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ABSTRACT

The recent proposal by Hawking and Turok for obtaining an open inflationary universe

from singular instantons makes use of low-energy effective Lagrangians describing gravity

coupled to scalars and non-propagating antisymmetric tensors. In this paper we derive

some exact results for Lagrangians of this type, obtained from spherical compactifications

of M-theory and string theory. In the case of the S7 compactification of M-theory, we give a

detailed discussion of the cosmological solutions. We also show that the lower-dimensional

Lagrangians admit domain-wall solutions, which preserve one half of the supersymmetry,

and which approach AdS spacetimes near their horizons.
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1 Introduction

It has recently been proposed that a Euclidean-signature instanton solution can describe

the creation of an open inflationary universe [1]. The proposal has sparked a lively debate,

in which various aspects of the assumptions and the conclusions have been discussed [2–12].

One of the hopes of string theory or M-theory is that it will be able to supply definitive

answers to questions that until now have been matters for conjecture or choice. Indeed

in [4] the form of the potential governing the evolution of an inflationary instanton solution

was drawn from M-theory, or, more specifically, from the eleven-dimensional supergravity

that is presumed to describe its low-energy limit, by compactifying the theory on a 7-

sphere. This makes use of the observation that a 4-form field strength can give rise to

a cosmological constant [13–19]. Our purpose here is not to step out into the fray in

the ongoing cosmological debate, but rather to study in more detail the lessons that can

be learned by taking M-theory or string theory as a starting-point for the discussion. We

shall consider various examples in which higher-dimensional supergravities are dimensionally

reduced on spheres, leading to theories in lower dimensions that include scalar fields with

the kind of potentials that are commonly encountered in the inflationary models. Of course,

the complete analysis of the dimensionally-reduced theories is extremely complicated, even

at the linearised level where one is simply concerned with extracting the mass spectrum.

In fact for the purposes of studying cosmological solutions it is not sufficient to know just

the linearised results, since the scalar fields are liable to become large at some stage in the

evolution of the system. Thus it is of more interest to know the exact form of the lower-

dimensional Lagrangian for some subset of the fields that includes the ones participating

in the cosmological solution. In particular, if one wishes to retain comparability between

the different dimensional theories, it is important that the truncation to the subset of fields

in the lower-dimensional theory be a consistent one, in the sense that solutions of the

resulting lower-dimensional equations of motion should also give solutions of the original

higher-dimensional ones.

The easiest way of achieving a consistent truncation in any system of equations is to

retain the totality of fields that are singlets under some symmetry group, while setting

to zero all fields that are non-singlets [20]. By this means the danger inherent in any

“generic” truncation, namely that non-linear terms can imply that the retained fields act

as sources for the fields that were set to zero, is avoided.1 We shall consider a number

1In the context of a supergravity theory, one also encounters many fields transforming nontrivially under

internal symmetry groups. Although such fields will not play a rôle in the specific solutions that will occupy
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of examples, based on sphere compactifications of higher-dimensional supergravities. The

simplest cases are where the theory is compactified on a “round” n-sphere with SO(n+ 1)

isometry group, and the dimensionally-reduced theory is truncated to the SO(n+1) singlets.

In particular, the Einstein-Hilbert sector of the higher-dimensional theory will give rise

just to the metric, and a “breathing-mode” scalar in the lower dimension. Slightly more

complicated examples can be found in cases where the dimension n of the sphere Sn is

odd, n = 2m + 1. In such cases, we may truncate to the larger subsector of all singlets

under the SU(m + 1) × U(1) subgroup of SO(2m + 2). This is the isometry group of the

one-parameter family of homogeneous metrics on the “squashed” (2m + 1)-sphere, which

can be described as a U(1) bundle over CPm. (The squashing parameter corresponds to

the freedom to scale the length of the U(1) fibres, without affecting the isometry group. For

one particular value of this parameter, corresponding to the “round” sphere, the isometry

group undergoes an enlargement from SU(m + 1) × U(1) to SO(2m + 2).) Thus we may

construct consistently-truncated lower-dimensional theories that include the homogeneous

squashing mode as well as the breathing mode of the sphere.

In this paper, we shall construct consistently-truncated theories that result from spher-

ical reductions in a number of cases, including the round and squashed S7 reductions of

D = 11 supergravity, the S4 reduction of D = 11 supergravity, and the round and squashed

S5 reductions of type IIB supergravity. Owing to the presence of cosmological potentials

in these dimensionally reduced theories, there is a salient class of supersymmetric solutions

containing (D− 2) branes, i.e. domain walls. Unlike the domain walls occurring in massive

supergravities [33, 34], these domain walls have regular dilatons on their horizons. Thus,

they fit into the class of solitons interpolating between different vacua of the dimension-

ally reduced theory, specifically, between anti-de Sitter space and flat space. Accordingly,

they also display supersymmetry enhancement at their horizons. We shall show that these

domain-wall solutions can be interpreted via dimensional oxidation on spheres, in terms of

the familiar fundamental brane solutions of D = 11 and D = 10 type IIB supergravities.

Next, we proceed to consider instanton solutions obtained in two variants of Euclidean su-

pergravities: those obtained by Wick rotation and those obtained by dimensional reduction

on anti-de Sitter spaces, a Minkowski-signature variant of the spherical reductions consid-

ered earlier. In the Wick-rotated D = 4 theory obtained via an S7 reduction, we obtain

an instanton that shares some features with the Hawking-Turok instanton [1], but now ob-

us in the present paper, it is appropriate to note that truncation to the full supergravity multiplet is also

consistent [21,22].
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tained as a specific solution of Euclideanised D = 11 supergravity. Moreover, we shall see

that one can also follow the spirit of Ref. [41] and combine domain walls and instantons

together in a nonsingular solution with both Euclidean and Minkowskian regions. Although

we have not carried out a full analysis of the cosmological implications of such solutions, we

note that the occurrence of domain walls and instantons within these dimensionally reduced

supergravities appears to provide some of the elements postulated in recent cosmological

discussions, but now within the definite context of supergravity theory.

2 Sphere reductions of supergravities

In this section, we consider the consistent reductions of various supergravity theories on

spheres, using the general results obtained in appendix A. Specifically, we shall consider

the cases of D = 11 supergravity compactified on S7 and on S4, type IIB supergravity

compactified on S5, D = 6 supergravity on S3, and D = 5 supergravity on S2. In all the

cases where the internal space is a sphere of odd dimension, one can also retain a further

singlet mode in a consistent truncation, namely the “squashing” mode parameterising the

length of the U(1) fibres in the description of S2m+1 as a U(1) bundle over CPm. In this

case, the modes that are retained will be singlets under the SU(m + 1) × U(1) subgroup

of SO(2m + 2) that is the isometry group of the generic squashed sphere. As discussed

in appendix A, the results are also easily generalised to the case of timelike reductions on

AdS spaces instead of spheres. In these cases the breathing-mode potential in the lower-

dimensional Lagrangian is reversed in sign. Note also that all the results for sphere and AdS

reductions apply equally well to any other internal Einstein spaces, with positive, negative

or zero Ricci scalar.

2.1 Reduction of D = 11 supergravity on S7

Following the general discussion in appendix A, we reduce the eleven-dimensional fields

ĝMN and F̂4 on S7:

dŝ2 = e2αϕ ds2
4 + e2βϕ ds2

7 ,

F̂(4) = F(4) . (2.1)

Here, the metric ds2
4 and the fields F(4) and ϕ depend only on the four coordinates of the

four-dimensional space, whereas the hatted fields depend, a priori, on all eleven coordinates.

The metric ds2
7 is a fixed metric on the round 7-sphere, with a fixed standard radius. The
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constants α and β are given by

α =
√

7
6 , β = −2

7α . (2.2)

We then obtain the D = 4 Lagrangian

e−1L = R− 1
2(∂ϕ)2 + e

18α
7 ϕR7 −

1
48e
−6αϕ F 2

(4) , (2.3)

Here, R7 is the Ricci scalar of the 7-sphere; it is just a fixed constant.

The four-dimensional field equations following from this Lagrangian are

Rµν = 1
2∂µϕ∂νϕ+ 1

12e
−6αϕ (F 2

(4)µν −
3
8F

2
(4) gµν)− 1

2e
18α

7 ϕR7 gµν , (2.4a)

ϕ = −18α
7 e

18α
7 ϕR7 −

α
8 e
−6αϕ F 2

(4) , (2.4b)

∇µ(e−6αϕ Fµνρσ) = 0 . (2.4c)

The last equation implies that F4 can be solved by writing

Fµνρσ = c e6αϕεµνρσ , (2.5)

where c is a constant. Either by substituting this back into the field equations, or by follow-

ing the standard procedure for dualising a field, we can obtain the Lagrangian describing

the dualised system

e−1L = R− 1
2(∂ϕ)2 − V (ϕ) , (2.6)

where the potential V (ϕ) is given by

V (ϕ) = 1
2c

2e6αϕ − e
18α

7 ϕR7 . (2.7)

The Lagrangian (2.6) is a special case of (A.13) given in appendix A.

It can be seen that this D = 4 theory admits a solution where ϕ = ϕAdS is a constant.

