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ABSTRACT

We consider type IIB configurations carrying both NS-NS and R-R electric and magnetic

3-form charges, and whose near horizon geometry contains AdS3 × S3. Noting that S3 is

a U(1) bundle over CP 1 ∼ S2, we construct the dual type IIA configurations by a Hopf

T-duality along the U(1) fibre. In the case where there are only R-R charges, the S3 is

untwisted to S2×S1 (in analogy with a previous treatment of AdS5×S5). However, in the

case where there are only NS-NS charges, the S3 becomes the cyclic lens space S3/Zp with

its round metric (and is hence invariant when p = 1), where p is the magnetic NS-NS charge.

In the generic case with NS-NS and R-R charges, the S3 not only becomes S3/Zp but is also

squashed, with a squashing parameter that is related to the values of the charges. Similar

results apply if we regard AdS3 as a bundle over AdS2 and T-dualise along the fibre. We

show that Hopf T-dualities relate different black holes, and that they preserve the entropy.

The AdS3×S3 solutions arise as the near-horizon limits of dyonic strings. We construct an

O(2, 2;ZZ) multiplet of such dyonic strings, where O(2, 2;ZZ) is a subgroup of the O(5, 5) or

O(5, 21) six-dimensional duality groups, which captures the essence of the NS-NS/R-R and

electric/magnetic dualities.
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1 Introduction

The six-dimensional space AdS3 × S3 emerges as the near horizon geometry [1, 2] of the

self-dual string [3, 4] or, more generally, the dyonic string [5, 4, 6, 7]. The dyonic string

admits the ten-dimensional interpretation [5] of an intersecting NS-NS 1-brane and 5-brane,

which in a type II context is in turn related by U-duality to the D1-D5 brane system

[8, 9, 10, 11, 12]. This geometry plays a part in recent studies of black holes [14, 15, 16,

17, 18, 19, 10, 11, 12, 20] and has attracted a good deal of attention lately [21, 22, 23, 24,

12, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 13] following the conjectured duality [21]

between physics in the bulk of the anti-de Sitter spacetimes and conformal field theories on

their boundary. AdS3 is particularly interesting in this regard because the conformal field

theory is then of the familiar and well-understood 1 + 1 dimensional variety.

In a previous paper [37], devoted mainly to AdS5 × S5, we noted that odd-dimensional

spheres S2n+1 may be regarded as U(1) bundles over CPn and that this permits an un-

conventional type of T-duality along the U(1) fibre that we called “Hopf” duality. This

Hopf duality has the effect of untwisting S2n+1 to CPn ×S1. Applying this to S5, we were

able to construct the duality chain: n = 4 Yang-Mills → type IIB string on AdS5 × S5

→ type IIA string on AdS5 × CP 2 × S1 → M-theory on AdS5 × CP 2 × T 2. In an earlier

paper [38], devoted mainly to AdS4×S7, we exhibited the duality: M-theory on AdS4×S7

→ type IIA string on AdS4 × CP 3. In both contexts, similar techniques were also ap-

plied to more general spaces AdS×M where M are Einstein spaces that are not necessarily

spheres. These emerge as the near horizon geometries of supermembranes with fewer Killing

spinors [39, 40, 41] and whose boundary conformal field theories have correspondingly less

supersymmetry [42, 37, 40, 43, 44].

In the present paper, we wish to apply these techniques to find type IIA and M-theory

duals of six-dimensional type IIB AdS3 × S3 configurations obtained by either T 4 or K3

compactifications. The novel ingredient is that these can be supported by both NS-NS and

R-R 3-forms, in contrast to the AdS5×S5 example where the 5-form was strictly R-R. This

has some interesting and unexpected consequences. Noting that S3 is a U(1) bundle over

CP 1 ∼ S2, we construct the dual type IIA configurations by a Hopf T-duality along the

U(1) fibre. In the case where there are only R-R charges, the S3 is untwisted to S2 × S1

(in analogy with a previous treatment of AdS5 × S5). However, in the case where there

are only NS-NS charges, the S3 becomes the cyclic lens space S3/Zp with its round metric

(and is hence invariant when p = 1), where p is the magnetic NS-NS charge. In the generic

case with NS-NS and R-R charges, the S3 not only becomes S3/Zp but is also squashed,
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with a squashing parameter that is related to the values of the charges. Similar results

apply if we regard AdS3 as a bundle over AdS2 and T-dualise along the fibre. We note that

these Hopf dualities preserve the area of the horizons, and hence they preserve the black

hole entropies. In particular, we show in appendix D that a Hopf reduction of a single 3-

charge isotropic black hole in D = 5 gives a 4-charge black hole in D = 4, where the fourth

charge is of unit strength, and comes from the magnetic charge carried by the Kaluza-Klein

vector. The reduction coordinate in this case is the U(1) fibre coordinate of the foliating

3-spheres in the transverse space of the D = 5 black hole. In general Hopf reduction and

Hopf T-duality not only relate the near-horizon limits of black holes, but also relate the full

solutions themselves. We show also that this statement extends to all p-branes, including

non-extremal ones, that have 4-dimensional overall transverse spaces. In all cases, the Hopf

reduction maps an N -charge solution in D+1 dimensions to an (N +1)-charge solution in

D dimensions.

Studying the T-duality and the U-duality multiplets of BPS solitons in the full theories

obtained from the T 4 or K3 reductions of ten-dimensional supergravities is a complicated

matter, owing to the large number of fields, and the size of the global symmetry groups in

D = 6. For this reason, it is helpful to make truncations of the six-dimensional theories, to

more manageable subsectors that capture the essential features that we wish to study. We

therefore begin, in section 2, by making a consistent truncation of six-dimensional maximal

supergravity, to a subsector of bosonic fields that includes two 2-form potentials, one NS-NS,

and the other R-R. We show that this theory has an O(2, 2) ∼ SL(2, IR)1×SL(2, IR)2 global
symmetry. The SL(2, IR)1 describes an S-duality symmetry that interchanges the NS-NS

and R-R 2-form potentials, while the SL(2, IR)2 is an electric/magnetic duality symmetry

of the 3-form field strengths, which acts locally only at the level of the equations of motion.

This consistent truncation is most conveniently constructed from the toroidal reduction in

the type IIB field variables. We then consider a different consistent truncation, which is

most conveniently obtained from the toroidal reduction in the type IIA fields variables. In

fact the two truncations are characterised by the feature that the six-dimensional fields

that are retained are precisely the original ten-dimensional ones, with the spacetime indices

simply restricted to run over the six-dimensional range, and in addition the breathing-mode

scalar parameterising the volume of the 4-torus. For this reason, the truncated theories can

equally well be obtained by compactifying the type IIB and type IIA theories on K3, and

following the identical prescription for which fields to retain.

The two truncated theories in D = 6 are related by a T-duality transformation upon
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reduction on S1 to D = 5. In section 2, supplemented by appendix A, we obtain the

above truncations and perform the S1 reductions on the two theories. We then derive

the explicit T-duality transformations relating them. In appendix B, we study the O(2, 2)

symmetry in detail, and give the explicit transformation rules. In appendix C, we use these

transformation rules to construct an O(2, 2;ZZ) multiplet of dyonic strings carrying four

independent charges, namely electric and magnetic charges for each of the NS-NS and R-R

3-forms. We then extend these results to boosted and twisted dyonic strings. Since all

the solutions are obtained as solutions in a consistent truncation, the dyonic strings are

therefore solutions of the original supersymmetric theories, and in fact they are, as usual,

BPS states preserving some fraction of the supersymmetry.

In section 3, we study the near-horizon AdS3 × S3 limits of the dyonic strings. Noting

that S3 can be described as a U(1) bundle over S2, we perform a Hopf T-duality transfor-

mation on the U(1) fibres, and show that the S3 can be untwisted or squashed, as described

previously. In the case of solutions supported purely by NS-NS fields, we also supply a CFT

proof that strings on S3/Zm with 3-form flux n are dual to strings on S3/Zn with 3-form

flux m.

In section 4, we perform a similar Hopf T-duality transformation on the AdS3 instead,

exploiting the fact that AdS3 can analogously be written in the form of a bundle over

AdS2. In section 5 we perform simultaneous Hopf T-duality transformations on the fibres

of S3 and AdS3. Section 6 addresses the issue of supersymmetry and the Hopf T-duality

transformations. We construct the Killing spinors on AdS3 and S
3 explicitly, in coordinates

appropriate to the bundle descriptions, and show that Hopf T-duality on AdS3 or S3 ei-

ther preserves all or none of the supersymmetry, at the level of the massless Kaluza-Klein

modes in supergravity, depending on the orientation of the fibration. We also discuss the

supersymmetry in the context of the full string theory.

In section 7, we list all the non-dilatonic black holes in D = 5 and D = 4, and study their

near-horizon limits when they are oxidised to D = 6. We show that all the near-horizon

limits can be obtained by Hopf T-duality on AdS3 × S3.

2 O(2, 2) truncation of maximal supergravity in D = 6

We begin from the Lagrangian in D = 6 obtained by dimensional reduction of type IIB on a

4-torus. Since we want to consider AdS3× S3 solutions that carry both NS-NS and R-R 3-

form charges, we first make a consistent truncation to a subset of the fields that includes the
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necessary pair of 3-forms. We can do this by just retaining the subset of fields comprising

the reductions of the original FNS
(3) and FRR

(3) fields themselves, together with the axion χ1

and the dilaton φ̂ of D = 10 type IIB, and the axion χ2 coming from the dualisation of the

potential B(4). (All details of the full reduction are given in [45].) In D = 6, we obtain

e−1L6 = R− 1
2(∂φ̂)

2 − 1
2(∂~ϕ)

2 − 1
2e

2φ̂ (∂χ1)
2 − 1

2e
−2~a·~ϕ (∂χ2)

2

− 1
12e

−φ̂+~a·~ϕ (FNS
(3) )

2 − 1
12e

φ̂+~a·~ϕ (FRR
(3) )

2 + χ2 dA
NS
(2) ∧ dARR

(2) , (2.1)

where FNS
(3) = dANS

(2) and FRR
(3) = dARR

(2) + χ1 dA
NS
(2). Here ~ϕ denotes the set of 4 dilatonic

scalars coming from the reduction on T 4, and ~a is a constant vector that can be found

in [45], characterising the couplings of the field strengths to the dilatonic scalars ~ϕ. The

combinations of the dilatons ~ϕ that are perpendicular to ~a can also be consistently truncated,

resulting in the Lagrangian

e−1 L6B = R− 1
2(∂φ1)

2 − 1
2(∂φ2)

2 − 1
2e

2φ1 (∂χ1)
2 − 1

2e
2φ2 (∂χ2)

2

− 1
12e

−φ1−φ2 (FNS
(3) )

2 − 1
12e

φ1−φ2 (FRR
(3) )

2 + χ2 dA
NS
(2) ∧ dARR

(2) , (2.2)

where φ1 = φ and φ2 = −~a · ~ϕ. This truncated Lagrangian is characterised by the fact

that it follows from the truncation of the T 4 reduction of the type IIB theory in which all

the original fields are retained, but with their indices now running only over the remaining

six dimensions. (Note that the potential for the self-dual 5-form is now dualised to give

the axion χ2.) In addition, the breathing-mode scalar φ2 that parameterises the volume of

T 4 is also included, but all other fields with indices internal to the 4-torus are set to zero.

For this reason, (2.2) can also be obtained by making a consistent truncation of the N = 2

theory obtained by compactifying type IIB on K3, following the identical prescription for

which fields are to be retained. (One cannot tell what it is that is “breathing” if all other

modes are truncated.)

