let us present also the 3’rd-order

integrability condition that follows by taking a further derivative of (B.5), and using the

original Killing spinor equation again. Thus we obtain

H±
λµν ǫ

± ≡ (∇λRµνρλ)Γ
ρσ ǫ± ∓ 2cRµνλρ Γ

ρ ǫ± ± 2c3 (gνλ Γµ − gµλ Γν) ǫ
± = 0 . (B.6)

From (A.4), and substituting the solution for a, b and c in (A.7), we find that the

quantities Hµν in the 2’nd-order integrability condition (B.5) are given by

H02 = 2n(n+ 2)L2 (Γ02 + Γ12) , H0i = −2(n + 2)L2 (Γ0i + Γ1i) ,

H12 = −2n(n+ 2)L2 (Γ02 + Γ12) , Hi1 = 2(n + 2)L2 (Γ0i + Γ1i) , (B.7)

H01 = 0 , Hij = 0 , H2i = 0 . (B.8)

Thus the integrability conditions Hµν ǫ
± = 0 imply that ǫ± must satisfy

Γ01 ǫ
± = ǫ± . (B.9)

One might be tempted to think that this were the only condition, in which case the Killing

spinors would preserve half of the maximal supersymmetry. However, as foreshadowed
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above, higher-order integrability can place further constraints in certain cases, and in fact

the present example is one such. It suffices to consider just one special case among the

3’rd order conditions implied by (B.6). Consider, for example, the components H±
10i of

H±
λµν . The covariant derivative of the Riemann tensor can be evaluated using the general

expression ∇µ Vν = ∂µ Vν + (ων
ρ)µ Vρ, and after some algebra we find that ∇1R0iρσ Γ

ρσ =

8(n+2)L2 Γ2i. Substituting into (B.6), we therefore find that H±
10i = 8(n+2)L2 (Γ2i±Γi),

implying that ǫ± must also satisfy the condition

Γ2 ǫ
± = ±ǫ± , (B.10)

in addition to (B.9). In principle we should examine all the components of H±
λµν , but the

upshot is that no further conditions result. The simplest way to prove this is by moving

now to an explicit construction of Killing spinors that satisfy the two conditions (B.9) and

(B.10).

Substituting the spin connection (A.3) into this, we find that the Killing spinors must

satisfy the following system of equations:

∂ǫ±

∂t
+ 1

4 (a+ b) ea ρ (Γ02 + Γ12) ǫ
± = ±1

2c e
a ρ (Γ0 + Γ1) ǫ

± ,

∂ǫ±

∂x
+ eb ρ

(
1
2bΓ12 − 1

4(a− b) Γ02

)
ǫ± = ±1

2c e
b ρ Γ1 ǫ

± ,

∂ǫ±

∂yi
− 1

2c e
c ρ Γ2i ǫ

± = ±1
2c e

c ρ Γi ǫ
± ,

∂ǫ±

∂ρ
− 1

4(a− b) Γ01 ǫ
± = ±1

2cΓ2 ǫ
± . (B.11)

It is easily seen from these equations and from (A.7) that the Killing spinors are given by

ǫ± = e
1
2
(n+4)L ρ ǫ±0 , where ǫ±0 is any constant spinor that satisfies the conditions

Γ2 ǫ
±
0 = ±ǫ±0 , Γ01 ǫ

±
0 = ǫ±0 , (B.12)

implying that ǫ± satisfies the conditions (B.9) and (B.10) that followed from integrability.

Thus by combining the necessary conditions coming from integrability with the sufficient

conditions coming from the explicit solutions, we conclude that we have found the general

solutions for the Killing spinors in the generalisation of the Kaigorodov spacetime, and that

they preserve 1/4 of the supersymmetry.
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C Generalisations of Carter-Novotný-Horský metrics

The form of the metrics that arise in the spherical reduction of the non-extremal p-brane

plus wave solutions is

ds2 = c1 e
2d̃ρ/d

(
−K−1 e2f dt2 +K (dx1 + coth µ2 (K

−1 − 1)dt)2 + dyi dyi
)
+ c2 e

−2f dρ2 ,

(C.1)

(see, for example, (2.20) or (3.12)), where e2f = 1−k e−d̃ρ and K = 1+k sinh2 µ2 e
−d̃ρ. (We

are setting the gravitational constants κ to unity here, for convenience.) Let us consider

two cases. First, when the charge for the harmonic function K associated with the wave is

zero, so that K = 1, we have µ2 = 0 and hence the metric (C.1) becomes

ds2 = c1 e
2d̃ρ/d

(
− e2f dt2 + dx21 + dyi dyi

)
+ c2 e

−2f dρ2 . (C.2)

Now, consider instead the case where the charge associated with the wave is non-zero.