The Ricci scalar R7 of the 7-sphere is then given in terms of c and ϕAdS. This includes the

AdS4 × S7 solution. Specifically, we will have:

Rµν = −1
3c

2 e6αϕAdS gµν ,

e
24α

7 ϕAdS =
6R7

7c2
. (2.8)

Later in the paper, we shall obtain a domain-wall solution of this theory that interpolates be-

tween this “vacuum” solution and flat space. We shall also show that this four-dimensional

theory admits cosmological instanton solutions, similar to those described in [1].
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2.2 Inclusion of a squashing mode in the S7 reduction

Another consistent truncation of the S7 reduction from D = 11 can be obtained by retaining

all the singlets under the SU(4) × U(1) subgroup of SO(8), rather than just the SO(8)

singlets. Since SU(4)×U(1) is the isometry group of the one-parameter family of 7-spheres

constructed as U(1) bundles over CP 3, for generic values of the “squashing parameter”

along the U(1) fibres, it follows that the D = 4 scalar field corresponding to this squashing

mode is a singlet under SU(4) × U(1). In fact, we can treat this problem by viewing the

reduction on S7 as a reduction first to D = 10 type IIA, followed by a reduction on CP 3,

in which we keep just the singlets under the SU(4) isometry group of CP 3. Thus the full

set of fields in D = 4 that are singlets under SU(4) × U(1) will be the direct reduction of

the fields already present in D = 10 type IIA, plus the further scalar field corresponding to

the “breathing mode” of CP 3.2

To establish notation, let us write the ansatz for the D = 11 metric reduced to D = 10

as

ds2
11 = e−

1
6φ ds2

10 + e
4
3φ (dz +A)2 . (2.9)

Note that φ is nothing but the dilaton of the type IIA theory. In this convention, the

ten-dimensional string coupling constant is given by λ10 = eφ. Then the reduction on CP 3

from D = 10 to D = 4 will be performed as follows:

ds2
10 = e2αϕ ds2

4 + e2βϕ ds2(CP 3) . (2.10)

This part of the reduction proceeds identically to the sphere reductions discussed in the

previous section. (No special features of the sphere metric were needed in that discussion;

we can equally well apply the previous results to reductions on any Einstein metric.) Thus

we will have

α =
√

3
4 , β = −1

3α (2.11)

in this case. The volume of the CP 3 measured in the ten-dimensional string frame is given

by

VCP 3 = e
3
2φ+6βϕ . (2.12)

Thus the four-dimensional string coupling constant is given by

λ2
4 =

λ2
10

VCP 3

= e
1
2φ+

√
3

2 ϕ . (2.13)

2A similar kind of analysis for the squashing of S7 described as an SU(2) bundle over S4, which arises in

the N = 1 supersymmetric AdS4×S7 “squashed seven-sphere” compactification of D = 11 supergravity [23]

can be found in [24].
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The various fields in D = 10 will be reduced as follows:

F̂(4) = F(4) , F̂(3) = F(3) ,

F̂(2) = F(2) + 2mJ , (2.14)

where J is the Kähler form on CP 3. In other words, F̂(4) and F̂(3) are just taken to be

independent of the CP 3 coordinates, while F̂(2) is taken to have its background value as

in the AdS4 × S7 solution (see [25]), plus a fluctuation. The final result for the reduced

Lagrangian in D = 4 will therefore be

e−1 L = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 + e
8
3αϕR6 − 6m2 e

3
2φ+

10α
3 ϕ

− 1
48e

1
2φ−6αϕ F 2

(4) −
1
12e
−φ−4αϕ F 2

(3) −
1
4e

3
2φ−2αϕ F2

(2) , (2.15)

where R6 is the Ricci scalar of the compactifying CP 3 space.

A simple check is to verify that we can recover the usual AdS4 × S7 solution of D = 11

supergravity. Now, from (2.15), we have that the equations of motion for the two dilatons

and the metric are

φ = 9m2 e
3
2φ+

10α
3 ϕ + 1

96e
1
2φ−6αϕ F 2

(4) −
1
12e
−φ−4αϕ F 2

(3) + 3
8e

3
2φ−2αϕ F2

(2) ,

ϕ = −8
3αR6 e

8α
3 ϕ + 20αm2 e

3
2φ+

10α
3 ϕ − α

8 e
1
2φ−6αϕ F 2

(4)

−α
3 e
−φ−4αϕ F 2

(3) −
α
2 e

3
2φ−2αϕF2

(2) ,

Rµν = 1
2∂µφ∂νφ+ 1

2∂µϕ∂νϕ−
1
2R6 e

8α
3 ϕ gµν + 3m2 e

3
2φ+

10α
3 ϕ gµν

+ 1
12e

1
2φ−6αϕ (F 2

(4)µν −
3
8F

2
(4) gµν) + 1

4e
−φ−4αϕ (F 2

(3)µν −
1
3F

2
(3) gµν)

+1
2e

3
2φ−2αϕ (F2

(2)µν −
1
4F

2
(2) gµν) . (2.16)

We see that there is indeed a solution where F(4) = c e−
1
2φ+6αϕ ε(4), and with φ = φ0 and

ϕ = ϕ0 constants given by

e2φ0 =

√
c

6m

R6

48m2
, e

16α
3 ϕ0 =

3R2
6

32mc2
. (2.17)

The Ricci tensor satisfies

Rµν = −1
4R6 e

8α
3 ϕ0 gµν , (2.18)

which admits, in particular, the standard AdS4 solution.

Another check is to see that we can obtain the SO(8)-invariant truncation of section 2.1

in a consistent way. To do this, we can perform a rotation of the dilatons in the case above,

and define a pair (φ̃, ϕ̃) as follows:

φ̃ = 3
√

3
2
√

7
φ+ 1

2
√

7
ϕ

ϕ̃ = − 1
2
√

7
φ+ 3

√
3

2
√

7
ϕ . (2.19)
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Substituting into (2.15), and dropping the fields F(3) and F(2), we obtain

e−1 L = R− 1
2(∂φ̃)2 − 1

2(∂ϕ̃)2 +R6 e
3√
7
ϕ̃+

1√
21
φ̃
− 6m2 e

3√
7
ϕ̃+

8√
21
φ̃

− 1
48e
−
√

7ϕ̃ F 2
(4) . (2.20)

We see that the equation of motion for φ̃ allows us to set φ̃ = 0, provided that R6 = 48m2,

whereupon the Lagrangian (2.20) reduces to the Lagrangian (2.3) of section 2.1 (with R7 =

42m2), with ϕ replaced by ϕ̃. Furthermore, if we write the ansatz (2.9,2.10) for the eleven-

dimensional metric in terms of the rotated tilde basis for the dilatons, we have

ds2
11 = e

√
7

3 ϕ̃ ds2
4 + e

−
2

3
√

7
ϕ̃
(
e
−

1√
21
φ̃
ds2(CP 3) + e

6√
21
φ̃

(dz +A(1))
2
)
. (2.21)

Thus we see that indeed the φ̃ scalar describes a volume-preserving 6+1 squashing of the S7

metric, while ϕ̃ is the same as the dilatonic scalar ϕ of the SO(8)-invariant ansatz of section

2.1. Thus we see that the four-dimensional string coupling constant λ4, given in (2.13) is

not an SO(8)-invariant quantity. To get a four-dimensional theory with AdS4 background,

we need to set φ̃ = 0, implying that λ4 = λ−2
10 [25].

2.3 S4 reduction of D = 11

In this case, the S4 solution requires that the internal components of F4 (in the 4-sphere)

should be non-zero, and so we must make the following ansatz:

dŝ2
11 = e2αϕ ds2

7 + e2βϕ ds2
4 ,

F̂(4) = F(4) + 6mε(4) . (2.22)

From appendix A, we see that the constants α and β are given by α = 2
3
√

10
and β = −5

4α.

Plugging into the Lagrangian, we get

L7 = eR− 1
2e(∂ϕ)2 + e e

9α
2 ϕR4 − 18em2 e12αϕ − 1

48e e
−6αϕ F 2

(4) − 3m ∗(F(4) ∧A(3)) . (2.23)

Note that we have a topological mass term for A(3) here, coming from the FFA term in

D = 11.

The equations of motion following from this Lagrangian are

Rµν = 1
2∂µϕ∂νϕ−

1
5e

9α
2 ϕR4 gµν + 18

5 m
2 e12αϕ gµν

+ 1
12e
−6αϕ (F 2

µν −
1
10F

2
(4) gµν) ,

ϕ = −9
2α e

9α
2 ϕR4 + 216αm2 e12αϕ − 1

8α e
−6αϕ F 2

(4) , (2.24)

d(e−6αϕ ∗F(4)) = −6mF(4) .
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These equations admit an AdS7 solution which corresponds to the AdS7 × S4 “vacuum”

solution of D = 11 supergravity. We see from (2.24) that with F(4) = 0, we can take

ϕ = ϕAdS to be constant, given by

e
15α

2 ϕAdS =
R4

48m2
. (2.25)

The Ricci tensor in spacetime is then given by

Rµν = −6m2 e12αϕAdS gµν , (2.26)

which allows an AdS7 solution.

2.4 S5 reduction of type IIB supergravity

In the case of type IIB supergravity [26], we must work at the level of the D = 10 equations

of motion, since there there is no Lagrangian formulation of the theory. The type IIB

bosonic equations of motion can be written as the following [27]

Rµν = 1
2∂µφ∂νφ+ 1

2e
2φ ∂µχ∂νχ+ 1

96(H(5))
2
µν

+1
4e
φ ((F 1

(3))
2
µν −

1
12(F 1

(3))
2 gµν) + 1

4e
−φ ((F 2

(3))
2
µν −

1
12(F 2

(3))
2 gµν) ,

d(M∗H(3)) = H(5) ∧ ΞH(3) , (2.27)

H(5) = ∗H(5) ,

d(e2φ∗dχ) = −eφ F 2
(3) ∧ F

1
(3) ,

d∗dφ = e2φ dχ ∧ ∗dχ+ 1
2e
φ F 1

(3) ∧ F
1
(3) −

1
2e
−φ F 2

(3) ∧ F
2
(3) , (2.28)

where

M =

(
eφ χ eφ

χ eφ e−φ + χ2 eφ

)
, H(3) =

(
dA1

(2)

dA2
(2)

)
, Ξ =

(
0 1

−1 0

)
. (2.29)

The self-dual 5-form H(5) satisfies the Bianchi identity dH(5) + 1
2εij F

i
(3) ∧F

j
(3) = 0. The R-R

field strength F 1
(3) is given by F 1

(3) = dA1
(2) − χdA

1
(2), and the NS-NS field strength is given

by F 2
(3) = dA2

(2).