The Lagrangian (2.2) has an O(2, 2) ∼ SL(2, IR)1 × SL(2, IR)2 global symmetry which

is a subgroup of the original O(5, 5) Cremmer-Julia symmetry of maximal supergravity in

D = 6. Note that SL(2, IR)1, realised by (φ1, χ1) in the scalar sector, is a symmetry of

the Lagrangian, whilst SL(2, IR)2, realised by (φ2, χ2), is a symmetry of the equations of

motion. We give the explicit transformation rules in appendix B. It should emphasised

that this O(2, 2)-invariant theory is not itself the bosonic sector of any supergravity theory;

rather, it is a convenient consistent truncation of D = 6 maximal supergravity that contains

all the fields necessary for describing the (supersymmetric) solutions of D = 6 maximal
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supergravity that we are going to discuss in this paper.1 Because of the consistency of the

truncation, all the solutions in the theory (2.2) are solutions of the original untruncated

supersymmetric theory. This provides a powerful tool for studying the BPS states of the

original theory, since it reduces the original O(5, 5) or O(5, 21) global symmetry to a more

manageable O(2, 2) global symmetry that nevertheless captures the essence of the NS-NS/R-

R and the electric/magnetic dualities.

The six-dimensional Lagrangian (2.2) is related by T-duality in D = 5 to a different six-

dimensional theory that is also a consistent truncation of maximal six-dimensional super-

gravity. This theory is most conveniently obtained by truncating maximal six-dimensional

supergravity described in terms of the T 4 reduction in the type IIA field variables. In

this description, it corresponds again to retaining the original ten-dimensional fields, with

their indices running only over the remaining six dimensions, and including in addition the

breathing-mode scalar parameterising the volume of the 4-torus. Again, as with (2.2), all

other six-dimensional fields, with indices internal to the 4-torus, are set to zero. This trun-

cated Lagrangian can therefore also be obtained as a consistent truncation of the N = 2

theory obtained by K3 compactification of type IIA, where the same truncation prescription

is applied. It is given by

e−1 L6A = R− 1
2(∂φ1)

2 − 1
2 (∂φ2)

2 − 1
48e

1
2
φ1− 3

2
φ2 (F(4))

2

− 1
12e

−φ1−φ2 (F(3))
2 − 1

4e
3
2
φ1− 1

2
φ2 (F(2))

2 , (2.3)

where, in the notation of [48, 49], F(3) means the NS-NS 3-form F(3)1, and F(2) means the R-

R 2-form F1
(2), with the index “1” here denoting the reduction step from D = 11 to D = 10.

(In the rest of the paper, an index “1” will be used exclusively to denote a reduction step

from 6 to 5 dimensions.) We have again performed a consistent truncation and orthogonal

transformation on the dilatons. To be precise, φ1 is the original ten-dimensional dilaton,

and φ2 is the breathing mode of the 4-torus or K3. Note that F(4) = dA(3) − dA(2) ∧ A(1),

while F(3) = dA(2) and F(2) = dA(1). The D = 6 string coupling constant in both (2.2) and

(2.3) is given by g6 = e
1
2
(φ1+φ2). The Lagrangian (2.3) is in fact simply the dimensional

1A similar use of a non-supersymmetric truncation was made in [46], where the 5-form field strength of

the type IIB theory was set to zero in order to simplify the discussion of the multiplet of supersymmetric

NS-NS and R-R string solitons. In that case the truncation was actually inconsistent, since generic solutions

of the truncated theory would be configurations which, in the full type IIB theory, would provide sources

that would force the 5-form field strength to be non-zero. However, these source terms are actually zero for

the class of solutions considered in [46], and so the truncation there was consistent only in this restricted

sense.
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reduction of

e−1 L7 = R− 1
2(∂φ)

2 − 1
48e

√
8
5φ F 2

(4) . (2.4)

This provides another way of verifying a statement we made previously, that the six-

dimensional Lagrangians (2.3) and (2.2) are consistent truncations of six-dimensional max-

imal supergravity. We do this by noting that (2.4) is itself a consistent truncation of seven-

dimensional maximal supergravity. This can be easily seen from the form of the D = 7

theory given in [48], and by noting that F(4) cannot act as a source for any of the other

fields that are being truncated. (Recall that for a truncation to be consistent, every solution

of the truncated theory must be a solution of the untruncated theory.) Having established

that (2.4) is a consistent truncation of seven-dimensional maximal supergravity, it follows

that (2.3) and (2.2) are consistent truncations of six-dimensional maximal supergravity.

(For the latter case, one has to invoke the T-duality relating the two theories in D = 5.)

To see the T-duality relating (2.2) and (2.3), we dimensionally reduce the two six-

dimensional theories to D = 5; the details are given in appendix A. The T-duality relations

between the field strengths in the five-dimensional theories are indicated in Table 1 below,

which also defines our notation for the dimensional reductions of the fields. Note that

we present the identifications at the level of the field strengths because it is necessary to

perform some dualisations in D = 5 in order to implement the identifications.2 (The precise

statement of the identifications is given in appendix A.) Note also that we are now, and

henceforth, using a “1” subscript on a field strength to denote the reduction step from

D = 6 to D = 5.

2Note that perturbative T-duality does not require dualisations in order to relate two theories. The

reason why it is necessary to make a dualisation here is that we have already dualised the 4-form potential

in the type IIB picture to an axion. Had we not done so, then the identification of five-dimensional fields

would not have required any dualisation.
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IIA IIB

D = 6 D = 5 T-duality D = 5 D = 6

F(4) F(4) ←→ dχ2 dχ2

R-R F(3)1 ←→ FRR
(3) FRR

(3)

fields F(2) F(2) ←→ FRR
(2)1

F(1)1 ←→ dχ1 dχ1

NS-NS Gµν F(2) ←→ FNS
(2)1 FNS

(3)

fields F(3) F(3) ←→ FNS
(3)

F(2)1 ←→ F(2) Gµν

Table 1: Fields of the truncated type II theories in D = 6 and D = 5

Our ansatz for the reduction of the metric from D = 6 to D = 5 is

ds26 = e−ϕ/
√
6 ds25 + e

√
3
2
ϕ (dz +A(1))

2 . (2.5)

We find that the dimensional reductions of the two Lagrangians (2.2) and (2.3) become

equivalent, after making the identifications given in Table 1, provided that the dilatons of

the two theories are related by the orthogonal transformation




φ1

φ2

ϕ



IIA

= Λ




φ1

φ2

ϕ



IIB

=




3
4 −1

4 −
√

3
8

−1
4

3
4 −

√
3
8

−
√

3
8 −

√
3
8 −1

2







φ1

φ2

ϕ



IIB

. (2.6)

Note that this matrix satisfies Λ = Λ−1. In terms of the string metrics, the radius of

the compactifying circle is given by R = e
1
4
φ1+

1
4
φ2+

√
3
8ϕ. It is easily seen that under the

transformation (2.6) we have RIIA = 1/RIIB .

It is worth remarking that the Lagrangians (2.2) and (2.3) are both consistent trunca-

tions of maximal supergravity. It follows that their respective solutions that are related

by T-duality transformation are all solutions of the untruncated maximal supergravity. If

instead we consider the two Lagrangians (2.2) and (2.3) as consistent truncations of the

K3 compactifications of the type IIB and type IIA supergravities, then their solutions that

are related by T-duality remain as distinct solutions of the original type IIB and type IIA

supergravities.

In the rest of the paper, we shall refer to the two Lagrangians (2.2) and (2.3) as the

type IIB and the type IIA descriptions of the six-dimensional truncated theories.
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3 S3 (un)twisted and squashed

In the previous section, we obtained truncated six-dimensional type IIB and type IIA La-

grangians, and their T-duality relation. We are now in a position to consider the AdS3×S3

solution. The Lagrangian (2.2) admits dyonic string solutions supported either by the NS-

NS 3-form FNS
(3) or the R-R 3-form FRR

(3) . More general solutions can be obtained by acting

with the O(2, 2) symmetry of the theory, allowing us, in particular, to find solutions for

dyonic strings carrying both NS-NS and R-R charges. We do this in detail in appendix C,

obtaining an O(2, 2;ZZ) multiplet of dyonic strings.

Near the horizon, even though the above dyonic solutions carry four independent charges,

the 3-forms FNS
(3) and FRR

(3) become self-dual, and the metric approaches that of AdS3 × S3.

In fact it is more convenient to construct these solutions directly. The dilatons φ1 and φ2

and the axions χ1 and χ2 are constant in the solution, and for simplicity we shall take them

to be zero. The remaining equations are solved by taking the metric and 3-forms to be

ds26 = ds2(AdS) + ds2(S3) ,

FNS
(3) = λ ǫ(AdS) + λ ǫ(S3) , (3.1)

FRR
(3) = µ ǫ(AdS) + µ ǫ(S3) ,

where λ and µ are constants, and the metrics on the AdS3 and S3 have Ricci tensors given

by

Rµν = −1
2(λ

2 + µ2) gµν , Rmn = 1
2(λ

2 + µ2) gmn (3.2)

respectively. (It is easy to see from (2.2) that the equations of motion will only be satisfied

by taking the dilatons to be constant if the coefficients in front of the volume forms ǫ(AdS)

and ǫ(S3) for the AdS3 and S3 metrics are equal, and hence the 3-form field strengths are

self-dual.) The constants λ and µ are related to the magnetic charges as follows:

QNS ≡ 1
16π2

∫
FNS

(3) =
λ

(λ2 + µ2)3/2
, QRR ≡ 1

16π2

∫
FRR

(3) =
µ

(λ2 + µ2)3/2
. (3.3)

In calculating the charges, we have made use of the fact that a 3-sphere whose Ricci tensor

is given by Rmn in (3.2) has volume 16π2(λ2+µ2)−3/2, and in fact its metric can be written

as

ds2(S3) =
4

λ2 + µ2
dΩ2

3 , (3.4)

where dΩ2
3 is the metric on a unit 3-sphere. Note that since we are taking the constant

values of the two dilatons φ1 and φ2 to be zero for simplicity, this means that the electric

charges (whose calculation we have not explicitly presented above) are equal to the magnetic
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charges. If one chooses non-zero values for the constants φ1 and φ2 then the field strengths

are still self-dual, but the electric and magnetic charges will be unequal. Note that the

charges will all be integers.

We now make use of the fact that the metric dΩ2
3 can be written as a U(1) bundle over

CP 1 ∼ S2 as follows:

dΩ2
3 =

1
4dΩ

2
2 +

1
4 (dz +B)2 , (3.5)

where dΩ2
2 is the metric on the unit 2-sphere, whose volume form Ω(2) is given by Ω(2) = dB.

(If dΩ2
2 is written in spherical polar coordinates as dΩ2

2 = dθ2+sin2 θ dφ2, then we can write

B as B = cos θ dφ.) The fibre coordinate z has period 4π. Thus the six-dimensional metric

given in (3.1) can be written as

ds26 = ds2(AdS) +
1

λ2 + µ2
dΩ2

2 +
1

λ2 + µ2
(dz +B)2 . (3.6)

The four-dimensional area of the horizon is given by

A ∼ L (λ2 + µ2)−3/2 , (3.7)

where L is the contribution from ds2(AdS) at the boundary at constant time. The field

strengths in (3.1) can now be written as

FNS
(3) = λ ǫ(AdS) +

λ

(λ2 + µ2)3/2
Ω(2) ∧ (dz +B) ,

FRR
(3) = µ ǫ(AdS) +

µ

(λ2 + µ2)3/2
Ω(2) ∧ (dz +B) . (3.8)

Comparing (3.6) with the general reduction ansatz (2.5), we see that if we dimensionally

reduced on the fibre coordinate we obtain the 5-dimensional metric

ds25 = (λ2 + µ2)−1/3 ds2(AdS) + (λ2 + µ2)−4/3 dΩ2
2 , (3.9)

while the new dilaton ϕ is a constant, given by

eϕ/
√
6 = (λ2 + µ2)−1/3 . (3.10)

Comparing (3.8) with the reduction ansätze F(n) → F(n) + F(n−1) ∧ (dz + B) for the field

strengths, we find that in D = 5 we have

FNS
(3) = λ ǫ(AdS) , FNS

(2)1 =
λ

(λ2 + µ2)3/2
Ω(2) ,

FRR
(3) = µ ǫ(AdS) , FRR

(2)1 =
µ

(λ2 + µ2)3/2
Ω(2) , (3.11)

F(2) = dB = Ω(2) .
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We are now in a position to implement the T-duality transformation from the type IIB

description to the type IIA description in D = 5. From appendix A, and (3.11), we see that

the field strengths in the type IIA picture will be

F(3) = λ ǫ(AdS) , F(2) =
λ

(λ2 + µ2)3/2
Ω(2) ,

F(3)1 = −µ ǫ(AdS) , F(2) =
µ

(λ2 + µ2)3/2
Ω(2) , (3.12)

F(2)1 = Ω(2) .