Let us make the following Lorentz boost on the coordinates (t, x1):

x1 = x′1 coshµ2 + t′ sinhµ2 ,

t′ = x′1 sinhµ2 + t′ coshµ2 . (C.3)

Note that in terms of the velocity v for the boost along x1, we have simply

x1 = γ (x′1 − v t′) , t = γ (t′ − v x′1) , (C.4)

where

v = tanhµ2 , γ = (1− v2)−1/2 = coshµ2 . (C.5)

After simple algebra, we find that the metric (C.1) becomes

ds2 = c1 e
2d̃ρ/d

(
− e2f dt′

2
+ dx′1

2
+ dyi dyi

)
+ c2 e

−2f dρ2 , (C.6)

which is identical in form to the previously-obtained metric (C.2).7 Note that the Lorentz

boost (C.3) is a valid coordinate transformation only if the coordinate x1 is not periodic,
7Of course the Lorentz boost (C.3) can equally well be applied not only to the spherically-reduced metrics

considered in this appendix, but also to the original non-extremal p-branes with superimposed pp-waves. In

fact any non-extremal solution with a superimposed pp-wave can be mapped by the transformation (C.3)

into a solution where the wave momentum vanishes and hence the associated harmonic function K becomes

just the identity. A particularly striking example is when a non-extremal black hole supported only by

a charge for a Kaluza-Klein vector is oxidised back to the higher dimension. In this case, the coordinate

transformation (C.3) maps the higher-dimensional wave metric into a purely Minkowski metric. An example

of this is the non-extremal D0-brane in D = 10, which, after oxidation to a wave in D = 11, can then be

mapped into Minkowski spacetime. Note that this cannot be done in the extremal limit, since the boost

transformation (C.3) then becomes singular.
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but instead ranges over the entire real line. Thus it is only when x1 is non-periodic that

the effect of the Kaluza-Klein charge can be “undone” by the Lorentz boost (C.3).

If x1 is non-periodic, the spherical reductions of the non-extremal pure M2-brane, M5-

brane and D3-brane are identical, up to a Lorentz boost in the (t, x1) plane, to the spherical

reductions of the non-extremal M2-brane, M5-brane and D3-brane that also have a pp wave

propagating on the world volume. The Lorentz boost that relates the two cases becomes

an infinite boost in the extremal limit µ2 → ∞. This explains why the spherical reductions

give two distinct types of metric in the extremal cases, namely AdS if there is no pp-wave,

and the generalised Kaigorodov metric if there is a pp-wave propagating on the original

p-brane world-volume.

In the non-extremal case, we have seen from the above discussion that there is just the

one type of metric to consider after spherical reduction, namely (C.2), regardless of whether

or not there is a pp-wave propagating on the original p-brane.

Thus the general class of D = n + 3 dimensional metrics that arises by the spherical

dimensional reduction of non-extremal boosted p-branes is included in the class of metrics

ds2 = −e2aρ+2f dt2 + e2bρ (dx+ e(a−b)ρ dt)2 + e2cρ dyi dyi + e−2f dρ2 , (C.7)

where a, b and c are constants, and the function f is given by

e2f = 1− k e−(a−b)ρ . (C.8)

(In obtaining the metric form (C.7) from (C.1), we have performed coordinate transforma-

tions that would not be valid globally if x1 were a periodic coordinate. For the present

purposes we are principally concerned with local properties of the metrics, for which this

point is not essential. If x1 is non-compact, ranging over the entire real line, the transfor-

mations are in any case globally valid.)