The Kaluza-Klein ansatz for the metric will be the usual one, invariant under the isom-

etry group SO(6) of the compactifying 5-sphere:

ds2
10 = e2αϕ ds2

5 + e2βϕ ds2(S5) . (2.30)

From the general results in appendix A, we have here that

α = 1
4

√
5
3 β = −3

5 α . (2.31)
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The ansatz for the self-dual 5-form, which is non-dynamical in the reduced D = 5 theory,

will be

H(5) = 4me8αϕ ε(5) + 4mε(5)(S
5) , (2.32)

where the ε(5) quantities are the volume forms on the five-dimensional spacetime and the

S5 metrics ds2
5 and ds2

5(S5) respectively. The choice of ansatz here is dictated by the

requirements that the 5-form be self-dual, and that it satisfy the necessary Bianchi iden-

tity dH(5) = 0. After some algebra, we find that substituting these ansätze into the ten-

dimensional equations of motion leads consistently to the the 5-dimensional equations

Rµν = 1
2∂µφ∂νφ+ 1

2e
2φ ∂µχ∂νχ+ 8

3 m
2e8αϕ gµν −

1
3e

16α
5 ϕR5 gµν

+1
4e
φ ((F 1

(3))
2
µν −

2
9(F 1

(3))
2 gµν) + 1

4e
−φ ((F 2

(3))
2
µν −

2
9(F 2

(3))
2 gµν) ,

ϕ = 64αm2 e8αϕ − 16
5 αe

16α
5 ϕR5 −

1
3α e

−φ−4αϕ (F 1
(3))

2 − 1
3αe

φ−4αϕ (F 2
(3))

2 . (2.33)

(The other equations of motion do not immediately concern us here.) It is not hard to see

that the full set of equations of motion can be derived from the 5-dimensional Lagrangian

L5 = eR − 1
2e (∂φ)2 − 1

2e (∂ϕ)2 − 1
2(∂χ)2e2φ − 8m2 e e8αϕ + e

16α
5 ϕR5

− 1
12e e

φ−4αϕ (F 1
(3))

2 − 1
12e e

−φ−4αϕ (F 2
(3))

2 − 2m ∗(εij A
i
(2) ∧ dA

j
(2)) . (2.34)

Note that this reduction allows the expected AdS5 solution, with ϕ = ϕAdS being constant

and given by

e
24α

5 ϕAdS =
R5

20m2
. (2.35)

The Ricci tensor for AdS5 is then given by

Rµν = −4m2 e8αϕAdS gµν . (2.36)

2.5 Inclusion of a squashing mode in the S5 reduction

In the same manner as we did previously for S7, we can include a squashing mode in the

reduction of Type IIB supergravity on S5, in which we view S5 as a U(1) bundle over CP 2,

and thus we now truncate so as to keep all the SU(3)×U(1) singlets in the decomposition

of the SO(6) isometry group of the round S5 under the SU(3)×U(1) subgroup that is the

symmetry group of the squashed family of S5 metrics. We may use a similar trick as in

section 2.2, and carry out the process by first considering the S1-reduced D = 9 metric, and

then reducing this on CP 2, while giving the appropriate background value to the Kaluza-

Klein 2-form field strength in D = 9. We shall express the fields of the D = 9 theory in the

10



type IIB language, since our aim is to describe the squashed-S5 reduction of the Type IIB

theory.

The D = 9 Lagrangian, obtained from the type IIB theory by reducing the metric

according to the usual ansatz

ds2
10 = e

−
1

2
√

7
ϕ
ds2

9 + e

√
7

2 ϕ (dz +A(1))
2 (2.37)

is

e−1L9 = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 − 1
2e

2φ(∂χ)2

− 1
48e
− 2√

7
ϕ
F 2

(4) −
1
12e
−φ+

1√
7
ϕ
(F

(NS)
(3) )2 − 1

2e
φ+

1√
7
ϕ
(F

(R)
(3) )2 (2.38)

−1
4e

4√
7
ϕ
(F(2))

2 − 1
4e
φ−

3√
7
ϕ
(F

(R)
(2) )2 − 1

4e
−φ−

3√
7
ϕ
(F

(NS)
(2) )2

− 1
2e dA(3) ∧ dA(3) ∧ A(1) + 1

e dA
(NS)
(2) ∧ dA

(R)
(2) ∧A(3) .

The reduction ansatz for the metric will be the usual one, namely

ds2
9 = e2αf ds2

5 + e2βf ds2
4(CP 2) , (2.39)

where, from appendix A, the constants α and β here are given by

α =
√

2
21 , β = −3

4 α . (2.40)

For the various field strengths, they will all just directly reduce näıvely, except for F(4) and

F(2), which will be reduced according to

F(4) −→ F(4) + 4mε(4) ,

F(2) −→ F(2) + 2µJ , (2.41)

where ε(4) is the volume-form on CP 2, and J is the Kähler form.

We may now substitute the various ansätze into the nine-dimensional Lagrangian (2.38).

To avoid repetitive formulae, let us also at this stage perform an O(2) rotation of the scalars

(ϕ, f), to tilded ones:

f̃ =
√

3
35 f + 4

√
2
35 ϕ , ϕ̃ = 4

√
2
35 f −

√
3
35 ϕ ,

f =
√

3
35 f̃ + 4

√
2
35 ϕ̃ , ϕ = 4

√
2
35 f̃ −

√
3
35 ϕ̃ . (2.42)

In terms of these, the reduced five-dimensional Lagrangian turns out to be

e−1L5 = R− 1
2(∂φ)2 − 1

2(∂ϕ̃)2 − 1
2(∂f̃)2 − 1

2e
2φ(∂χ)2 − 1

48e
−2

√
2
5 f̃−2

√
3
5 ϕ̃F 2

(4)

11



− 1
12e
−φ−

√
5
3 ϕ̃ (F

(NS)
(3) )2 − 1

2e
φ−

√
5
3 ϕ̃ (F

(R)
(3) )2 − 1

4e
2

√
2
5 f̃−

4√
15
ϕ̃

(F(2))
2

−1
4e
φ−2

√
2
5 f̃−

1√
15
ϕ̃

(F
(R)
(2) )2 − 1

4e
−φ−2

√
2
5 f̃−

1√
15
ϕ̃

(F
(NS)
(2) )2 (2.43)

−8m2 e
2

√
5
3 ϕ̃ − µ2 e

3

√
2
5 f̃+

4√
15
ϕ̃

+ e
1√
10
f̃+

4√
15
ϕ̃
R4

−4
e m ∗(dA(3) ∧ A(1))−

4
e m ∗(A

(R)
(2) ∧ dA

(NS)
(2) ) .

We can first perform the statutory consistency check of verifying that we can get back

the results of the previous subsection, by truncating out the squashing mode. The rotated

basis for the dilatons that we are using in (2.43) is adapted for the purpose, and indeed

we can see it is consistent with the equation of motion for f̃ to set f̃ = 0, provided that

R4 = 6µ2. If we then set f̃ = 0, we see that indeed the Lagrangian truncates to the previous

one (2.34), with ϕ replaced by ϕ̃.

It is also instructive to write the ansatz for the original ten-dimensional type IIB metric

in terms of the tilded dilatons defined in (2.42). From (2.37) and (2.39), we find that the

ten-dimensional metric is given by

ds2
10 = e

√
5
12 ϕ̃ ds2

5 + e
−

√
5
12 ϕ̃

(
e
−

1√
10
f̃
ds2

4(CP 2) + e
4√
10
f̃

(dz +A(1))
2
)
. (2.44)

Thus indeed we see that f̃ acts as a volume-preserving “squashing mode” of the 5-sphere,

while ϕ̃ is the breathing mode.

2.6 Further examples

2.6.1 Reduction of D = 6 supergravity on S3

We may consider the reduction of a D = 6 Lagrangian of the form

e−1 L6 = R− 1
2(∂φ)2 − 1

12e
√

2φ F 2
(3) , (2.45)

where the internal space is taken to be S3. This calculation is relevant for the reduction

of any of the six-dimensional supergravities. Following the same procedures that we have

used previously, we shall first consider the situation where an SO(4)-invariant reduction is

performed, with the ansätze

dŝ2
6 = e2αϕ ds2

3 + e2βϕ ds2(S3) ,

F̂(3) = F(3) +mε(3)(S
3) , (2.46)

where α =
√

3
8 and β = −1

3α. The resulting three-dimensional Lagrangian is

e−1 L3 = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 +R3 e
8α
3 ϕ − 1

2m
2 e
√

2φ+4αϕ − 1
12e
√

2φ−4αϕ F 2
(3) . (2.47)

12



We may now dualise F(3) in the standard way, solving its equation of motion by writing

F(3) = c e−
√

2φ+4αϕ ε(3)(S
3). The resulting dualised Lagrangian is

e−1L3 = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 +R3 e
8α
3 ϕ − 1

2m
2 e
√

2φ+4αϕ − 1
2c

2 e−
√

2φ+4αϕ . (2.48)

As in the previous examples, we may also consider a more general reduction where the

squashing mode of the 3-sphere is included, corresponding to the family of SO(3) × U(1)

invariant metrics on the 3-sphere described as a U(1) bundle over CP 1 = S2. As before,

this is most easily done by first reducing the six-dimensional theory on a circle, which will

then be taken to be the U(1) of the Hopf fibration. Thus our starting point now will be the

five-dimensional theory obtained from (2.45) by reducing the metric according to

dŝ2
6 = e

−
1√
6
ϕ
ds2

5 + e
3√
6
ϕ

(dz +A(1))
2 , (2.49)

which gives the Lagrangian

e−1 L5 = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 − 1
12e

√
2φ+

2√
6
ϕ
F 2

(3)

−1
4e

√
2φ− 2√

6
ϕ
F 2

(2) −
1
4e

4√
6
ϕ
F2

(2) . (2.50)

We then perform a further reduction on S2, with the ansätze

ds2
5 → e

2√
3
f
ds2

3 + e
−

1√
3
f
ds2(S2) ,

F(3) → F3 ,

F(2) → F(2) + λJ ,

F(2) → F(2) +mJ . (2.51)

It is convenient also to make an orthogonal transformation on the basis for the dilatons ϕ

and f , defining

f = 2
√

2
3 ϕ̃+ 1

3 f̃ , ϕ = −1
3ϕ̃+ 2

√
2

3 f̃ . (2.52)

In this basis, and after dualising F(3) in D = 3 by solving its equation of motion in the form

F(3) = c e
−
√

2φ−
2√
6
ϕ+4αf

, we obtain the three-dimensional Lagrangian

e−1L3 = R− 1
2(∂φ)2 − 1

2(∂ϕ̃)2 − 1
2(∂f̃)2 − 1

4e

√
2φ−

2√
3
f̃−

√
2
3 ϕ̃ F 2

(2) −
1
4e

2√
3
f̃−2

√
2
3 ϕ̃F2

(2)