From (2.6) and (3.10), together with the fact that we are taking φ1 = φ2 = 0 in the original

type IIB solution, it follows that the dilatons in the type IIA picture will be given by

eϕ = (λ2 + µ2)1/
√
6 , eφ1 = eφ2 = (λ2 + µ2)1/2 . (3.13)

Finally, we can oxidise the type IIA solution that we have just obtained back to D = 6,

by retracing the standard Kaluza-Klein reduction steps. Doing so, we find that the six-

dimensional metric in the type IIA picture is

ds26 = (λ2 + µ2)−1/2 ds2(AdS) + (λ2 + µ2)−3/2
[
dΩ2

2 +
λ2

λ2 + µ2
(dz′ +B)2

]
, (3.14)

where B is a potential such that Ω(2) = dB, and the coordinate z′ is related to z by

z =
λ

(λ2 + µ2)3/2
z′ = QNS z

′ . (3.15)

(The last equality follows from (3.3).) It is straightforward to verify that the area of the

horizon of the metric (3.14) is the same as that before the Hopf T-duality transformation,

given by (3.7). The type IIA field strengths in D = 6 are given by

F(4) = −µ ǫ(AdS) ∧ (dz +A(1)) , F(3) = λ ǫ(AdS) + Ω(2) ∧ (dz +A(1)) ,

F(2) =
µ

(λ2 + µ2)3/2
Ω(2) , (3.16)

where

A(1) =
λ

(λ2 + µ2)3/2
B = QNSB . (3.17)

Note that in the above T-duality transformation the Buscher rules [50] are insufficient,

since we have R-R fields as well as NS-NS fields involved in the solution. For this reason,

we have constructed the two low-energy effective actions and explicitly derived the T-duality

transformations that relate them.
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We find that the charges carried by these field strengths are as follows:

Q(3)

elec ≡ 1
16π2

∫

S3
e−φ1−φ2 ∗F(3) = QNS ,

Q(3)
mag ≡ 1

16π2

∫

S3
F(3) = 1 ,

Q(4)

elec ≡ 1
4π

∫

S2
e

1
2
φ1− 3

2
φ2 ∗F(4) = −QRR ,

Q(2)
mag ≡ 1

4π

∫

S2
F(2) = QRR . (3.18)

If the fibre coordinate z′ in (3.14) had had the period 4π, then the topology of the compact

3-space would have been S3. Since it is related to z as given in (3.15), and z has period

4π, it follows that z′ has period 4π/QNS, and hence the topology of the compact 3-space is

S3/ZQNS
, the cyclic lens space of order QNS.

On the other hand the magnetic charge carried by the field strength F(3) is equal to 1,

having started, in the original solution, as QNS. This is because the T-duality has exchanged

the original charge QNS with the unit charge corresponding to the unit topological charge of

the U(1) bundle over S2 that describes the 3-sphere. Furthermore, we can see from (3.14)

that the metric on the lens space is not in general the “round” one, but is instead squashed

along the U(1) fibre direction, with a squashing factor ν given by

ν =
λ√

λ2 + µ2
=

QNS√
Q2

NS +Q2
RR

. (3.19)

In other words, the metric on the compact 3-space is proportional to

ds2 = 1
4dΩ

2
2 +

1
4ν

2 (dz +B)2 , (3.20)

whose Ricci tensor, in the natural orthonormal basis, is given by

Rab = diag (4− 2ν2, 4− 2ν2, 2ν2) . (3.21)

When ν = 1, the metric is Einstein and the 3-sphere or lens space is “round.”

As we mentioned earlier, we could have considered original solutions in which the con-

stant dilatons φ1 and φ2 were non-zero, in which case the original electric and magnetic

charges need not have been equal. The lens space after the Hopf T-duality transformation

will then be S3/ZQmag
NS

. Also, we can generalise the starting point further by consider a

solution on the product of AdS3 and the lens space S3/Zn, rather than simply AdS3 × S3.

(From the lower-dimensional point of view, this corresponds to giving the Kaluza-Klein

vector a magnetic charge n rather than 1.) If we do this, then we find that a solution

12



AdS3 × S3/Zn for (2.2), with charges Qelec
NS , Qmag

NS , Qelec
RR and Qmag

RR will result, after the

T-duality transformation, in a solution AdS3 × S3/ZQNS
mag

for (2.3) with charges

Q(3)

elec = Qelec
NS , Q(3)

mag = n , Q(4)

elec = −Qelec
RR , Q(2)

mag = Qmag
RR . (3.22)

To summarise, we see that if we consider the case where the original AdS3 × S3/Zn

solution in the type IIB description carries only an NS-NS charge whose magnetic component

is QNS
mag = m, and so QRR = 0, then after the Hopf T-duality transformation the solution for

(2.3) will be of the form AdS3×S3/Zm, where the metric on the cyclic lens space is still the

“round” one, and the magnetic charge becomes QNS
mag = n. In the special case where n = m

and QRR = 0, the AdS3 × S3/Zn solution is invariant under the Hopf T-duality. If, on the

other hand, we start with an AdS3 × S3/Zn solution with only R-R charges, then after the

Hopf T-duality transformation the S3/Zn is completely “untwisted,” and the solution will

be of the form AdS3×S1×S2. (This is analogous to the untwisting of AdS5×S5 discussed

in [37] and the untwisting of AdS4 × S7 discussed in [38]. The untwisting of S3 to S2 × S1

was also discussed in [47].) In the generic case where the original AdS3 × S3/Zn solution

carries both NS-NS and R-R charges, then after the T-duality transformation the solution

will be of the form AdS3 × S3/Zm, where the metric on the compact 3-space space is not

only factored now by Zm, but it is also squashed.

Although the construction of conformal field theories with background R-R charges is

problematical, there is an exact CFT duality statement3 in the case of pure NS-NS charge,

i.e. when µ = 0. This can be seen by looking at the original solution (3.1), and the final

Hopf-dualised solution (3.14, 3.16), in the string-frame metric ds26(string). This is related

to the six-dimensional Einstein-frame metric ds26 by ds26(string) = e
1
2
(φ1+φ2) ds26. Thus we

find that the original solution can be written as

ds26(string) = ds2(AdS) + λ−2
[
dΩ2

2 + (dz +B)2
]
,

F(3) = λ−2Σ(3) + λ−2Ω2 ∧ (dz +B) , (3.23)

where Σ(3) is the volume form of the “unit” AdS3, and that correspondingly in the final

Hopf-dualised solution we have

ds26(string) = ds2(AdS) + λ−2
[
dΩ2

2 + (dz′ +B)2
]
,

F(3) = λ−2 Σ(3) + λ−2Ω2 ∧ (dz′ +B) , (3.24)

3We are grateful to Costas Bachas for urging us to provide a CFT proof. A CFT discussion of the D = 10

superstring compactification on S3
× S3 down to AdS2 × S2 may be found in [71]
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where z′ = λ2 z = Q−1
NS z. The T-duality can be understood in this case from the standard

Buscher rules [50] applied to the SU(2) WZW model. In general, one has the statement

that a solution on S3/Zm with 3-form flux n is Hopf dual to a solution on S3/Zn with

3-form flux m. This is because the Kaluza-Klein vector in the S3/Zm solution carries m

units of charge, whereas the winding mode vector coming from the 3-form carries n units of

charge. The invariance under T-duality in the special case n = m = 1 is discussed in [70].

4 AdS3 (un)twisted and squashed

In the same way as odd-dimensional spheres can be viewed as U(1) bundles over complex

projective spaces, so we can view odd-dimensional AdS spacetimes as bundles over certain

Lorentzianisations of the complex projective spaces. The case of AdS3 is particularly simple,

since in this case the base space is nothing but AdS2.

Let us begin by considering the unit S3, written as a U(1) bundle over S2:

ds2 = 1
4dθ

2 + 1
4 sin

2 θ dφ2 + 1
4 (dψ + cos θdφ)2 . (4.1)

Now perform an analytic continuation to a Lorentzian signature, by sending:

θ −→ 1
2π − i ρ , ψ −→ i x , φ −→ t . (4.2)

This gives us the metric (after making an overall sign change to go from east-coast to

west-coast notation)

ds2 = −1
4 cosh

2 ρ dt2 + 1
4dρ

2 + 1
4(dx+ sinh ρ dt)2 . (4.3)

It is not hard to calculate the curvature for this metric, and to verify that it has Ricci tensor

Rµν = −2 gµν . Thus it is AdS3, since the cosmological constant is negative. Note that t is

periodic, 0 ≤ t ≤ 2π, but ρ and x both range over the entire real line. The parameterisation

of points in AdS3, viewed as the O(2, 2)-invariant hyperboloid X2
1 +X2

2 −X2
3 −X2

4 = 1 in

IR4, can be given in terms of t, ρ and x as follows:
(
X1

X2

)
= 1√

2

(
cos 1

2 t sin 1
2t

− sin 1
2 t cos 1

2t

) (
cosh x−

cosh x+

)
,

(
X3

X4

)
= 1√

2

(
cos 1

2 t sin 1
2t

− sin 1
2 t cos 1

2t

) (
sinhx−

sinhx+

)
, (4.4)

where x± ≡ 1
2(x± ρ). It can be shown that the coordinates t, ρ and x give a 1-1 mapping

to points on the hyperboloid.
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It is evident that we can view (4.3) as a bundle over a base space which is AdS2, for

which the unit-radius metric is dΣ2
2 = − cosh2 ρ dt2 + dρ2. (We shall in general use dΣ2

n to

denote the “unit” AdSn metric, which is defined to be the one whose Ricci tensor has the

form Rµν = −(n − 1) gµν . This is analogous to the definition of the unit n-sphere.) Thus

we have

dΣ2
3 =

1
4dΣ

2
2 +

1
4(dx+ B̃)2 , (4.5)

where dB̃ = Σ(2). (We are defining Σ(n) to be the volume form on the unit AdSn.)

Let us note here that there is also another closely related metric on AdS3, which also

allows one to do a reduction on the fibre coordinate x, namely

ds2 = −1
4e

2ρ dt2 + 1
4dρ

2 + 1
4(dx+ eρ dt)2 . (4.6)

This can be shown to be an AdS3 metric with Rµν = −2 gµν . It is interesting because it

arises by taking the near-horizon limit of the boosted dyonic string in D = 6 (see appendix

C). (In other words, the intersection of the dyonic string with a wave. If reduced to D = 5,

this boosted dyonic string becomes a 3-charge black hole; i.e. the Reissner-Nordstrøm black

hole.)

The coordinate transformation that relates the two AdS3 metrics (4.3) and (4.6) is the

following:

eρ̃ = sinh ρ+ cosh ρ cos t ,

t̃ eρ̃ = cosh ρ sin t , (4.7)

ex̃ =
(eρ cot 1

2 t− 1) ex

(eρ cot 1
2t+ 1)

,

where the tilded coordinates here denote the coordinates in the metric (4.6). An important

feature of both (4.3) and (4.6) is that there is no coordinate-dependent function multiplying

the vielbein in the fibre direction, and so the circle in the U(1) reduction will have a constant

length.

This Hopf T-duality on the fibres of AdS3 should be contrasted with the T-duality

discussed in [52, 27], or with a T-duality on one of the horospherical coordinates of AdS.

(See also [53].) In these two cases the metric is already diagonal, and the size of the

compactifying circle is not constant, but instead depends on other coordinates of the AdS.