We find that (C.7) is an dimensional Einstein metric if the constants a, b and c are

given, as previously in the generalised Kaigorodov metrics in (A.7), by

a = (n + 4)L , b = −nL , c = 2L , (C.9)

where again the cosmological constant Λ is related to L by L = 1
2

√
−Λ/(n+ 2). Note that

the Einstein metrics can then be written in the form

ds2 = e−2nLρ dx2 + e4Lρ (2 dx dt + k dt2 + dyi dyi) + (1− k e−2(n+2)Lρ)−1 dρ2 . (C.10)

In the natural orthonormal basis e0 = eaρ+f dt, e1 = ebρ (dx + e(a−b)ρ dt), e2 = e−f dρ,

ei = ecρ dyi, we find that with the constants a, b and c taking their Einstein-metric values
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(C.9), the curvature 2-forms can be written in terms of the Weyl 2-forms Cab as Θab =

−4L2 ηac ηbd e
c ∧ ed + Cab, where Cab = CKiag.

ab + C̃ab, with CKaig.
ab being the Weyl 2-forms

for the Kaigorodov metric, as given by (A.10), and

C̃01 = 2nα e0 ∧ e1 , C̃02 = 2nα e0 ∧ e2 + 2n(n+ 2)L2 (ef − 1) e1 ∧ e2,

C̃0i = −4α e0 ∧ ei − 2(n + 2)L2 (ef − 1) e1 ∧ ei ,

C̃12 = 2n(n+ 1)α e1 ∧ e2 + 2n(n+ 2)L2 (ef − 1) e0 ∧ e2,

C̃1i = −2nα e1 ∧ ei − 2(n+ 2)L2 (ef − 1) e0 ∧ ei ,

C̃2i = −2nα e2 ∧ ei , C̃ij = 4α ei ∧ ej , (C.11)

where α = k L2 e−2(n+2)ρ. Note that with the generalisations of the Carter-Novotný-Horský

metrics written in the form (C.10), we regain the generalisations (A.8) of the Kaigorodov

metric simply by setting k = 0. It can be seen from (C.11) that the Weyl tensor reduces to

(A.10) in this limit.

With the metric written in the form (C.10), it is easy to write down the Killing vectors.

First of all, there are manifest shift symmetries for all the coordinates x, t and yi. In

addition, there are certain rotational symmetries in the (t, x, yi) hyperplane. Thus there

are in total (12n
2 + 3

2n+ 2) Killing vectors, given by

K(0) =
∂

∂t
, K(x) =

∂

∂x
, K(i) =

∂

∂yi
,

L(i) = yi
∂

∂t
− (x+ k t)

∂

∂yi
, L(ij) = yi

∂

∂yj
− yj

∂

∂yi
. (C.12)

Note that these non-extremal metrics have one less Killing vector than the extremal gener-

alised Kaigorodov metrics discussed previously, since there is no longer a symmetry under

which the coordinate ρ is shifted while making compensating scale transformations of the

other coordinates. Thus there is no longer an analogue of the J Killing vector in (B.1) in

this case. In the four-dimensional case, there are now four Killing vectors. Note that in all

dimensions the non-extremal Einstein metrics (C.10) are inhomogeneous. This can be seen

by calculating the curvature invariant Rµνρσ Rµνρσ, which turns out to be dependent on the

coordinate ρ.

As one would expect for spacetimes coming from the dimensional reduction of non-

extremal solutions, there are no Killing spinors in the generalised Carter-Novotný-Horský

metrics.

The four-dimensional case (n = 1) of the above metrics corresponds to a previously-

encountered solution. In general, for arbitrary n, let us define a new radial coordinate R,
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related to ρ by

e(n+2)Lρ =
√
k cosh((n+ 2)LR) . (C.13)

In terms of R, the metrics (C.10) become

ds2 =
(√

k cosh((n + 2)LR)
)4/(n+2) [

k−1 (dx+ kdt)2 − k−1 tanh2((n+ 2)LR) dx2

+dyi dyi
]
+ dR2 . (C.14)

It is now easily seen that after simple coordinate transformations, this metric in the four-

dimensional case n = 1 becomes equivalent to the metric given in (13.32) of [31], which was

found in this form by Novotný and Horský [36]. It is a special case of a general class of

four-dimensional Einstein metrics found by Carter in [35].

In three dimensions, the Carter-Novotný-Horský metric becomes simply ds2 = dx2 +

e4Lρ (2dx dt + k dt2) + (1 − k e−4Lρ)−1 dρ2. This can be seen to be equivalent to the BTZ

black-hole metric described in [19].
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