−1
2λ

2 e
√

2φ+
√

6ϕ̃ − 1
2c

2 e−
√

2φ+
√

6ϕ̃ − 1
2m

2 e
4√
3
f̃+2

√
2
3 ϕ̃ +R2 e

1√
3
f̃+2

√
2
3 ϕ̃ . (2.53)

As usual, we can verify that the equation of motion for f̃ can be satisfied by setting f̃ = 0,

provided that R2 = 2m2 and that F(2) = F(2) = 0. This corresponds to truncating the
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theory to the previous SO(4)-invariant reduction on S3. The fact that f̃ is the volume-

preserving squashing mode can be seen from the metric reduction ansatz, expressed in the

tilded variables:

dŝ2
6 = e

√
3
2 ϕ̃ ds2

3 + e
−

1√
6
ϕ̃
(
e
−

1√
3
f̃
ds2(S2) + e

2√
3
f̃

(dz +A(1))
2
)
. (2.54)

2.6.2 Reduction of D = 5 supergravity on S2.

To discuss this, it suffices to consider the subsector of the D = 5 theory described by the

Einstein-Maxwell Lagrangian

e−1 L5 = R− 1
4 F̂

2
(2) . (2.55)

We then reduce on S2, with the ansatz

dŝ2
5 = e2αϕ ds2

3 + e2βϕ ds2(S2) , F̂(2) = F(2) +mε(2)(S
2) , (2.56)

where α = 1/
√

3 and β = −α/2. The resulting three-dimensional Lagrangian turns out to

be

e−1 L3 = R− 1
2(∂ϕ)2 − 1

4e
−2αϕ F 2

(2) −
1
2m

2 e4αϕ +R2 e
3αϕ . (2.57)

3 Supersymmetric domain walls

3.1 Domain wall in D = 4

The Lagrangian (2.3) of the SO(8)-singlets in the S7 reduction admits a supersymmetric

domain wall (i.e. membrane) solution in D = 4. For convenience, we shall discuss the

solutions using the Lagrangian (2.6), where the F4 term has been dualised into a cosmolog-

ical term. Comparing this with the general Lagrangian (B.1, B.2) in appendix B, we see

that a1 = 6α, a2 = 18
7 α, g1 = c, g2 =

√
2R7, and λ = 0, which is consistent with the re-

quirement (B.6). The solution is therefore given by b̃1 = ±5c/(2k), b̃2 = ±5
√

6R7/7 /(2k),

ν1 = 1
2(a2 − a1) = 5√

7
and ν2 = 6, and hence

e
−

5√
7
ϕ

= H = e
−

5√
7
ϕ0

+ k |y| ,

e3A = e−B = b̃1H
3
10 + b̃2H

7
10 , (3.1)

with the metric of the form given by (B.3):

ds2
4 =

(
b̃1H

3
10 + b̃2H

7
10

)2
3 dxµ dxµ +

(
b̃1H

3
10 + b̃2H

7
10

)−2
dy2 . (3.2)
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Note that here we have four different solutions, depending on the signs of b̃i. We shall show

presently that these solutions preserve one half of the supersymmetry. We shall consider

the case where these two parameters are of opposite sign, in order to have solutions that

are real. In this case, when k → 0, the solution reduces to AdS4, with e
24α

7 ϕ = e
24α

7 ϕAdS

(see appendix B for a general derivation of domain-wall solutions).

We shall first consider the case where the constant ϕ0 in the solution (3.1) is given by

ϕ0 = ϕAdS, implying that the geometry near y = 0 approaches AdS4. To see this, we note

that in the region |y| → 0, the metric can be written as ds2 ∼ e2ρ/3 dxµdxµ + dρ2, with

ρ = log |y| → −∞. This is AdS4, written in horospherical coordinates. Note that if k is

positive, then the solution is real for all values of y, provided that b̃2 > 0 and b̃1 < 0. In

this case we can take y to run from −∞ to ∞. In the regions where |y| → ∞ the H
7
10

term in (3.1) dominates. The curvature tends to zero in these regions, so the metric is

asymptotically locally flat, and its behaviour is dominated by the contribution from the

R7 potential term (i.e. the H
7
10 term), while the dilaton approaches negative infinity in

this asymptotic limit. The solution is reflection-symmetric about y = 0, where the solution

approaches AdS4. It deviates more and more from AdS4 as |y| increases, with the curvature

eventually vanishing at |y| = ∞. The y = 0 point is a horizon, since g00 = 0 there. If k

is taken to be negative instead, then the solution is real for |y| < y0 ≡ e
− 5√

7
ϕAdS

/|k|. In

the regions |y| → y0, where H vanishes, the curvature becomes singular and its behaviour

is then dominated by the c2 potential term (i.e. the metric is dominated by the term H
3
10

in (3.1).) The dilaton approaches positive infinity in this limit. Thus, in this k < 0 case,

the solution is again reflection-symmetric, and approaches AdS4 at y = 0, but it now has

curvature singularities at y = ±y0. In both the positive and negative k cases, the metric

functions A and B can be expressed as

e3A = e−B =
5

2k

(√
6R7/7H

7
10 − cH

3
10

)
, (3.3)

corresponding to b1 < 0 and b2 > 0, where bi is defined in (B.5).

Different situations can arise if the constant ϕ0 takes values other than ϕAdS. In the

case k > 0, for which y runs from −∞ to ∞, then if ϕ0 > ϕAdS the metric reaches the AdS

form at the points y± = ±k−1 (e−5ϕAdS/
√

7 − e−5ϕ0/
√

7). There is a domain wall at y = 0,

with a delta-function curvature singularity. Thus the domain wall divides the spacetime

into two mirror-symmetric regions which each has an AdS4 as its near-horizon structure.

The domain wall is inside the horizon. If, on the other hand ϕ0 < ϕAdS then g00 never

reaches zero, and the domain wall at y = 0 divides the spacetime into two regions that never
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reach the AdS4 form. The situation is different if k < 0, in that now, instead of y running

inwards from a flat region at |y| = ∞, it runs from curvature singularities at y = ±y0.

Again, depending on whether ϕ0 is greater than or less than ϕAdS , the metric either passes

through the AdS4 region before reaching the domain wall, or else it reaches the domain wall

without encountering an AdS4 region. Note that the delta-function curvature singularity

at y = 0, which arises because the harmonic function is taken to depend on y through its

modulus |y|, is absent in the special case ϕ0 = ϕAdS described in the previous paragraph,

but is otherwise generically present. (For a review of domain walls in D = 4 supergravities,

see [28].)

Although it might seem a bizarre choice from the D = 4 perspective, another patching-

together of segments of the solution (3.1) is possible. One can match the k < 0 solution

for y < 0 onto the k > 0 solution for y > 0. This effectively removes the absolute value

prescription for y in H, thus removing also the delta-function curvature singularity at y = 0.

Although the metric (3.1) apparently becomes singular at y = 0, this proves to be just a

coordinate singularity, and the spacetime has in fact a regular horizon there. The price

to be paid for this choice of patching is the appearance of a genuine curvature singularity

at y = −y0, which can be reached by a lightlike or timelike geodesic at a finite affine-

parameter value. From a D = 4 viewpoint, the natural choice would seem to be the first

one made above: taking H to depend on |y| with k > 0, and tolerating a rather mild delta-

function singularity at y = 0. We shall shortly see, however, that the “patched” solution

in fact corresponds directly to the most natural metric from the D = 11 point of view. We

shall return in the next subsection to a more general study of the spherical oxidations of

domain-wall solutions.

The general solution can be straightforwardly oxidised back to D = 11, giving

ds2
11 = e2αϕ+2A dxµdxµ + e2αϕ−6A dy2 + e2βϕ ds2

7

= (b̃1H
−

2
5 + b̃2)

2
3 dxµdxνηµν + (b̃1H

8
15 + b̃2H

14
15 )−2 dy2 +H

2
15 ds2

7 ,

F4 = c e6αϕε4 = cH−
7
5 ε4 = cH−

7
5 d3x ∧ dy . (3.4)

From the eleven-dimensional point of view, the solution has a total of four free parameters,

namely ϕ0, k, c and R7. There are three special limits, depending on the values of these

parameters. As we have seen, when k = 0 and e
24α

7 ϕ = 6R7/(7c
2), the solution is AdS4×S7.

If c = 0, the metric is in fact purely Minkowskian. If R7 = 0, e.g. when ds2
7 is a flat metric,

then the solution becomes a membrane with its charges uniformly distributed over the

seven-dimensional surface [34].
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It is now fairly simple to check the supersymmetry of the domain-wall solution. This is

most easily done by looking at the solution in eleven dimensions, as given in (3.4). First,

we note that a metric of the form

dŝ2 = e2f dxµ dxµ + e2h dy2 + e2u ds2 , (3.5)

where f , h and u depend only on y, has a spin connection, in the natural vielbein basis

êµ = ef dxµ, êy = eh dy, êa = eu ea, given by

ω̂µy = f ′ ef−h dxµ , ω̂ay = u′ eu−h ea , ω̂ab = ωab . (3.6)

In the present case we have f = αϕ+A, h = αϕ− 3A, and u = β ϕ. Substituting into the

D = 11 supersymmetry transformation rule [29]

δψM = DM ε−
1

288(ΓM
N1···N4 FN1···N4 − 8 ΓN1N2N3 FMN1N2N3) ε , (3.7)

we find that the condition δψµ = 0 gives

δψµ = ∂µε−
1
2e
f−h Γy (f ′ Γµ −

1
6me3αϕ−3A εµνρ Γνρ) ε = 0 , (3.8)

implying that for preserved supersymmetry we must have

f ′ = αϕ′ +A′ = −1
3me3αϕ−3A . (3.9)

(Actually, we have the freedom here to choose either a plus or a minus sign on the right-hand

side; we choose the minus sign in order to agree with the choice made previously, where b1

was taken to be negative.) Similarly, from the condition that δψa = 0, we obtain another

first-order equation, this time for ϕ alone, namely

δψa = Daε+ 1
2e
u−h Γay(u

′ − 1
6me3αϕ−3A Γ012) ε = 0 . (3.10)

Note that the explicit indices on Γ012 here refer to the vielbein directions in the space of

the xµ coordinates. From this, we see that the existence of Killing spinors will require that

u′ = −2
7αϕ

′ = 1
6me3αϕ−3A − κ e

9
7αϕ−3A , (3.11)

since then we will have

δψa = (Da −
1
2 κΓay)ε−

1
12me

12α
7 ϕ Γay(1− Γ012) ε = 0 . (3.12)

This will have solutions provided that the constant κ is given by κ =
√

R7
42 , since then

the first expression in the brackets is the S7-covariant derivative encountered previously in
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the Kaluza-Klein reduction of D = 11 supergravity on the 7-sphere [30]. In fact, the two

first-order conditions that we have just obtained are precisely the ones given in (B.5) in

appendix B, where the equations of motion for domain walls are solved. (Note that we have

b1 = −
√

7m/2 < 0 and b2 =
√

3
2R7 > 0 here.) Thus the conditions above reduce to

δψµ = ∂µε+ 1
6me3αϕ+A Γy(Γµ + 1

2εµνρ Γνρ) ε = 0 ,

δψa = (Da −
1
2

√
R7
42 Γay) ε+ 1

12me
12α

7 ϕ Γay (1− Γ012) ε = 0 , (3.13)

δψy = ∂yε+ 1
6me3αϕ−3A Γ012 ε = 0 .