It follows that after T-dualisation, the dual theory has a dilaton that is singular on the

horizon, and hence so also is the metric. By contrast, in the Hopf dualisation of AdS3

discussed above, the constant radius of the circle implies that the dilaton is non-singular,
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and the metric has no local curvature singularity. The difference is further highlighted

by the analysis of the supersymmetry. In the case of the horospherical T-duality or the

T-duality in [52, 27], supersymmetry is always (at least partially) broken. In the case of

Hopf T-duality on AdS3, however, the supersymmetry is either all preserved or all broken,

depending on an orientation choice in the Hopf fibering. We shall discuss this, and make

detailed comparisons between the various T-dualities, in section 6.

Note that we can also have the concept of “squashing” for AdS3 where the length of the

fibres is rescaled relative to the size of the base AdS2. As in the case of the sphere, this will

be an homogeneous squashing. Thus we may consider a squashed AdS3 metric

ds2 = 1
4dΣ

2
2 +

1
4 ν

2 (dx+ B̃)2 , (4.8)

where ν is a constant squashing parameter. The vielbein components of the Ricci tensor in

the natural orthonormal basis are

Rab = diag (4− 2ν2, 2ν2 − 4,−2ν2) , (4.9)

where the first entry is the R00 component. More generally, there also exist squashed

versions of AdS2n+1 for any n, of the form ds2(AdS2n+1) = ds2(C̃P
n
)+ν2 (dx+ B̃)2, where

C̃P
n
denotes a Lorentianisation of CPn, and dB̃ is the volume form on C̃P

n
.

All the previous steps of dimensional reduction on the fibres, which we did for the

S3 factor in AdS3 × S3, can now be repeated for the AdS3 itself. The computations are

essentially identical, since the dimension of the AdS3 is the same as that of the S3, with

the exception of the details of the field strengths. The final result is that the solution

AdS3 × S3 given by (3.1) becomes, after performing a T-duality transformation on the

AdS3 fibre coordinate x,

ds26 = (λ2 + µ2)−3/2
[
dΣ2

2 +
λ2

λ2 + µ2
(dx′ + B̃)2

]
+ (λ2 + µ2)−1/2 ds2(S3) , (4.10)

where B̃ is a potential such that Σ(2) = dB̃, and the coordinate x′ is related to x by

x =
λ

(λ2 + µ2)3/2
x′ = QNS z

′ . (4.11)

The type IIA field strengths in D = 6 are given by

F(4) = −µQNS ǫ(S
3) ∧ (dx′ + B̃) , F(3) = λ ǫ(S3) +QNS Σ(2) ∧ (dx′ + B̃) ,

F(2) = QRR Σ(2) . (4.12)

In particular, we see that in the case where the solution is supported purely by R-R 3-form

charges, then after doing the T-duality transformation we arrive at an “untwisted” solution
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AdS2 × S1 × S3. If the solution instead carries only NS-NS charges, then the structure of

the T-duality transformed solution is essentially unchanged, in the sense that there are just

overall rescalings 1/λ and 1/λ3 of the 3-sphere and AdS3 factors in the metric. Since the

fibre coordinate x here ranges over the entire real line, we do not really have the notion of a

“lens space” for AdS. We could consider instead the spacetime that one obtains by taking

the fibre coordinate x to be periodic. This will no longer be globally AdS3, but instead

only a part of it. If we define a spacetime Un to be AdS3 with x having a period L/n,

for some specified L, then one could say that the T-dual of the solution U1 × S3 carrying

purely NS-NS charge QNS is the solution UQNS
× S3. As in the case of the Hopf T-duality

for S3, all of the above discussion generalises straightforwardly to the case where we allow

the dilaton moduli to be non-zero, so that there can be independent electric and magnetic

charges for each field strength.

Note that the area of the horizon is preserved under the Hopf T-duality on the fibre

coordinate x of the AdS3. It is given by A ∼ (λ2 + µ2)−2.

5 AdS3 and S3 (un)twisted and squashed

We may now put together the results of the previous two sections, by starting with an

AdS3 × S3 solution (3.1), performing a T-duality transformation first using the U(1) fibres

of S3, and then performing a second T-duality transformation using the fibres of AdS3.

After doing this, we find that the final metric is given by

ds26 =
1

(λ2 + µ2)2

[
dΣ2

2 +
λ2

λ2 + µ2
(dx′ + B̃)2 + dΩ2

2 +
λ2

λ2 + µ2
(dz′ +B)2

]
, (5.1)

where z′ is given by (3.15) and x′ is given by (4.11). The field strengths in the final solution

are given by

FNS
(3) = Ω(2) ∧ (dz +A(1)) + Σ(2) ∧ (dx+ Ã(1)) ,

FRR
(3) = QRR Ω(2) ∧ (dx+ Ã(1))−QRR Σ(2) ∧ (dz +A(1)) , (5.2)

where A(1) is given by (3.17) and

Ã(1) =
λ

(λ2 + µ2)3/2
B̃ = QNS B̃ . (5.3)

If the NS-NS charge is zero, then in this doubly-transformed solution both the S3 and

the AdS3 are untwisted, giving (AdS2 × S1)× (S2 × S1). If instead the R-R charge is zero,

the solution becomes twisted to UQNS
× (S3/ZQNS

). When the NS-NS and R-R charges are
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both present, the solution is squashed and twisted in both the AdS3 and S3 factors. Note

that the squashing parameter is the same for both the AdS3 and the S3.

Again in this case, the Hopf T-duality transformation preserves the area of horizon,

given by A ∼ (λ2 + µ2)−2. It follows that the black hole entropy, which is a quarter of

the area, is also invariant under the Hopf T-duality. In the case of a 5-dimensional black

hole that oxidises to a boosted dyonic NS-NS string in D = 6, this invariance can be easily

understood: It follows from (C.17) in this case that the black hole entropy is given by

S ∼ √Qw q p =
√
nQNS

e QNS
m . As we have seen earlier, Hopf T-duality has the effect of

interchanging n and QNS
e , and hence the entropy is left invariant. In this paper, we have

shown that in general the entropy of the black hole is preserved under Hopf T-duality, even

when it is supported by R-R as well as NS-NS charges. Thus even though the metric on

the AdS3 or S3 may be (un)twisted and squashed by the transformation, the area of the

horizon is preserved.

6 Supersymmetry and Killing spinors

It is well known that T-duality transformations can break supersymmetries of p-brane so-

lutions, at the level of the low-energy effective supergravity. For example, the near-horizon

limit of the D3-brane in ten dimensions, which is of the form AdS5 × S5 and hence pre-

serves all the supersymmetry, is T-dual to the near-horizon limit of a D4-brane, which is

a product of a domain wall and a sphere (rather than an AdS and a sphere), and which

breaks half of the supersymmetry. The phenomenon of supersymmetry breaking, at the

level of supergravity, has also been seen in the Hopf T-duality transformations discussed

in [37]. For example, the Hopf dualisation of AdS5 × S5 to AdS5 × CP 2 × S1 breaks all

the supersymmetry at the supergravity level [37]. In another example, the Hopf reduction

of the AdS4 × S7 solution of D = 11 supergravity to the AdS4 × CP 3 of D = 10 type

IIA supergravity breaks either all of the eight supersymmetries, or two out of the eight,

depending on the orientation of the internal manifold [51, 38].

Of course all these statements about supersymmetry breaking are made at the level of

the massless Kaluza-Klein modes in the supergravity theory. In some cases, the supersym-

metry will be restored when one includes the Kaluza-Klein massive modes or the string

winding modes. To analyse the behaviour of supersymmetry under T-duality, one should

separate the discussion into two parts: firstly, compactification on a circle, and secondly,

the T-duality transformation itself. Supersymmetry breaking, if it occurs at all, is a conse-
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quence of the compactification on the circle. The T-duality transformation in the full string

theory always preserves whatever supersymmetry has survived the circle compactification.

An example where compactification breaks supersymmetry is an AdS spacetime, written

in horospherical coordinates ds2 = dρ2 + e2ρ ηµν dx
µ dxν , and compactified on one of the

spatial xµ coordinates. Although there is a translational isometry, thus allowing a circle

compactification, one finds that half of the Killing spinors on the AdS spacetime depend

linearly on xµ, and thus the supersymmetries associated with these Killing spinors will

be broken once the chosen xµ coordinate is taken to be periodic [54]. The other half of

the Killing spinors are independent of xµ, and so half of the supersymmetries survive the

compactification. This statement is true even after including all the massive Kaluza-Klein

modes. A T-duality transformation will not result in any further breaking (or restoring) of

supersymmetry.

A contrasting example is provided by the Hopf reduction on the U(1) fibres of S5 in the

AdS5 × S5 solution of the type IIB theory. The fibre coordinate here is naturally periodic.

Although at the level of the massless Kaluza-Klein modes the compactification on the U(1)

fibres breaks all the supersymmetry, it is restored once the massive Kaluza-Klein modes are

included. If we perform a T-duality transformation on the fibre coordinate, the AdS5 × S5

solution is mapped to an AdS5 × CP 2 × S1 solution in the type IIA theory. At the level

of supergravity, even when the massive Kaluza-Klein modes are included, this type IIA

solution breaks all the supersymmetries. However in the full string theory, where the string

winding modes are also included, the full supersymmetry is reinstated [37].

Thus, for example, we see that there are two different kinds of T-duality transformations

that can be performed on a D3-brane. One of these maps the D3-brane to a D4-brane. In

this case, the near-horizon AdS5 × S5 limit of the D3-brane is mapped to a product of a

domain wall and a 4-sphere, which is the near-horizon limit of the D4-brane. In this case it

is one of the horospherical coordinates xµ in AdS5 that is periodically identified and used

in the T-duality transformation. (Since the xµ coordinates are in fact the world-volume

coordinates of the D3-brane.) Thus half of the supersymmetry is already broken in the

process of making the identification. In other words, the apparent discrepancy between the

“enhanced supersymmetry” seen in the near horizon limit of an unwrapped D3-brane and

the usual 1/2 supersymmetry of the near-horizon limit of the D4-brane is not the result

of any breaking of supersymmetry by T-duality. Rather, it is simply a consequence of the

fact that there is no “supersymmetry enhancement” in the near-horizon limit of a wrapped

D3-brane [54]. The other kind of T-duality that can be performed on a D3-brane is on
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the fibre coordinate of the foliating 5-spheres in its 6-dimensional transverse space. In this

case, the fibre coordinate is naturally periodic, and the “supersymmetry breaking” is a pure

artifact of the low-energy supergravity approximation. In the full string theory, when the

Kaluza-Klein and winding modes are included, there is no supersymmetry breaking at all

[37].

At the level of the massless modes in the reduction of the supergravity theory, the Hopf

T-duality transformations on AdS3×S3 that we have been considering in this paper either

preserve all the supersymmetry, or they break all the supersymmetry, depending upon an

orientation associated with the Hopf reduction. In this section, we shall demonstrate this

by giving an explicit construction of the Killing spinors on AdS3 and S3. These have been

given previously [54, 55, 56], but in coordinate systems that are not convenient for our

present purposes. The relation between the coordinates used in [56], in which the metric

on the unit 3-sphere is dΩ2
3 = dθ23 + sin2 θ3 (dθ

2
2 + sin2 θ2 dθ

2
1), and the coordinates in (4.1),

is θ1 = 1
2(ψ + φ), cot θ2 = tan 1

2θ cos 1
2(ψ − φ), cos θ3 = sin 1

2θ sin 1
2(ψ − φ). In principle,

the Killing spinors obtained in [56] can be re-expressed in terms of the coordinates of the

metric (4.1) using these relations, but the result will be in an inconvenient local Lorentz

frame.

We begin by constructing the Killing spinors for the unit S3, using the metric given in

(4.1). The vielbein and spin connection are given by

e1 = 1
2dθ , e2 = 1

2 sin θ dφ , e3 = 1
2(dψ + cos θ dφ) ,

ω23 = −e1 , ω31 = −e2 , ω12 = −2 cot θ e2 + e3 . (6.1)

The Killing spinor equation is Dµ ǫ
± = ± i

2 Γµ ǫ
±. In a given choice of conventions in the

AdS3 × S3 supergravity solution, either the ǫ+ Killing spinors or the ǫ− Killing spinors

will be the ones that are associated with unbroken supersymmetries. Since the round S3

is invariant under orientation reversal, equal numbers of Killing spinors ǫ+ and ǫ− exist

(namely two of each). Substituting (6.1) into the Killing spinor equation, we find, in the

basis where Γ1 = σ3, Γ2 = σ1 and Γ3 = σ2, with σi denoting the standard Pauli matrices,

that the two sets of Killing spinors are

ǫ+1 =

(
e
i
2 (φ+θ)

i e
i
2 (φ−θ)

)
, ǫ+2 =

(
e
i
2 (θ−φ)

−i e−
i
2 (θ+φ)

)
, (6.2)

ǫ−1 =

(
e
i
2ψ

−i e
i
2ψ

)
, ǫ−2 =

(
e−

i
2ψ

i e−
i
2ψ

)
, (6.3)

Thus we see that if the conventions have been chosen so that the ǫ+ Killing spinors are
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associated with unbroken supersymmetries, then they survive the dimensional reduction to

D = 5 since they are independent of ψ. Under these circumstances, the supergravity solution

after the Hopf T-duality transformation on the ψ coordinate will still be fully supersymmet-

ric. If, on the other hand, the conventions have been chosen so that the ǫ− Killing spinors

are associated with unbroken supersymmetries, then they will not survive the dimensional

reduction process since they both depend on ψ. In this case, all the supersymmetry will be

broken in the supergravity solution after the Hopf T-duality transformation. Note that in

our discussion here, we have made a fixed orientation choice for our Hopf reduction (implicit

in our definition of the vielbeins in (6.1), and so the two supersymmetry possibilities arise

from two possible convention choices for the original supergravity solution. Equivalently,

one could think of making a fixed convention choice in the original solution, and the two

supersymmetry possibilities would then arise from the two possible orientations in the Hopf

reduction.

In order to discuss the supersymmetry in the case of the T-duality transformations on

the Hopf fibres of AdS3, we need first to give an analogous construction of the Killing spinors

in AdS3. On the unit AdS3, these satisfy Dµ ǫ
± = ±1

2Γµ ǫ
±. Let us first consider the metric

(4.3), for which the vielbein and spin connection will be

e0 = 1
2 cosh ρ dt , e1 = 1

2dρ , e2 = 1
2(dx+ sinh ρ dt) ,

ω01 = −2 tanh ρ e0 + e2 , ω02 = e1 , ω12 = −e0 . (6.4)

Taking the Dirac matrices to be Γ0 = −iσ1, Γ1 = σ3 and Γ2 = σ2, we find that the solutions

for the Killing spinors are

ǫ+1 =

(
e
1
2 (ρ+it)

−e
1
2 (−ρ+it)

)
, ǫ+2 =

(
e
1
2 (ρ−it)

e−
1
2 (ρ+it)

)
, (6.5)

ǫ−1 =

(
e
1
2x

−i e
1
2x

)
, ǫ−2 =

(
e−

1
2x

i e−
1
2x

)
. (6.6)

Again we see that the Hopf T-duality transformation on the fibre coordinate x will preserve

either all or none of the supersymmetry, depending upon the orientation.

It is also instructive to construct the Killing spinors for the AdS3 metric (4.6), since this

is the one that arises as the near-horizon limit of the boosted dyonic string. For this, the

vielbein and spin connection will be:

e0 = 1
2e
ρ dt , e1 = 1

2dρ , e2 = 1
2(dx+ eρ dt) ,

ω01 = −2 e0 + e2 , ω02 = e1 , ω12 = −e0 . (6.7)
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Elementary calculations then show that the Killing spinors ǫ±, satisfying Dµ ǫ
± = ±1

2 Γµ ǫ
±,

are given by

ǫ+1 =

(
t e

1
2
ρ

i e−
1
2
ρ

)
, ǫ+2 =

(
e

1
2
ρ

0

)
, (6.8)

ǫ−1 =

(
e

1
2
x

−i e 1
2
x

)
, ǫ−2 =

(
e−

1
2
x

i e−
1
2
x

)
. (6.9)

Here also, we see that the two ǫ+ Killing spinors are independent of the fibre coordinate x,

while the two ǫ− Killing spinors depend on x. It is worth remarking that the metric (4.6)

is in some ways reminiscent of the horospherical metric on AdS3, and indeed this reflects

itself in certain similarities in the form of the solutions for the Killing spinors [54].

The orientation dependence of the supersymmetry is echoed in D = 4, where 4-charge

black hole solutions, can either preserve 1/8 of the supersymmetry or break it entirely,

depending on the relative signs of the charges [18, 57]. These black holes are all related

by U-duality to a black hole in which two of the charges, one electric and one magnetic,

are carried by the two Kaluza-Klein vectors coming from the reduction from D = 6. Upon

oxidation to D = 6, this gives a metric whose near-horizon limit is AdS3×S3, with the two

Kaluza-Klein vectors providing the twisting of the S3 and the AdS3 fibres. Thus the sign

of the fibre orientations is precisely related to the signs of the charges in D = 4.

The above discussion is at the level of the massless Kaluza-Klein modes in the super-

gravity theory. If the orientation for the Hopf fibration is such that the relevant Killing

spinors do not depend on the fibre coordinate, then statement of preservation of full super-

symmetry under the Hopf T-duality extends to the full string theory. If the orientation is

opposite, so that all the relevant Killing spinors depend on the fibre coordinate, then the

discussion bifurcates into two categories in the full string theory. If the Hopf reduction is

on the (naturally periodic) U(1) fibres of the S3, then, as we see from (6.3), the Killing

spinors will be included once the non-zero modes in the Kaluza-Klein Fourier expansions

are taken into account. In this case, the full supersymmetry preservation under Hopf T-

duality is reinstated by including all the Kaluza-Klein modes. On the other hand, if the

Hopf reduction is on the fibre coordinate of AdS3, then, as we can see from (6.6) or (6.9),

the Killing spinors will still be excluded from the spectrum even after the Kaluza-Klein

non-zero modes are included. In this case, therefore, the supersymmetry remains broken

even in the full string theory.
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7 Non-dilatonic black holes, and Hopf T-duality

Non-dilatonic black holes (for which the dilatons are finite on the horizon) in maximal

supergravity arise in D = 5 and D = 4. In D = 5, they are supported by three field

strengths, and associated with each is an independent harmonic function. There are a total

of 45 possible field configurations that can give rise to five-dimensional non-dilatonic black

holes [58], viz.

D = 5 : {F(2)ij , F(2)kℓ, F(2)mn}15 , {∗F(3)i,F j(2), F(2)ij}30 . (7.1)

(We are using the notation of [48, 49, 58] here. The subscripts on each set of field strengths

denotes the multiplicities of the solutions. The Hodge duals indicate that the associated

fields carry electric charges if the fields without duals carry magnetic charges, and vice

versa.) In D = 4, non-dilatonic black holes are supported by four field strengths, and can

arise with the following possible field-strength configurations [58]:

N = 4 : {F(2)ij, F(2)kℓ, F(2)mn, ∗Fp(2)}105+105 , {F(2)ij , ∗F(2)ik,F j(2), ∗Fk(2)}210 ,

{F(2)ij, F(2)kℓ, ∗F(2)ik, ∗F(2)jℓ}210 . (7.2)

The near-horizon regions of these D = 5 and D = 4 black holes are AdS2×S3 and AdS2×S2

respectively. If we dimensionally oxidise these solutions to D = 6, they will describe the

intersections of p-branes, waves and NUTS. There are four possible near-horizon limits that

can arise for these intersections, namely

AdS3 × S3, AdS3 × (S2 × S1), (AdS2 × S1)× S3, (AdS2 × S1)× (S2 × S1) . (7.3)

(To be precise, the AdS3 and the S3 can in general be factored by cyclic groups, in the man-

ner discussed previously.) If we oxidise these near-horizon solutions further, to D = 10 or

D = 11, then the additional dimensions provide additional factors of T 4 or T 5 respectively.

For example, the four-charge black hole solution using the field strengths of the last

entry in the list (7.2) becomes an intersection of p-branes in D = 6, and its near-horizon

region is (AdS2 × S1)× (S2 × S1). This is because the Kaluza-Klein vector is not involved

in the solution, and so the six-dimensional metric is diagonal. If the solution is built using

the set of field strengths in the first entry of the list (7.2), two possibilities can arise. If

the Kaluza-Klein field Fp(2) carries a magnetic charge (implying that the other three field

strengths carry electric charges), then the solution becomes (AdS2 × S1) × S3. In other

words, the Kaluza-Klein vector describes a magnetic monopole which corresponds, from

the six-dimensional point of view, to a NUT charge that twists the S2×S1 product to give
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S3. On other hand, if the Kaluza-Klein field carries an electric charge (and so the other

three field strengths carry magnetic charges), then the solution describes AdS3× (S2×S1).

This is because in this case the Kaluza-Klein vector has a configuration which, from the

six-dimensional point of view, corresponds to a wave which twists the AdS2 × S1 product

to give AdS3. The oxidation of the solutions for the configurations of field strengths listed

in the second entry in (7.2) describe AdS3 × S3 in D = 6. This is because there are two

Kaluza-Klein fields in this case, viz. F j(2) and Fk(2). One of them carries a magnetic charge

and hence twists the S2 × S1 product, while the other carries an electric charge, and hence

twists the AdS2 × S1 product.

We showed in sections 3, 4 and 5 that the near-horizon structures (7.3) of the six-

dimensional intersections that come from the oxidations of the non-dilatonic black holes in

D = 5 and D = 4 are related to each other through Hopf T-duality. Furthermore, even

the near-horizon limits of the 4-charge solutions which are, owing to sign choices, non-

supersymmetric, are related by Hopf T-duality to the supersymmetric ones. As we show in

appendix D, the Hopf T-duality not only relates the near-horizon limits listed in and below

(7.3), but also relates the associated full solutions. Thus in particular, a Hopf reduction and

T-duality has the effect of mapping the solutions (7.1) and (7.2) among each other. The

harmonic function associated with the Kaluza-Klein vector coming from the Hopf reduction

lacks a constant term; however, it can be introduced by performing an appropriate U-duality

transformation [59, 8, 60, 61].

Appendices

A T-duality of the truncated six-dimensional theories

In section 2, we obtained two different consistent truncations of six-dimensional maximal

supergravity. One of them, given by (2.2), naturally arose as a consistent truncation of

six-dimensional maximal supergravity in the type IIB picture. This truncated theory has

an O(2, 2) global symmetry. The other theory, given by (2.3), naturally arose as a consistent

truncation of six-dimensional maximal supergravity in the type IIA picture. This theory

has only an IR × IR global symmetry. Interestingly, it can be obtained as the dimensional

reduction of the seven-dimensional Lagrangian (2.4), which itself can easily be shown to be

a consistent truncation of seven-dimensional maximal supergravity. In this appendix, we

shall show that the two different six-dimensional Lagrangians (2.2) and (2.3) are T-dual
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to each other, in the sense that upon dimensional reduction they give rise to the same

five-dimensional theory, up to field redefinitions.

We begin by obtaining the dimensional reduction of the Lagrangian (2.2), coming from

the consistent truncation in the type IIB picture. We find

e−1 L5B = R− 1
2 (∂φ1)

2 − 1
2(∂φ2)

2 − 1
2(∂ϕ)

2 − 1
2e

2φ1 (∂χ1)
2 − 1

2e
2φ2 (∂χ2)

2

− 1
12e

−φ1−φ2+
√

2
3ϕ (FNS

(3) )
2 − 1

12e
φ1−φ2+

√
2
3ϕ (FRR

(3) )
2

−1
4e

−φ1−φ2−
√

2
3ϕ (FNS

(2)1)
2 − 1

4e
φ1−φ2−

√
2
3ϕ (FRR

(2)1)
2

−1
4e

√
8
3ϕ (F(2))

2 + χ2 dA
NS
(2) ∧ dARR

(1)1 − χ2 dA
RR
(2) ∧ dANS

(1)1 . (A.1)

Here, the field strengths are given by

FNS
(3) = dANS

(2) − dANS
(1)1 ∧ A(1) , FNS

(2)1 = dANS
(1)1 , F(2) = dA(1) , (A.2)

FRR
(3) = dARR

(2) − dARR
(1)1A1 + χ1(dA

NS
(2) − dANS

(1)1 ∧ A(1)) , FRR
(2)1 = dARR

(1)1 + χ1dA
NS
(1)1 .