In all of the above expressions, a is a vielbein index in the metric ds2
7, all indices on Dirac

matrices are vielbein indices, the indices µ and y on ψ and ∂ are world indices, and εµνρ

is the tensor density taking the values ±1, 0. It is now easily seen that ε will be a Killing

spinor if it satisfies the conditions

ε = e
1
2f ε0 ⊗ η = e

1
2 (αϕ+A) ε0 ⊗ η , Γ012 ε0 = ε0 , (3.14)

where ε0 is a constant spinor in the four-dimensional spacetime, and η is a Killing spinor in

the internal seven-dimensional space, satisfying

Daη −
i
2

√
R7
42 γa η = 0 . (3.15)

We are assuming here that the eleven-dimensional Dirac matrices are decomposed as Γµ =

γµ ⊗ 1l, Γy = γy ⊗ 1l, and Γa = γ5 ⊗ γa, with γ5 = i γ012y . In the case where the internal

space is S7, there will be eight Killing spinors η satisfying (3.15), and so we see that the

domain-wall solution, and its oxidation to D = 11, preserves one half of the supersymmetry.

Having seen that the eleven-dimensional metric (3.4), obtained by oxidising the four-

dimensional domain-wall solution, preserves half of the supersymmetry, we now observe

that it can in fact be re-interpreted as the standard BPS membrane solution of D = 11

supergravity. To see this, let us introduce a new coordinate ρ, related to the coordinate y

in (3.4) by

ρ =

√
42

R7
H

1
15 =

√
42

R7

(
e
−

5√
7
ϕ0

+ ky
) 1

15 . (3.16)

It is then easy to see that (3.4) becomes, upon substituting (3.16) for y > 0 and then

continuing the result in ρ so as to cover the full range 0 < ρ <∞,

ds2
11 = b̃

2
3
2

(
1−

k̃

ρ6

)2
3 dxµ dxµ +

(
1−

k̃

ρ6

)−2
dρ2 + ρ2 dΩ2

7 , (3.17)
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where k̃ = 1
6 c (42/R7)7/2, and dΩ2

7 is the metric on the unit 7-sphere. This can be recognised

as the standard form for the D = 11 BPS membrane solution, written in Schwarzschild type

coordinates.

At this point, we can make contact with the “patched” D = 4 domain-wall solution

mentioned above, which joins together a k > 0 solution for y > 0 with a −k solution for

y < 0. Although this seems unnatural from the D = 4 viewpoint, what one obtains after

oxidation up to D = 11 is indeed a natural variant of the D = 11 membrane solution.

In this solution, y is viewed as a radial coordinate for a non-isotropic coordinate system,

hence naturally bounded to take values on a half-line. This solution is in fact the maximal

analytic extension [31] of the D = 11 membrane solution [32], with a non-singular horizon

at y = 0 and a central timelike core singularity at y = −y0.

3.2 Oxidation of domain walls

In the previous subsection, we saw that the domain-wall solution of the N = 8 four-

dimensional supergravity obtained by reducing D = 11 supergravity on S7 admits a simple

interpretation after oxidation back to D = 11, namely as the standard membrane solution.

Now, we shall show that in fact this is a rather general feature of the domain-wall solutions

of supergravities reduced on spheres, and in fact they can all be re-interpreted as extremal

p-branes back in their original higher-dimensional theories.

To see this, we begin by noting that the general result (A.13) for the dimensional

reduction of gravity plus an antisymmetric-tensor field strength of degree dx or dy from

D = dx + dy dimensions to dx dimensions is precisely of the form that we consider in

appendix B, which allowed us to obtain domain-wall solutions. Specifically, in the notation

of appendix B, we have

g2
1 = m2 , g2

2 = 2Ry , a1 = 2α(dx − 1) , a2 = 2(α− β) . (3.18)

It is easily verified that a1 and a2 are such that the condition (B.7) is satisfied, implying that

indeed we have domain-wall solutions with λ in (B.6) vanishing. In terms of the parameters

b̃1, b̃2 defined in appendix B, the domain-wall solutions are therefore given by

e2αϕ = H−2dy/(dx dy+dx−2) ,

e(dx−1)A = e−B = b̃1H
(dx+dy−2)/(dx dy+dx−2) + b̃2H

(dx−1)dy/(dx dy+dx−2) . (3.19)

Oxidising back to D dimensions, using the formulae given in appendix A, we find that the
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metric becomes

ds2
D =

(
b̃2 + b̃1H

−(dx−2)(dy−1)/(dx dy+dx−2)
)2/(dx−1)

dxµ dxµ

+
(
b̃2H

dx dy/(dx dy+dx−2) + b̃1H
(dx+2dy−2)/(dx dy+dx−2)

)−2
dy2

+λ−2H2(dx−2)/(dx dy+dx−2) dΩ2
dy , (3.20)

where λ2 = Ry/(dy(dx − 1)).

As in the previous subsection, we may now introduce a new coordinate ρ in place of y,

defined here by

ρ = λ−1H(dx−2)/(dx dy+dx−2) . (3.21)

In terms of r, the oxidised domain-wall metric (3.20) becomes (recalling that b̃1 < 0, b̃2 > 0).

ds2
D = b̃

2/(dx−1)
2

(
1−

k̃

ρdy−1

)2/(dx−1)
dxµ dxµ +

(
1−

k̃

ρdy−1

)−2
dρ2 + ρ2 dΩ2

dy , (3.22)

where k̃ = λ−dy+1 |b̃1/b̃2|. Finally, we make the replacement xµ → b̃
−1/(dx−1)
2 xµ, and define

a new radial coordinate r by ρdy−1 = rdy−1 + k̃, in terms of which the metric becomes

ds2 =
(
1 +

k̃

rdy−1

)−2/(dx−1)
dxµ dxµ +

(
1 +

k̃

rdy−1

)2/(dy−1)
(dr2 + r2 dΩ2

dy) . (3.23)

This can be recognised as the standard form of an isotropic non-dilatonic extremal p-brane

with p = dx − 2. In the context of supergravity theories, it therefore follows that the

domain-wall solutions that we are considering in this paper all preserve one half of the

supersymmetry. Indeed, in the previous subsection where we considered the example of the

domain wall in D = 4, we gave an explicit derivation of this result.

3.3 Further examples

It is straightforward to see that the two-parameter supersymmetric domain-wall solution

obtained in section 3.1 can be embedded in the Lagrangian (2.20) including the squashing

mode, since (2.20) reduces to the Lagrangian (2.3) when the dilaton φ̃ is consistently set to

zero.

The D = 7 Lagrangian (2.23) fits the pattern of (B.1) and (B.2), with a1 = 12α and

a2 = 9
2α. It follows from (B.6) that λ = 0. The two-parameter domain-wall solution is

given by

ds2
7 = e2Adxµdxνηµν + e2Bdy2 ,

e
−

11
2
√

10
ϕ

= H = e
−

11
2
√

10
ϕ0

+ k|y| , B = −6A ,

e6A = b̃1H
3
11 + b̃2H

8
11 , (3.24)

20



where b̃1 = ±66m/(5k) and b̃2 = ±(11/10k)
√

3R4. If we oxidise the solution back to

D = 11, we have

ds2
11 = e2αϕ+2Adxµdxµ + e2αϕ−12Ady2 + e2βϕds2

4(S4) ,

= (b̃1H
−

5
11 + b̃2)

1
3 dxµdxνηµν + (b̃1H

13
33 + b̃2H

28
33 )−2 dy2 +H

10
33 ds2

4 ,

F4 = 6mε4 . (3.25)

The AdS7 × S4 solution arises in the limit k → 0 when b̃1 and b̃2 have opposite signs, and

e5ϕ0/
√

10 = R4/(48m2). When m = 0, the spacetime is flat, whilst if R4 = 0, the solution

describes a 5-brane with its charges uniformly distributed over ds2
4 [34]. From the general

discussion in section 3.2, we can easily see that this eleven-dimensional solution is nothing

but the standard extremal 5-brane. This implies in particular that the D = 7 domain-wall

solution preserves half the supersymmetry.