The five-dimensional Lagrangian coming from the dimensional reduction of the trun-

cated theory (2.3) is given by

e−1 L5A = R− 1
2(∂φ1)

2 − 1
2(∂φ2)

2 − 1
2(∂ϕ)

2

−1
2e

−1
2φ1+

3
2φ2−

√
3
2ϕ(∂χ′)2 − 1

2e
3
2φ1−

1
2φ2−

√
3
2ϕ(∂A(0)1)

2

− 1
12e

−φ1−φ2+
√

2
3ϕ (F(3))

2 − 1
12e

1
2
φ1− 3

2
φ2− 1√

6
ϕ
(F(3)1)

2

−1
4e

−φ1−φ2−
√

2
3ϕ (F(2)1)

2 − 1
4e

3
2
φ1− 1

2
φ2+

1√
6
ϕ
(F(2))

2

−1
4e

√
8
3ϕ(F(2))

2 + χ′ F(3)1 ∧ F2 + χ′ F(3) ∧ F(2) , (A.3)

where we have dualised the 3-form potential A(3) to an axion χ′. The field strengths in

(A.4) are given given by

F(3)1 = dA(2)1 + dA(1)1 ∧ dA(1) −A(0)1 dA(2) , F(2)1 = dA(1)1 , F(1)1 = dA(0)1 ,

F(3) = dA(2) − dA(1)1 ∧ A(1) , F(2) = dA(1) − dA(0)1 ∧A(1) . (A.4)

It can be verified that the two 5-dimensional Lagrangians (A.1) and (A.3) are related

to each other by the field redefinition described in Table 1 and (2.6). To be precise, we first

make the following field redefinitions:

A′
(1) = A(1)−A(0)1A(1) , A′

(2) = A(2)−A(1)1∧A(1) , A′
(2)1 = A(2)1+A(1)1∧A′

(1) . (A.5)

25



After doing this we find that the Lagrangian (A.3) can be mapped to the Lagrangian (A.1)

by the following transformations

A′
(2) −→ ANS

(2) , A′
(2)1 −→ −ARR

(2) , A1 −→ ANS
(1)1 , A′

(1) −→ ARR
(1)1 ,

A(1)1 −→ A(1) , A(0)1 −→ χ1 , χ′ −→ χ2 , (A.6)

together with the transformation of the dilatons given by (2.6).

B O(2, 2) symmetry of the truncated six-dimensional theory

Here, we give the explicit O(2, 2) ∼ SL(2, IR)1 × SL(2, IR)2 global symmetry transforma-

tions for the truncated six-dimensional theory (2.2). The factor SL(2, IR)1 is an S-duality

symmetry that maps between the NS-NS and R-R 2-form potentials, and is realised at the

level of the Lagrangian. The factor SL(2, IR)2 is an electric/magnetic duality symmetry

between the NS-NS and R-R 3-form field strengths, which is realised only at the level of

the equations of motion.

To present the global transformation rules, it is useful first to define the two complex

scalar fields

τ1 ≡ χ1 + i e−φ1 , τ2 ≡ χ2 + i e−φ2 . (B.1)

The two SL(2, IR) transformations act non-linearly on the scalar manifold as follows:

SL(2, IR)1 : τ1 −→ Λ1 · τ1 ≡
a1 τ1 + b1
c1 τ1 + d1

, τ2 −→ τ2 ,

SL(2, IR)2 : τ2 −→ Λ2 · τ2 ≡
a2 τ2 + b2
c2 τ2 + d2

, τ1 −→ τ1 , (B.2)

where a1 d1− b1 c1 = 1 = a2 d2− b2 c2, and we may define the SL(2, IR) matrices Λ1 and Λ2

in the standard way:

Λ1 =

(
a1 b1

c1 d1

)
, Λ2 =

(
a2 b2

c2 d2

)
. (B.3)

SL(2, IR)1 is a symmetry of the Lagrangian, and it acts linearly on the 2-form potentials:

A(2) ≡
(
ANS

(2)

ARR
(2)

)
−→ (ΛT1 )

−1A(2) . (B.4)

SL(2, IR)2 is a symmetry only at the level of the equations of motion, and it acts locally

only on the field strengths. We shall also, for convenience, present the action of SL(2, IR)1

on the field strengths. We begin by defining two field-strength doublets, H1
(3) and H

2
(3):

H1
(3) =

(
e−φ1 FNS

(3) + χ1 e
φ1 FRR

(3)

eφ1 FRR
(3)

)
, H2

(3) =

(
e−φ2 ∗FNS

(3) + χ2 F
RR
(3)

FRR
(3)

)
. (B.5)
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Their SL(2, IR) transformations are:

SL(2, IR)1 : H1
(3) −→ Λ1H

1
(3) ,

SL(2, IR)2 : H2
(3) −→ Λ2H

2
(3) . (B.6)

Note that the two fields H1
(3) and H

2
(3) are not independent, and so given the transformation

on one, the transformation on the other is in principle determined. Each was introduced

for the specific purpose of encoding one or other of the two SL(2, IR) transformations in a

simple way, as indicated in (B.6), and we do not need to give the associated transformations

on the other H(3) field.

The theory can describe strings that carry four independent charges, namely the electric

and the magnetic charges for both the NS-NS and the R-R 3-forms. It is easily seen from

the equations of motion following from (2.2), and from the Bianchi identities for FNS
(3) and

FRR
(3) , that they are given by

QNS
e = 1

16π2

∫ {
e−φ1−φ2 ∗FNS

(3) + χ2 F
RR
(3) + χ1

(
eφ1−φ2 ∗FRR

(3) − χ2 F
NS
(3)

)}
,

QNS
m = 1

16π2

∫
FNS

(3) ,

QRR
e = 1

16π2

∫ {
eφ1−φ2 ∗FRR

(3) − χ2 F
NS
(3)

}
,

QRR
m = 1

16π2

∫ {
FRR

(3) − χ1 F
NS
(3)

}
. (B.7)

¿From the SL(2, IR)1 and SL(2, IR)2 transformations rules (B.2) and (B.6), we find that

these charges transform as:

SL(2, IR)1 : ~Qee ≡
(
QNS
e

QRR
e

)
−→ Λ1

~Qee , ~Qmm ≡
(
QNS
m

QRR
m

)
−→ (ΛT1 )

−1 ~Qmm ,

SL(2, IR)2 : ~Qem ≡
(
QNS
e

QRR
m

)
−→ Λ2

~Qem , ~Qme ≡
(
QNS
m

QRR
e

)
−→ (ΛT2 )

−1 ~Qme .(B.8)

Here we are introducing the notation that ~Qxy is a two-component charge vector, whose

upper component is the electric (x = e) or magnetic (x = m) NS-NS charge, and whose

lower component is the electric (y = e) or magnetic (y = m) R-R charge.

It is worthwhile pausing at this point, to understand why the charge vectors ~Qmm and

~Qme transform contragrediently in comparison to the transformations of ~Qee and ~Qem. If

we introduce an index notation for the two fields, so that F i(3) denotes the NS-NS field

when i = 1, and the R-R field when i = 2, then the dual fields F̃(3)1 = e−φ1−φ2 ∗F 1
(3) and

F̃(3)2 = eφ1−φ2 ∗F 2
(3) actually correspond to the first and second components of a doublet
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F̃(3)i with a downstairs index i. (This can be seen from the fact that the relevant SL(2, IR)1-

invariant kinetic terms in the Lagrangian have the form −1
2 F̃(3)i ∧ F i(3) [62].) The electric

charges therefore can be labelled as Qe i = {QNS
e , Q

RR
e }, while the magnetic charges can be

labelled as Qim = {QNS
m , Q

RR
m }. Since the electric charges transform directly with Λ, we can

see that the suppressed matrix indices on Λ1, if made explicit, are located as follows: (Λ1)i
j.

It is now clear why it is the contragedient representation that acts on the magnetic charges

Qim. An analogous comment applies to the electric and magnetic indices associated with

the SL(2, IR)2 transformations.

It is convenient to give a 4 × 4 matrix representation for the SL(2, IR)1 × SL(2, IR)2
transformations, by defining the tensor product of 2×2 matrices, and 2-component vectors,

as follows:

M ⊗N ≡
(
m11N m12N

m21N m22N

)
,

(
x

y

)
⊗
(
u

v

)
≡




xu

x v

y u

y v



, (B.9)

where mij denotes the components ofM . In view of the remarks in the previous paragraph,

it follows that we can represent the action of the two SL(2, IR)’s on the charges as ~Q −→ Λ ~Q,

where Λ = Λ2 ⊗ Λ1, and

~Q =




QNS
e

QRR
e

QRR
m

−QNS
m



. (B.10)

For later convenience, we may also now introduce an alternative parameterisation of the

scalar coset manifold. It is sufficient for this purpose to consider a generic SL(2, IR)/O(2)

coset, and the formalism can then be applied to both SL(2, IR)1 and SL(2, IR)2. We define

the upper-triangular matrix

V =

(
e−

1
2
φ χ e

1
2
φ

0 e
1
2
φ

)
. (B.11)

This gives a Borel parameterisation of the coset, whose Lagrangian can now be written as

1
4 tr(∂µ(M−1) ∂µM), where

M = V VT =

(
e−φ + χ2 eφ χ eφ

χ eφ eφ

)
. (B.12)
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The SL(2, IR) transformation (B.2) of the scalar fields can then be expressed as V −→ ΛV O,
where O is a field-dependent compensating O(2) transformation that restores V to the Borel

gauge. On the matrix M, the SL(2, IR) transformation is simply M −→ ΛMΛT . Note

that H1
(3) in (B.5) can now be written as H1

(3) =M1 dA(2).

With these preliminaries, we are now in a position to construct, in the next section, an

O(2, 2) multiplet of dyonic strings

C An O(2, 2;ZZ) multiplet of dyonic strings

We may construct general dyonic string solutions with arbitrary electric and magnetic NS-

NS and R-R charges (QNS
e , Q

NS
m , Q

RR
e , QRR

m ) at an arbitrary modulus point specified by τ01

and τ02 , by starting with the simple case of an NS-NS dyonic string in the τ01 = τ02 = i

vacuum, with electric and magnetic NS-NS charges q and p. We then act with O(2)1 and

O(2)2 transformations

Λ1(θ1) =

(
cos θ1 sin θ1

− sin θ1 cos θ1

)
, Λ2(θ2) =

(
cos θ2 sin θ2

− sin θ2 cos θ2

)
, (C.1)

which lie in the stability subgroups of the SL(2, IR)’s that rotate the charges while leaving

the τ0 = i modulus points fixed. Next, we act with the Borel transformations

Λ1(τ
0
1 ) =

(
e−

1
2
φ01 χ0

1 e
1
2
φ01

0 e
1
2
φ01

)
, Λ2(τ

0
2 ) =

(
e−

1
2
φ02 χ0

2 e
1
2
φ02

0 e
1
2
φ02

)
, (C.2)

which map the original modulus points τ01 = τ02 = i to the arbitrary points τ01 = χ0
1 + i e−φ

0
1

and τ02 = χ0
2 + i e−φ

0
2 . The combined effect of the stability-subgroup and Borel-subgroup

transformations is to map the original charges ~Q = (QNS
e , Q

RR
e , QRR

m ,−QNS
m ) = (q, 0, 0,−p)

to arbitrary charges, which are related to the parameters θ1, θ2, q and p (at the given

modulus point (φ01, χ
0
1, φ

0
2, χ

0
2)) in a manner that we shall determine below. Thus we can

obtain strings with their four charges lying at arbitrary points on the charge lattice (that

satisfy the Dirac quantisation condition) by appropriately choosing the four parameters.