Another example of a domain-wall solution arises in D = 5, in the theory obtained by

reducing type IIB supergravity on S5. There is in this case a two-parameter domain-wall

solution given by

ds2
5 = e2Adxµdxνηµν + e2Bdy2 ,

e
−

7√
15
ϕ

= H = e
−

7√
3
ϕ0

+ k|y| , B = −4A , (3.26)

e4A = b̃1H
2
7 + b̃2H

5
7 ,

where b̃1 = ±28m/(3k) and b̃2 = ±14/(15k)
√

5R5. This can be oxidised back to D = 10,

where it becomes

ds2
10IIB = e2αϕ+2A dxµ dxµ + e2αϕ−8A dy2 + e2βϕ ds2(S5) ,

= (b̃1H
−

3
7 + b̃2)

1
2 dxµdxνηµν + (b̃1H

13
28 + b̃2H

25
28 )−2dy2 +H

3
14 ds2(S5) ,

H(5) = 4me8αϕ ε(5) + 4mε(5)(S
5) ,

= 4me8αϕ d4x ∧ dy + 4mε(5)(S
5) . (3.27)

The AdS structure arises when b̃1 and b̃2 have opposite signs, with k = 0 and e
2

√
3
5 ϕ0

=

R5/(20m2). If m = 0, the solution is flat spacetime; if R5 = 0, the solution is a D3-

brane with its charges uniformly distributed on ds2
5. From the results given in section 3.2,

the metric (3.27) can be seen to be equivalent to that of the standard extremal self-dual

3-brane of type IIB supergravity. Again, a consequence is that the D = 5 domain-wall

solution preserves one half of the supersymmetry.
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Another example of a domain-wall solution arises for the three-dimensional theory (2.48),

obtained by compactifying six-dimensional supergravity on S3. It is easily seen that this

admits an AdS3 solution where φ and ϕ are constants, given by

e
√

2φAdS =
c

m
, e

4α
3 ϕAdS =

2R3

3cm
. (3.28)

We may now consistently truncate out the dilaton φ, i.e. by setting φ = φAdS, so that the

Lagrangian (2.48) then becomes

e−1L = R− 1
2(∂ϕ)2 −mce4αϕ +R3e

8α
3 ϕ , (3.29)

which fits the pattern of the Lagrangian (B.1) and (B.2) with a1 = 4α, a2 = 8α/3, and

λ = 0. Thus this Lagrangian admits a domain-wall (i.e. string) solution, given by

ds2
3 = e2Adxµdxµ + e2Bdy2 , e

− 5√
6
ϕ

= H ≡ e
− 5√

6
ϕAdS

+ k|y| ,

e2A = e−B = b̃1H
2
5 + b̃2H

3
5 , (3.30)

where b̃1 = ±(5/k)
√
mc and b̃2 = ±(5/k)

√
2R3/3.

Finally, we consider the three-dimensional Lagrangian (2.57), obtained by reducing D =

5 supergravity on S2. This Lagrangian fits the pattern of (B.1) and (B.2) with a1 = 4α,

a2 = 3α and λ = 0, so it admits a domain-wall solution

ds2
3 = e2Adxµdxµ + e2Bdy2 , e

− 7
2
√

3
ϕ

= H ≡ e
− 7

2
√

3
ϕAdS

+ k|y| ,

e2A = e−B = b̃1H
3
7 + b̃2H

4
7 , (3.31)

where b̃1 = ±7m/(
√

3k) and b̃2 = ±(7/k)
√
R2/2.

4 Cosmological instanton solutions

The Lagrangians that we obtained in section 2 by considering the dimensional reductions

of supergravities on spheres have structures that are very similar to those considered in

the context of cosmological instanton solutions in [1,4]. In the simplest cases, for example,

where we retain just the metric and the breathing-mode scalar as dynamical fields, we obtain

Lagrangians of the form L = eR − 1
2e (∂ϕ)2 − e V (ϕ). In this section, we shall examine

the cosmological instanton solutions in the case of the four-dimensional theory obtained in

section 2.1 by making an SO(8)-invariant truncation of the reduction ofD = 11 supergravity

on S7.

22



We begin by considering an SO(4)-invariant metric ansatz, in the co-moving frame,

given by

ds2 = −dτ2 + b(τ)2dΩ2
3 , (4.1)

where τ is the co-moving time coordinate and dΩ2
3 is the metric on the unit 3-sphere. It

follows from (2.4) and the formulae in appendix C that the equations of motion are given

by

ϕ̈+ 3ϕ̇
ḃ

b
= −V,ϕ(ϕ) , b̈ = −1

6b (ϕ̇2 − V (ϕ)) , (4.2)

together with the first-order constraint

( ḃ
b

)2
+

1

b2
= 1

12 ϕ̇
2 + 1

6V , (4.3)

where V is the scalar potential, given by (2.7). Note that the potential has the properties

V (ϕ0) = 0 , when e
24α

7 ϕ0 =
2R7

c2
,

V,ϕ(ϕ0) =
24α

7
e

18α
7 ϕ0 R7 =

24α

7
R7 (

2R7

c2
)

3
4 > 0 . (4.4)

Thus we see that the contribution from F4 = c e6αϕε4 plays an important role in allowing

the vanishing of the potential V at a non-singular value ϕ = ϕ0 of the dilaton. The potential

also has a minimum at ϕ = ϕAdS:

V,ϕ(ϕAdS) = 0 , when e
24α

7 ϕAdS =
6R7

7c2
,

Vmin = V (ϕAdS) = −4
7R7e

18α
7 ϕAdS = −4

7R7 (
6R7

7m2
)

3
4 < 0 . (4.5)

Here we are denoting by ϕAdS the value of the dilaton for which the potential is a minimum.

This is because the Lagrangian can be further truncated to

e−1L = R− Vmin (4.6)

when ϕ = ϕAdS, and the equations of motion following from this Lagrangian allow an AdS

solution. Note that we have ϕAdS < ϕ0. Thus we see that this potential has a shape like

a scoop. At large but negative ϕ. we have V (ϕ) → 0−, reducing as ϕ increases, until it

reaches Vmin at ϕ = ϕAdS. The potential then increases monotonically to infinity, behaving

like a single exponential for large ϕ.

The equations of motion (4.2,4.3) are invariant under time translations, and hence we

can without loss of generality choose our initial time to be τ = 0. Following [1], we assume
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that at τ = 0, ϕ̇(0) = 0 and V (ϕ(0)) ≥ 0, and hence ϕ(0) ≥ ϕ0. It then follows from the

constraint (4.3) that at early times the solution for the metric function b is imaginary 3

b = iτ , (4.7)

and so the solution is more naturally discussed in a Euclideanised framework. In fact in the

vicinity of τ = 0 the metric describes a Euclidean flat space.

We shall in fact present results for two different Euclidean-signature theories. The first,

which is the more relevant for the discussion of cosmological instantons, is obtained by

performing a Wick rotation of the time coordinate in the Minkowski-signature theory. We

shall discuss this case first, and, afterwards, we shall consider an alternative Euclidean-

signature theory which is obtained by dimensionally reducing the original D = 11 theory

on AdS7 rather than S7.

4.1 The Wick-rotated Euclidean-signature theory

The question of how Euclideanisation should be performed in the full supergravity theory

is a thorny one, and in the literature one finds debate on the proper way to Euclideanise

antisymmetric tensor fields, supersymmetry, etc. In particular, the Euclideanisation of the

four-form giving rise to the cosmological constant has been a subject of much controversy

[16–19, 4]. One opinion is that the electric components of an antisymmetric tensor field

should be imaginary in the Euclidean regime, whereas the magnetic components should be

real [37]. If one wants still to be able to consider electric/magnetic duality symmetries in the

Euclidean regime, then having imaginary electric charges seems to be unavoidable [37]. For

example, as observed in [38, 37], although real magnetically-charged extremal black holes

can exist in a Euclideanised theory, electrically-charged extremal black holes can exist only

if the charge, and hence the electric field, is imaginary. An alternative viewpoint [38, 18],

in the original spirit of Belavin, Polyakov, Schwartz and Tyupkin [39] and ‘t Hooft [40]

in their treatment of gauge field instantons, is that all components should be real so as

to ensure that (with the possible exception of gravity itself) the Euclidean action will be

3One may well ask at this stage what significance should be attached to imaginary configurations of fields

originally defined to be real. Since, in the quantum theory, fields are described by Hermitean operators

whose eigenvalues are real, these complex configurations should not be thought of as expectation values of

Hermitian operators but rather as off-diagonal matrix elements. For example, in Minkowski signature a

self-dual (anti-self-dual) Maxwell field is complex and describes the wave function of a positive (negative)

helicity photon i.e. the matrix element of the field operator between the vacuum and a one-particle state of

definite helicity [35,36].
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positive semidefinite and bounded below by the topological charge. This ensures that the

Euclidean functional integrals will be gaussian.

If we adopt the first of these stances, then in order to Wick rotate the four-dimensional

Lagrangian (2.3) to the Euclidean regime, we simply assume that it retains the identical

form, but where the metric tensor is now positive definite. (In other words, t → −iσ is

viewed as a general coordinate transformation, with σ subsequently taken to be real.) The

equations of motion will therefore continue to be written as in (2.4). However, there will be

a difference when we dualise the non-propagating 4-form F(4). Instead of (2.5), we should

now solve for F(4) by writing

Fµνρσ = i c e6αϕ εµνρσ , (4.8)

where c is real and εµνρσ is the real Levi-Civita tensor in the Euclidean regime. The factor

of i is necessary since F(4) in four dimensions will necessarily have one index in the (Wick-

rotated) time direction, and so it will necessarily be electric in character. Following the

standard procedure of substituting (4.8) into the remaining equations of motion, we find

that they can be derived from the identical Lagrangian (2.6), with potential given by (2.7),

as we obtained previously in the Minkowskian regime (with the understanding, as always,

that the metric tensors appearing in (2.6) are now the Euclideanised ones).

Another piece of “supporting evidence” for the appropriateness of having imaginary

electric fields is that by adopting this prescription, we ensure that the processes of Wick

rotation and dualisation commute: Had we instead insisted that F(4) be dualised according

to (2.5) rather than (4.8), we would have found the sign of the c2 term in the potential (2.7)

to be reversed. By contrast, if we simply Wick rotate the already-dualised Lagrangian given

by (2.6) and (2.7), no such sign reversal occurs. By requiring that F(4) be imaginary in the

Euclidean regime, we ensure that the order in which the dualisation and the Wick rotation

are performed is immaterial. One satisfactory consequence of this is that, regardless of the

order of dualisation and Wick rotation, a solution such as the AdS4 × S7 solution in the

original Minkowski-signature theory maps over into a sensible Euclideanised version.

A further consequence of taking the electric components of the field strength F(4), or,

equivalently, the A0ij components of the gauge potential A(3), to be imaginary in the Eu-

clidean regime can be seen by looking at the Chern-Simons term F(4) ∧ F(4) ∧ A(3) in the

eleven-dimensional action. Since the tensor density εµ1···µ11 = ±1, 0 is real in both the

Minkowskian and Euclidean regimes, it follows that the Wick rotation introduces a factor

of i in the Euclideanised Chern-Simons term, and this becomes consistent with having a

real action if the electric components of F(4), and the A0ij components of A(3), are imagi-
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nary. It is interesting to note that the various arguments that can be presented in support

of having imaginary electric fields in the Euclidean regime all seem to revolve around the

related notions of extremality, supersymmetry and duality.

The metric ansatz for the instanton solution in a Euclidean-signatured space takes the

form

ds2
4 = dσ2 + b(σ)2dΩ2

3 . (4.9)

The equations of motion are then given by [1]

ϕ′′ + 3ϕ′
b′

b
= V,ϕ(ϕ) , b′′ = −1

6b(ϕ
′2 + V (ϕ)) , (4.10)

together with the first-order constraint

(b′
b

)2
−

1

b2
= 1

12ϕ
′2 − 1

6V . (4.11)

As discussed above, the potential V (ϕ) is given by (2.7) as in the case of a Minkowskian

spacetime. Note that the equations of motion in the Euclidean-signatured space can be

obtained from those in the Minkowskian-signatured spacetime by making the Wick rotation

τ = −iσ. For both cases, we follow [1] and require that at σ = 0 the potential vanishes,

and that in the vicinity of σ = 0, we have

ϕ(0) ≥ ϕ0 , ϕ′(0) = 0 , b = σ . (4.12)

It follows from (4.10) that we will have ϕ′′(0+) = V,ϕ(ϕ(0+)) > 0. This implies that

(ϕ−ϕ0) is positive, and increases as σ increases. Consequently, V (φ) is always positive and

increases with σ, implying that b′′ is always negative. Thus the initial velocity b′(0) = 1

reduces with increasing σ, and inevitably4 becomes zero at the point where

b′
2

= b2( 1
12ϕ
′2 +

1

b2
− 1

6V ) = 0 . (4.13)

Since the acceleration b′′ is still negative, this is a turning point at which the velocity b′

reverses sign and starts to increase, driving the metric to a singularity at which b → 0 for

some finite σf . This evolutionary scenario was discussed in [1], where analytic continuations

were made in order to view the solution as describing an open inflationary universe.

4The inevitability is due to the exponential increase of the potential V (ϕ) at large ϕ. If the scale size

b would expand forever, then it implies that at σ → ∞, we would have ϕ ∼ c̃ log σ where c is a positive

constant. Then we find that the left-hand sides of the equations (4.10) vanish, while the right-hand sides

diverge at large σ, for our value of V (ϕ).
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In [1], an assumption was made that the contribution of the potential V (ϕ) becomes neg-

ligible near the singularity, and thereby it was argued that the solution near the singularity

is of the form

b ∼ (σf − σ)
1
3 , ϕ′ ∼

2
√

3
(σf − σ)−1 . (4.14)

This solution is independent of the detailed structure of V (ϕ), and assumes only that it is

monotonically increasing, but negligible near the singularity. However, this is not true in

our case, where the potential V (ϕ) is given by (2.7), arising from the SO(8)-invariant S7

reduction of eleven-dimensional supergravity, even though V (ϕ) does increase monotonically

in the regime (ϕ−ϕ0) > 0. To see this, we may substitute the putative solution (4.14) into

V (ϕ), to see how it behaves near the singularity. We find

V (ϕ) ∼ V,ϕ(ϕ) ∼ (σf − σ)−2
√

7/3 . (4.15)

This in fact diverges more rapidly than any of the other terms in the equations of motion

(4.10) and (4.11), as σ approaches σf . In other words, the HT assumption that the contri-

bution from V (ϕ) can be neglected near σ = σf is invalid in this case. In fact, in order for

the HT solution (4.14) to be valid, the potential V (ϕ), which will be of order eaϕ at large

ϕ, should have a2 < 3, and this is not the case for the potential in our Lagrangian.

To solve the equations with our potential V (ϕ), we note that for large ϕ we have

V (ϕ) ∼ 1
2c

2 e6αϕ. Assuming that the dilaton diverges logarithmically at σf , the solution is

then given by

b ∼ (σf − σ)
1
7 , e−3αϕ ∼ 7

4c (σf − σ) . (4.16)

(For a generic potential of the form V (ϕ) ∼ 1
2c

2 eaϕ with a ≥
√

3 at large ϕ, we have

b ∼ (rf − r)
1/(a2) and e−aϕ ∼ a2c/(2

√
a2 − 3) (σf − σ).) Thus we see that the solution

(4.16), like the solution (4.14), has a singularity at σ = σf , but the degree of the singularity

is different from the one given in [1].

Note that, owing to the fact that V (ϕ) increases monotonically in the regime (ϕ−ϕ0) >

0, the scalar will be driven to positive infinity with velocity ϕ′ ≥ 0. This is because even if the

damping effect resulting from a positive b′ were to tend to reduce ϕ′ to zero, it nevertheless

would follow from (4.10) that the acceleration ϕ′′ would again be positive at this point.

Thus, the velocity ϕ′ never becomes negative. In fact, the potential V (ϕ) monotonically

increases in the regime ϕ > ϕAdS. It follows that the structure of the end-point singularity

is independent of the initial ϕ(0), as long as it is greater than ϕAdS. However, the initial

behaviour of the solution does depend on ϕ(0). If we choose the initial ϕ(0) such that

V (ϕ(0)) ≥ 0, then b′′ is always negative. On the other hand, if we choose ϕ(0) such that
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V (ϕ(0)) < 0, then the initially we have b′′ > 0, but it will quickly become negative, and

will eventually reverse the expansion of the universe so as to shrink into the singularity.

Having obtained the four-dimensional cosmological instanton solution, it is of interest

to examine it from the eleven-dimensional point of view. Near the initial time σ ∼ 0, the

eleven-dimensional metric approaches E4×S7. Near the end of universe, when σ ∼ σf , the

eleven-dimensional metric is given by

ds2
11 = e2αϕ(dσ2 + b2dΩ2

3) + e2βϕds2
7

∼ (σf − σ)−2/3(dσ2 + (σf − σ)
2
7 dΩ2

3) + (σf − σ)
2
21 ds2

7 . (4.17)

Thus we see that, owing to the fact that the dilaton diverges towards +∞ as the final

singularity is approached, the size of the internal seven-sphere S7 shrinks to zero, providing

a spontaneous compactification. Note that although the size of the three-sphere dΩ2
3 shrinks

also in the 4-dimensional Einstein metric that we discussed earlier, its size in the eleven-

dimensional metric in fact tends to infinity. Defining a co-moving time ρ ∼ (σf −σ)2/3 → 0

in D = 11, the eleven-dimensional metric can be written as

ds2
11 ∼ dρ

2 + ρ−
4
7dΩ2

3 + ρ
1
7 ds2

7 , (4.18)

from which we can extract a 4-dimensional metric ds2
M using ds2

11 = ds2
M + e2βϕds2

7 (i.e.

dsM = e2αϕds2
Ein), giving

ds2
M ∼ dρ

2 + ρ−
4
7dΩ2

3 , (4.19)

in terms of which the three-sphere expands as ρ→ 0.

We may also study the instanton solutions in the four-dimensional theory obtained by

reducing D = 11 supergravity on the SU(4)×U(1) invariant squashed 7-sphere. In this case,

the solution will be supported by all the scalars that are singlets under SU(4)×U(1). It is

worth noting that the 3-form field strength F(3) can be dualised in D = 4 to give another

scalar field. However, this would be of axionic type, and would come with a dilatonic

prefactor, so it would seem not to fit the bill for the “inflaton” in the Hawking-Turok

model. However, let us consider the equations of motion for an instanton solution. Take

the Lagrangian (2.20), obtained by reducing from D = 11 on the squashed S7. Note that

we use the already-rotated dilatons, but we omit the tildes. Also, we dualise the 4-form F(4)

to a cosmological term with “charge” c, and we dualise the 3-form F(3) to give an axion χ.

Thus the Lagrangian in D = 4 is

e−1 L4 = R− 1
2(∂φ)2 − 1

2(∂ϕ)2 − 1
2e

4√
7
ϕ+

6√
21
φ

(∂χ)2 − Ṽ (φ,ϕ) , (4.20)
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where the scalar potential Ṽ (φ,ϕ) is given by

Ṽ (φ,ϕ) = 1
2c

2 e
√

7ϕ + 6m2 e
3√
7
ϕ+

8√
21
φ
− e

3√
7
ϕ+

1√
21
φ
R6 . (4.21)

The potential has a minimum given by

Ṽmin = Ṽ (ϕAdS, φAdS) = −4
3c

2e
4√
7
ϕAdS

,

e
7√
21
φAdS

=
R6

48m2
, e

4√
7
ϕAdS

=
36m2

c2
(
R6

48m2
)

8
7 . (4.22)

From this we can obtain the equations of motion for the instanton solution with the

metric ansatz (4.1); they are given by

3
b̈

b
= −1

2 φ̇
2 − 1

2 ϕ̇
2 − 1

2e
4√
7
ϕ+

6√
21
φ
χ̇2 + 1

2 Ṽ (φ,ϕ) ,

b̈

b
+ 2

( ḃ
b

)2
= −

2

b2
+ 1

2 Ṽ (φ,ϕ) ,

φ̈+ 3
ḃ

b
φ̇ =

3
√

21
e

4√
7
ϕ+

6√
21
φ
χ̇2 − Ṽ,φ(φ,ϕ) , (4.23)

ϕ̈+ 3
ḃ

b
ϕ̇ =

2
√

7
e

4√
7
ϕ+

6√
21
φ
χ̇2 − Ṽ,ϕ(φ,ϕ) ,

χ̈+ 3
ḃ

b
χ̇ = −

6
√

21
φ̇χ̇−

4
√

7
ϕ̇χ̇ .