(The spirit of this construction is similar to that used in [63] in the discussion of the charge

lattice for the O(6, 22;ZZ) multiplet of black holes in the D = 4 heterotic string, and in

[46] for the construction of the SL(2,ZZ) multiplet of type IIB strings. A general procedure

for generating the U-duality multiplets for all p-brane solitons was given in [64]. A group

theoretic approach was also introduced in [64], using the homogeneous scaling symmetries

of the equations of motion that arise in theories such as the maximal supergravities, in order

to give a construction of genuine spectrum-generating groups for BPS states. An explicit

construction of U-duality multiplets for BPS states in eight dimensions was given in [65].)

29



C.1 Unboosted isotropic dyonic strings

Moving now to the details, let us consider an isotropic unboosted dyonic string, supported

by the NS-NS 3-form field [5];

ds2 = (HeHm)
−1/2 dxµ dxµ + (HeHm)

1/2 d~y · d~y ,

FNS
(3) = 8 pΩ(3) + 8 q HmH

−1
e ∗Omega(3) , FRR

(3) = 0 ,

τ1 = χ1 + i e−φ1 = τ2 = χ2 + i e−φ2 = i (He/Hm)
1/2 , (C.3)

where He = 1 + 4q/r2 and Hm = 1 + 4p/r2, q and p are the electric and magnetic charges

(following the normalisations given in (B.7)), and Ω(3) is the volume form on the unit S3.

After some algebra, we find, following the steps outlined above, that the solution after

performing the stability-subgroup and Borel-subgroup transformations becomes

ds2 = (HeHm)
−1/2 dxµ dxµ + (HeHm)

1/2 d~y · d~y ,

τ1 = χ0
1 + i e−φ

0
1

√
He − i tan θ1

√
Hm√

Hm − i tan θ1
√
He

,

τ2 = χ0
2 + i e−φ

0
2

√
He − i tan θ2

√
Hm√

Hm − i tan θ2
√
He

, (C.4)

FNS
(3) = e

1
2
(φ01+φ

0
2)
(
cos θ1 cos θ2Θ− sin θ1 sin θ2

He

Hm
∗Θ
)
,

FRR
(3) =

−e
1
2 (φ

0
2−φ01)He

sin2 θ1He + cos2 θ1Hm

(
sin θ1 cos θ2Θ+ cos θ1 sin θ2 ∗Θ

)
,

where Θ ≡ 8 pΩ(3) + 8 q ∗Ω(3).

Under the stability-subgroup and Borel-subgroup transformations (C.1) and (C.2), the

initial charge 4-vector ~Q0 = {q, 0, 0,−p} is mapped to the final charge vector ~Qf , given by

~Qf =
(
Λ2(τ

0
2 )⊗ Λ1(τ

0
1 )
) (

Λ2(θ2)⊗ Λ1(θ1)
)
~Q0 , (C.5)

which implies

(
Λ2(θ2)⊗ Λ1(θ1)

)
~Q0 =

(
Λ2(τ

0
2 )

−1 ⊗ Λ1(τ
0
1 )

−1
)
~Qf ≡ Λ(τ0)

−1 ~Qf . (C.6)

This equation provides the relation between the four parameters (θ1, θ2, q, p) and the four

final charges ~Qf , for any given values of the scalar moduli τ0 = (τ01 , τ
0
2 ). To obtain the

explicit solution, we first note that the stability-subgroup O(2) rotations (C.1) can be

written as Λ(θ) = eiθσ, where σ =

(
0 −i
i 0

)
. Equation (C.6) can now be written as

eiθ2σ ⊗ eiθ1σ ~Q0 = Λ(τ0)
−1 ~Qf . (C.7)
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This implies that eiθ2σ ⊗ eiθ1σ U± = V±, where

U± = (1l + σ)⊗ (1l± σ) ~Q0 , V± = (1l + σ)⊗ (1l± σ) ~Qf . (C.8)

After elementary algebra, it now follows that

(q + p) ei(θ2+θ1) = e
1
2
(φ01+φ

0
2) (QNS

e − τ01 QRR
e − τ02 QRR

m − τ01 τ02 QNS
e ) ≡ ∆+ ,

(q − p) ei(θ2−θ1) = e
1
2
(φ01+φ

0
2) (QNS

e − τ̄01 QRR
e − τ02 QRR

m − τ̄01 τ02 QNS
e ) ≡ ∆− . (C.9)

¿From here, the solutions for (θ1, θ2, q, p) immediately follow. Note that the factor e
1
2
(φ01+φ

0
2)

is precisely the six-dimensional effective string coupling constant.

It is now easy to determine the formula for the mass m per unit length for the general

4-charge dyonic string. To do this, we note that in the original NS-NS dyonic string solution

(C.3), the mass is simply given by m = q + p, which we can write in the O(2, 2)-invariant

form

m2 = q2 + p2 + 2q p = ~QT0 ~Q0 − ~QT0 Ω̂ ~Q0 , (C.10)

where Ω̂ ≡ Ω ⊗ Ω, and Ω =

(
0 1

−1 0

)
. In terms of the final charges ~Qf of the generic

4-charge dyonic string, the mass is therefore given by

m2 = ~QTf (Λ(τ0)T )−1 Λ(τ0)−1 ~Q0 − ~QTf (Λ(τ0)T )−1 Ω̂ Λ(τ0)−1 ~Q0

= ~QTf

(
(Λ(τ0)Λ(τ0)T )−1 − Ω̂

)
~Qf .

= |∆+|2 . (C.11)

(The expression for m2 in the last line follows directly from (C.10) and (C.9).)

Note that the second line of the mass formula (C.11) is composed of two independent

O(2, 2)-invariant quantities. The second term is precisely the quantity that appears in the

Dirac quantisation condition [66], namely

~QTf Ω̂ ~Qf = integer . (C.12)

This condition implies that the four charges ~Qf = (QNS
e , Q

RR
e , QRR

m ,−QNS
m ) must lie on a

discrete lattice, which, for simplicity, may be taken to be the square integer lattice. In our

construction of the multiplet of integer-charge solutions, we of course allowed the initial

charge parameters q and p and the rotation angles θ1 and θ2 to be unrestricted by any

quantisation condition. For a given modulus point τ0 = (τ01 , τ
0
2 ), after restricting the final

charges to lie on the Dirac charge lattice, the initial parameters will themselves fill out only

a discrete lattice of values.
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The points in a given charge lattice, for example the integer square lattice, can be

filled out by a discrete O(2, 2;ZZ) spectrum-generating group that leaves the scalar modulus

point τ0 invariant. It is therefore not itself the discretised form of the of the O(2, 2) global

symmetry transformations that we originally discussed, since this transforms the scalar

moduli at the same time as it moves the charges on their lattice. The difference is highlighted

by the fact that the spectrum-generating group must, of course, in particular generate

strings of different masses, whilst the original global symmetry group leaves the metric,

and hence the mass, invariant. This issue was extensively discussed in [64], where it was

shown that to get the true spectrum-generating group it is necessary to make use also of

an homogeneous scaling “trombone” symmetry of the theory. In [64], the example of the

SL(2,ZZ) multiplet of type IIB strings was discussed in detail. However, in the O(2, 2) case

we are considering here there is an added subtlety. This can be seen most easily at the

classical level. In the case of the type IIB NS-NS and R-R strings, the charge space is two-

dimensional, and can be completely spanned, for any given modulus point, by the action

of the O(2) denominator group together with the trombone rescaling symmetry. In our

present case, however, the charge space is four-dimensional, while the modulus-preserving

denominator group is O(2) × O(2). Together with the trombone symmetry this gives only

three parameters, and hence this is insufficient to span the charge vector space. In our

construction, we were nevertheless able to construct the complete charge lattice of dyonic

strings. This is because we started with the solution (C.3) that had the two free parameters

q and p. The trombone symmetry is responsible for the existence of the 1-parameter sub-

family of solutions where q and p are uniformly rescaled by the same factor, which has the

effect of also rescaling the mass. It is less clear what is the symmetry that is responsible for

allowing solutions with different relative ratios between the electric and magnetic charge

parameters q and p.

It was argued in [64] that one resolution to this puzzle might be that since the dyonic

string can be viewed as a bound state with zero binding energy, it is less fundamental than

the individual electric and magnetic building blocks. Thus it would be unnecessary to find

a symmetry to relate the bound-state solutions with different ratios for the electric and

magnetic charge. (Another example where there is no homogeneous scaling symmetry to

account for the existence of arbitrary-charge solutions is in the heterotic string. This is

because Yang-Mills fields F ∼ dA + A ∧ A do not scale uniformly under A → λA. (One

requires a scaling symmetry that rescales the metric, so that the mass can be changed, while

leaving the scalars invariant, so that the scalar moduli are unchanged.))
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In this section, we constructed an O(2, 2;ZZ) multiplet of dyonic strings in D = 6. This

subgroup of the full O(5, 5;ZZ) or O(5, 21;ZZ) duality groups captures the essence of the

complete groups, in that it describes both the NS-NS/R-R duality and the electric/magnetic

duality. The extension to the full duality group is straightfoward in principle, using, for

example, the techniques described in [64], but its detailed implementation would be tedious

and rather unrewarding. The most interesting aspect of the U-duality multiplets is to see

how the charges transform under the full U-duality group. The classification of the U-duality

orbits of the charges in all dimensions can be found in [67, 68].

C.2 Boosted and twisted dyonic strings

In the discussion above, we gave the construction of the O(2, 2;ZZ) multiplet of unboosted,

isotropic dyonic strings. It is straightforward to boost in the worldvolume, or to twist in

the transverse space, and thereby obtain O(2, 2;ZZ) multiplets of boosted or twisted dyonic

strings. We do this by following a strategy analogous to the one we used previously, namely

by starting with a boosted and twisted dyonic string supported purely by NS-NS 3-form

charges, and taking the scalar moduli to vanish. The form of the solutions for the fields

(φ1, χ1, φ2, χ2, F
NS
(3) , F

RR
(3) ) is identical to that for the unboosted, untwisted case given in

(C.3), except that now the harmonic functions He and Hm are modified to He = 1 + q/r,

Hm = 1 + p/r. (In other words, they are now harmonic only in the 3-dimensional overall

transverse space, rather than the 4-dimensional transverse space for the dyonic strings.4)

The metric is given by

ds2 = −(HeHm)
−1
2 K−1

w dt2 + (HeHm)
−1
2 Kw (dz1 + (K−1

w − 1)dt)2

+(HeHm)
1
2 K−1

N (dz2 +QN cos θ dφ)2

+(HeHm)
1
2 KN (dr2 + r2dθ2 + r2 sin2 θ dφ2) , (C.13)

where the extra harmonic functions for the wave and the boost charges are Kw = 1+Qw/r

and KN = 1+QN/r. We may now repeat the steps that we followed previously, to generate

the entire O(2, 2;ZZ) multiplet of boosted and twisted dyonic strings. The final expressions

for the dilatons, axions and 3-form fields will be identical to those given in (C.4), again

with the understanding that the He and Hm harmonic functions are modified to those

4Recall that we are defining charges arising from integrals over S2 and over S3 by Q = 1
4π

∫
F2 and

Q = 1

16π2

∫
F3 respectively, which ensures that the charge is preserved under dimensional reduction. It

follows that the harmonic functions in the two cases will be of the form H = 1 + Q/r and H = 1 + 4Q/r2

respectively.
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given above. The reason for this is that the only other change in the starting point is in

the metric, which is a singlet under O(2, 2), and so the entire calculation of the O(2, 2;ZZ)

multiplet proceeds identically to the one we described previously. Note that the charges p

and q are still given by (C.9), as in the case of unboosted isotropic dyonic strings.

The solution (C.13) can be dimensionally reduced on the fibre coordinates z1 and z2,

giving rise to a non-dilatonic black hole in D = 4. The near-horizon limit in D = 4 is

AdS2 × S2, and so the area of the event horizon is non-vanishing, implying that there is a

non-vanishing entropy, even though the solution is extremal. The entropy is of the form

S ∼
√
p q QwQN . (C.14)

¿From the six-dimensional point of view, the near-horizon limit is also locally non-singular,

and is given, after a rescaling of the time coordinate, by

ds2 =
√
p q QN

{
− e2ρ dt2 + dρ2 + (

√
Qw

p q QN
dz1 + eρ dt)2

+dθ2 + sin2 θ dφ2 + (Q−1
N dz2 + cos θ dφ)2

}
. (C.15)

It is straightforward to verify that the 4-volume of the spatial metric at ρ = −∞ is of

the form (C.14). Note that Qw measures the momentum of the wave propagating on the

world-sheet of the dyonic string, and it, together with the other charges, has the effect of

rescaling the fibre coordinate z1. QN , on the other hand, is the NUT charge, and it has the

effect of changing the local structure of the S3 factor to the lens space S3/ZQN
. Thus we

see that the phenomenon of S3 being factored to become a cyclic lens space plays a rôle in

the understanding of the entropy of 4-dimensional black holes.

If we consider the case where the dyonic string is only twisted, but not boosted, the

solution is given by (C.13) with Qw = 0. In this case a dimensional reduction on the fibre

coordinate z2 gives rise to a non-dilatonic string in D = 5, which is dual to a non-dilatonic

3-charge black hole. If, on the other hand, we instead consider a case where there is only

boosting, but no twisting, of the dyonic string, the solution is given by

ds2 = −(HeHm)
−1
2 K−1

w dt2 + (HeHm)
−1
2 Kw (dz1 + (K−1

w − 1)dt)2

+(HeHm)
1
2 (dr2 + r2 dΩ2

3) , (C.16)

where now the functions He, Hm and Kw are harmonic in a 4-dimensional transverse space,

and so He = 1+4q/r2, Hm = 1+4p/r2 and Kw = 1+4Qw/r
2. Its dimensional reduction on

the fibre coordinate z1 gives a non-dilatonic 3-charge black hole in D = 5. The near-horizon
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limit of the six-dimensional metric (C.16), after rescaling the time coordinate, is

ds2 =
√
p q
{
− e2ρ dt2 + dρ2 + (

√
Qw
p q

dz1 + eρ dt)2

+dθ2 + sin2 θ dφ2 + (dz2 + cos θ dφ)2
}
. (C.17)

The entropy is of the form S ∼ √p q Qw.

D Hopf reductions and isentropic mappings

We have seen already that the Hopf T-duality transformations on the fibre coordinates of

AdS3 or S3, which can have the effect of (un)twisting and squashing the metrics, preserve

the entropy of the solutions. For example, we observe that the near-horizon limit (C.17) is

the same as (C.15) with QN = 1, in which case the lens space S3/ZQN
just becomes the

3-sphere. The entropy is therefore given by setting QN = 1 in (C.14). This shows, from

a six-dimensional point of view, that the near-horizon limit of a D = 5 isotropic 3-charge

black hole is the same as the near-horizon limit of a 4-charge black hole in D = 4, where the

magnetic Kaluza-Klein charge QN is set to 1. In other words, in the Hopf reduction on the

U(1) fibres of the 3-spheres that foliate the transverse space of the 3-charge black hole in

D = 5, a fourth charge (QN = 1) emerges in D = 4, corresponding to the magnetic charge

of the Kaluza-Klein 2-form that governs the curvature of the fibre bundle. This should be

contrasted with the more common kind of Kaluza-Klein reduction of the 3-charge black

hole in D = 5, where the reduction is on one of the coordinates of the transverse space.

In this situation, it is is necessary first to make a line (or periodic array) of D = 5 black

holes along the intended reduction axis. The consequence of this is that the number of

charges is conserved under the reduction process, and thus one arrives at a 3-charge black

hole in D = 4 which is singular on the horizon, and which has zero entropy. Hopf reduction,

however, preserves the area of the horizon, and provides a natural “isentropic mapping”

between the D = 5, 3-charge and D = 4, 4-charge black holes.

To make this property of the Hopf reductions more explicit, let us consider the entire

solution for a 3-charge black hole in D = 3, rather than just looking at the near-horizon

limit. The 3-charge solution, which can be obtained, for example, from the dimensional

reduction of (C.16) on the z1 coordinate, is

ds25 = −(HeHmKw)
−2
3 dt2 + (HeHmKw)

1
3 (dr2 + r2 dΩ2

3) , (D.1)

where

He = 1 +
4q

r2
, Hm = 1 +

4p

r2
, Kw = 1 +

4Qw
r2

. (D.2)
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Writing the unit 3-sphere metric dΩ2
3 in the fibre bundle form (3.5), we now perform the

reduction on the fibre coordinate z, using the usual Kaluza-Klein ansatz ds25 = e−ϕ/
√
3 ds24+

e2ϕ/
√
3 (dz +B)2, giving

ds24 = −1
2r (HeHmKw)

−1
2 dt2 + 1

2r (HeHmKw)
1
2 (dr2 + 1

4r
2 dΩ2

2) . (D.3)

The new Kaluza-Klein potential B is such that F(2) = dB = Ω(2), and hence the Kaluza-

Klein magnetic charge is QN = 1
4π

∫
F(2) = 1.

This is not quite like a normal black hole solution inD = 4 for two reasons. Firstly, there

is a conformal factor of r multiplying the entire metric, and secondly, the three-dimensional

transverse space has the non-standard metric dr2 + 1
4r

2 dΩ2
2. This metric suffers from a

diverging curvature as r approaches zero, since the foliating 2-spheres are of the wrong

radius to “nest” nicely around the origin. We see that it is natural to perform a coordinate

transformation in which we define a new radial coordinate ρ = 1
4r

2. In terms of this, the

metric (D.3) becomes

ds24 = −
(1
ρ
HeHmKw

)−1
2 dt2 +

(1
ρ
HeHmKw

)1
2 (dρ2 + ρ2 dΩ2

2) . (D.4)

Note that in terms of the new radial coordinate, the original harmonic functions He, Hm

and Kw given in (D.2) become

He = 1 +
q

ρ
, Hm = 1 +

p

ρ
, Kw = 1 +

Qw
ρ

, (D.5)

which are harmonic in the new 3-dimensional transverse space. Thus we see that the effect

of performing a Hopf reduction on a 3-charge black hole in D = 5 is to give the solution

ds24 = −
(
KNHeHmKw

)−1
2 dt2 +

(
KNHeHmKw

)1
2 (dρ2 + ρ2 dΩ2

2) , (D.6)

which is precisely of the form of a standard 4-charge black hole, except that the fourth

harmonic function KN = 1/ρ, which has charge equal to 1, is lacking a constant term.

Of course if we consider the near-horizon limit where ρ approaches zero, the absence of

the constant term becomes immaterial. In fact, it is also possible to introduce a constant

term in the harmonic function KN , by performing an appropriate U-duality transformation

[59, 8, 60, 61]. Thus we see that the Hopf dimensional reduction provides a natural isentropic

mapping between a 3-charge black hole in D = 5 and a 4-charge black hole in D = 4. The

Hopf reduction preserves the supersymmetry of the solution. Although the four-dimensional

black hole involves 4 charges, it still preserves the same fraction 1/8 of the supersymmetry

as does the 3-charge black hole in D = 5. (With the opposite orientation for the Hopf
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reduction, all the supersymmetry is broken, which is consistent with the fact that 4-charge

black holes in D = 4 also occur with no preserved supersymmetry, if the sign of the fourth

charge is reversed [18, 57].)

The crucial feature in the above discussion is that the foliating spheres in the transverse

space are 3-dimensional. One can perform a Hopf reduction on the U(1) fibres of any odd-

dimensional sphere S2n+1, but in general the base space will then be CPn. However, it is

only in the special case n = 1 that the transverse space after the Hopf reduction can become

flat, with no singularity at the origin. This is because a metric of the form dρ2 + ρ2 dΣ2
n,

where dΣ2
n is the metric on CPn, is non-singular at the origin only if dΣ2

n is a metric on

the unit sphere. Only for n = 1 is CPn isomorphic to a sphere (CP 1 ∼ S2).

In fact, we can apply the Hopf reduction to any N -charge p-brane solution whose trans-

verse space is 4-dimensional, and thereby obtain an (N +1)-charge p-brane solution in one

dimension less, with the strength of the extra charge being 1. (As in the previous example

of D = 5 black holes, a further U-duality transformation is needed in order to introduce a

constant term in the associated harmonic function.) Note that the procedure can equally

well be applied to the case of non-extremal p-branes.

Let us consider a general isotropic N -charge non-extremal p-brane solution in D + 1

dimensions, where the transverse space has dimension 4. The metric will have the form [69]

ds2
D+1 =

N∏

i=1

H
−2/(D−1)
i

(
− e2f dt2+d~x ·d~x

)
+

N∏

i=1

H
(D−3)/(D−1)
i

(
e−2f dr2+ r2 dΩ2

3

)
, (D.7)

where the “harmonic” functions take the form Hi = 1+4k sinh2 µi r
−2, and the “blackening

function” f is given by e2f = 1 − k r−2. (Full details of the solutions, and the relation of

the charges and the mass to the parameters µi and k can be found in [69].) Following the

same steps as we described above for the reduction of the 3-charge D = 5 black hole, we

find that the Hopf-reduced solution in D dimensions has the metric

ds2
D
=

N+1∏

i=1

H
−1/(D−2)
i

(
−e2f dt2+d~x ·d~x

)
+
N+1∏

i=1

H
(D−3)/(D−2)
i

(
e−2f dρ2+ρ2 dΩ2

2

)
, (D.8)

where ρ = 1
4r

2, and we now have e2f = 1− k/(4ρ) and

Hi = 1 +
k

ρ
sinh2 µi , (1 ≤ i ≤ N) , HN+1 =

1

ρ
. (D.9)

As before, we can then perform a suitable U-duality transformation on this solution in order

to introduce a constant term in the new harmonic function HN+1 [59, 8, 60, 61]. The metric

(D.9) is then precisely of the form of an (N +1)-charge p-brane in D dimensions, with unit
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strength for the extra harmonic function. The discussion extends to any intersection of

p-branes, NUTs and waves where the overall transverse space is 4-dimensional.

In general, the near-horizon limit of an N -charge extremal p-brane is singular. It follows

in these cases that the Hopf reduction will give rise to a singular dilaton in the lower

dimension. Thus the supersymmetry will be further broken in such cases.

An application of our discussion of Hopf reductions for 4-dimensional transverse spaces

is to 5-branes in D = 10. There are NS-NS 5-branes, and R-R D5-branes. For the case of

NS-NS 5-branes, Hopf reduction on the U(1) fibres of S3 gives rise to 2-charge harmonic

5-branes in D = 9. Performing a T-duality transformation, the solution can be oxidised

to D = 10, when it again becomes an NS-NS single-charge 5-brane, this time with unit

charge. At the same time, the foliating 3-spheres become lens spaces S3/Zn, where n is the

magnetic charge of the original 5-brane. Thus a single (i.e. unit charge) 5-brane is invariant

under the Hopf T-duality. The picture is more complicated for the case of R-R 5-branes.

The Hopf reduction to D = 9 gives the same metric form as in the NS-NS case, but after

T-duality it oxidises back to the intersection of an NS-NS 5-brane and a D6-brane. In this

case, the original 3-sphere is untwisted to S2 × S1 (but with a non-direct-product metric,

since there will be different harmonic functions multiplying the two factors).
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[38] M.J. Duff, H. Lü and C.N. Pope, Supersymmetry without supersymmetry, Phys. Lett.

B409 (1997) 136, hep-th/9704186.
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[60] E. Cremmer, I.V. Lavrinenko, H. Lü, C.N. Pope, K.S. Stelle and T.A. Tran, Euclidean-

signature supergravities, dualities and instantons, to appear in Nucl. Phys. B, hep-

th/9803259.

[61] E. Bergshoeff and K. Behrndt, D-instantons and asymptotic geometries, Class. Quant.

Grav. 15 (1998) 1801, hep-th/9803090.
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