Note that we can solve the last equation straightforwardly:

χ̇ = k b−3 e
−

4√
7
ϕ−

6√
21
φ
. (4.24)

Substituting χ̇ into the above equations, we obtain

b̈

b
= −1

6

(
φ̇2 + ϕ̇2 + k2b−6e

−
4√
7
ϕ−

6√
21
φ
− 1

2 Ṽ (φ,ϕ)
)
,

φ̈+ 3
ḃ

b
φ̇ =

3k2

√
21
b−6 e

− 4√
7
ϕ− 6√

21
φ
− Ṽ,φ(φ,ϕ) , (4.25)

ϕ̈+ 3
ḃ

b
ϕ̇ =

2k2

√
7
b−6 e

−
4√
7
ϕ−

6√
21
φ
− Ṽ,ϕ(φ,ϕ) ,

together with the first-order constraint

( ḃ
b

)2
+

1

b2
= 1

12 φ̇
2 + 1

12 ϕ̇
2 + 1

12k
2 b−6 e

−
4√
7
ϕ−

6√
21
φ

+ 1
6 Ṽ (φ,ϕ) . (4.26)

The contribution of the axion χ seems to force the solution to be singular at initial

τ = 0. Here we again assume at τ = 0, we have (ϕ, φ) = (ϕ0, φ0) and (ϕ̇, φ̇) = (0, 0), and

Ṽ (ϕ0, φ0) = 0. Assuming that the universe scale size b is initially infinitesimal, then at

small τ we will have b ∼ τ1/3, which implies a curvature singularity of the order τ−2. If we
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set k = 0, then the initial universe will be purely Euclidean, and the subsequent evolution

will be determined by the two-scalar potential Ṽ (ϕ, φ).

As a final note in this subsection, we may consider solutions where the unit three-sphere

metric dΩ2
3 in the ansatz (4.9) is replaced by a flat metric d~x2. In this case, the equations

can be solved exactly, and the solution turns out to be just the Euclideanisation of the

domain wall discussed in section 3.1. This solution is now given (after a coordinate change

on y) by

ds2 = e2Bdy2 + e2Ad~x2 , e
−

5√
7
ϕ

= e
−

5√
7
ϕAdS

+ k |y| ,

e3A = e−B =
5

2k

(√
6R7

7 H
7
10 − cH

3
10

)
. (4.27)

If k > 0 then y runs from 0, at which the solution is the hyperbolic space H4, to infinity,

at which the solution is flat. If k < 0 then y runs from 0, at which the solution is H4, to

y = −e
−

5√
7
ϕAdS

/k, at which one finds a genuine curvature singularity. If k = 0, then the

solution is the hyperbolic space H4 everywhere. As in our previous discussions of domain

wall in Minkowski-signatured spaces, we can also consider solutions here where the value of

ϕ at y = 0 differs from the one chosen in (4.27). Under these circumstances, the solution

either reaches the H4 form for some value of |y| that is greater than zero, or else it fails

to become H4 by the time y reaches zero. In either of these cases there is a delta-function

curvature singularity at y = 0, which can be thought of as a domain wall.

4.2 Patching cosmological solutions with domain walls

We have seen in the last subsection that one may find instanton solutions to Wick-rotated

supergravity theories that share some of the features of the HT instanton. One salient

feature of such instantons is the presence of a singularity. In order to avoid such singularities,

a proposal was made in [41] to patch together non-singular regions of cosmological instanton

solutions using a domain wall. We shall show that such patching can indeed be carried

out consistently within the specific context of spherically-reduced D = 11 supergravity

as considered above. The needed domain wall for this construction has the same source

action as that for the supersymmetric domain-wall solution presented in section 3.1, except

that now we shall need to couple it to a (non-supersymmetric) instanton background (4.9),

analytically continued back to Minkowski signature.

In the cosmological analyses of Refs [1,41], the overall cosmological solution starts with

an Euclidean instanton, which is followed until a surface of vanishing extrinsic curvature is

reached, at which an analytic continuation back to a Minkowski-signature solution is made.
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To do this in our case, one may expand the instanton metric (4.9), writing

ds2
4 = dσ2 + b(σ)2(dψ2 + sin2 ψ dΩ2

2) . (4.28)

The surface of vanishing extrinsic curvature occurs at ψ = π/2, at which one may con-

tinue back to a Minkowski-signature metric by letting ψ = π/2 + it. After this analytic

continuation, one has the Minkowski-signature metric

ds2
4 = −b(σ)2dt2 + dσ2 + b(σ)2 cosh2 t dΩ2

2 , (4.29)

which describes a universe with de Sitter-like features. The metric (4.29) describes only

part of this spacetime, however, and needs a further analytic continuation in order to cover

the whole spacetime. Analytic continuation in this way does not provide a refuge from the

singularity, however. The singularity that we have seen in the last subsection at σ ∼ σf

persists also in the analytically continued solution. Accordingly, in [41] a suggestion was

made to simply cut out the singular portion of the spacetime by patching two non-singular

regions of the form (4.29) together, with a domain wall located at the patching surface.

From the viewpoint of D = 11 supergravity, the coupling of the needed domain wall to

the background supergravity fields is described by including the action for a fundamental

supermembrane [42] into the overall (field + source) action. Since we actually wish to

make this coupling in the spherically-reduced D = 4 theory discussed in section 2, we

shall choose to let the membrane lie entirely in the non-compact D = 4 spacetime, and

shall also have to use the appropriate form of the background metric, as obtained from

the spherical dimensional reduction. The bosonic part of the supermembrane action for

a supermembrane located on the worldvolume hypersurface XM(ξ) (M = 0, 1, . . . , 10) in a

background described by the D = 11 supergravity fields gMN , AMNP is

I
(11)
memb = T

∫
d3ξ

{
[−det (∂iX

M∂jX
NgMN(X))]1/2 + 1

6ε
ijk∂iX

M∂jX
N∂kX

PAMNP

}
. (4.30)

In order to obtain the corresponding source action in D = 4 supergravity, we shall adopt

the spherical reduction ansatz (2.1) and shall restrict the membrane to lie in the D = 4

subspace. To do this, we divide the D = 11 coordinates XM into two ranges: XM =

(Xµ, Y m; µ = 0, 1, 2, 3; m = 4, . . . , 10) and then restrict the membrane coordinates by

setting Y m = const. The supermembrane action then reduces to

I
(4)
memb = T

∫
d3ξ

{
e3αϕ

[
−det

(
∂iX

µ∂jX
νg(4)
µν (X)

)]1/2
+ 1

6ε
ijk∂iX

µ∂jX
ν∂kX

ρAµνρ
}
,

(4.31)
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where g
(4)
µν is the D = 4 metric defined in the reduction ansatz (2.1) and ϕ is the breathing-

mode scalar field, also defined in (2.1).

The consistency of putting a membrane into a given background is determined by check-

ing whether the “brane-wave” equations following from (4.31) upon varying the membrane

coordinates XM are satisfied, plus verifying that charge conservation requirements are sat-

isfied. The brane-wave equations derived from (4.31) are

∂i
(
e3αϕ

√
−g̃g̃ij∂jX

νg(4)
ρν (X)

)
− 1

2e
3αϕ
√
−g̃g̃ij∂iX

µ∂jX
ν∂ρg

(4)
µν (X)

−3α∂ρϕ(X)e3αϕ
√
−g̃ −

1

3!
εijk∂iX

µ∂jX
ν∂kX

σFσµνρ(X)

= 0 (4.32)

where g̃ij = ∂iX
µ∂jX

νg
(4)
µν (X).

In order to solve the brane-wave equations in the background of the analytically con-

tinued instanton metric (4.29) (with the 4-form field strength now given again by (2.5),

since we have analytically continued back to a Minkowski-signature region), we first pick

an appropriate “static gauge” for the membrane worldvolume coordinates:

Xt = ξ0

Xθ = ξ1

Xφ = ξ2 , (4.33)

where θ and φ here are the angular coordinates for the S2 part of the metric (4.29).

We now aim, following [41], to patch together two background solutions of the form

(4.29) at an appropriate value of σ, which we shall call σm. Accordingly, we shall try

to satisfy the brane-wave equations (4.32), together with the gauge conditions (4.33), by

making an additional ansatz corresponding to a static spherical membrane at constant σ:

Xσ = σm . (4.34)

The only non-trivial check is that of the brane-wave equation for ρ = σ in (4.32), as the

other three equations turn out to be automatically satisfied by virtue of gauge identities

conjugate to the gauge conditions (4.33). Evaluating this one non-trivial equation, we find

the matching condition

3b′(σm)

b(σm)
= −3αϕ′(σm)e3αϕ(σm) + c e6αϕ(σm) , (4.35)

which imposes a relation between the membrane location σm (4.34) and the background’s

integration constant c appearing in (2.5). Note that since the analytically-continued in-

stanton background (4.29) is not supersymmetric, one should not have expected a no-force
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condition for the included membrane (4.31), so it should come as no surprise that there

is a specific consistent value σm for our static membrane ansatz (4.34), dependent on the

parameter c determining the background.

Finally, we come to the charge-conservation requirement necessary for a consistent cou-

pling of the membrane to the background (4.29). The presence of the source action modifies

the antisymmetric-tensor field equation (2.4c) by the inclusion of a delta-function source

term:

d(e−6αϕ ∗F(4)) = T ∗J(3) , (4.36)

where the delta-function source current is

∗J(3) = δ(σ − σm) dσ . (4.37)

Clearly, we cannot satisfy this sourced field equation everywhere by the single condition

(2.5) for a given integration constant c, because this single condition would cause the left-

hand side of (4.36) to vanish. What we must instead do to achieve a consistent patching is

to have different values of the integration constant c on the two sides of the domain wall:

e−6αϕ ∗F(4) = − [c+θ(σ − σm) + c−θ(σm − σ)] . (4.38)

The charge conservation condition is now transparent: imposing the sourced antisymmetric-

tensor field equation (4.36) now yields the condition

c− − c+ = T , (4.39)

where T is the membrane tension appearing in the source action (4.30, 4.31). Conditions

(4.35, 4.39) thus define the σm location and charge conservation requirements for a domain

wall to be consistently inserted into an analytically-continued instanton background of the

form (4.29). One should note that at the quantum level, the tension T of the included

membrane will need to be quantised in accordance with Dirac charge-quantisation conditions

taken together with the web of duality relations for supergravity p-branes [43–46]. These

conditions require the membrane tension T to sit on a discretised lattice of allowed values.

Thus, the integration constants c± entering into the charge matching condition (4.39) will

have to take values that respect the lattice of allowed T values.

4.3 The Euclidean-signature theory from AdS7 reduction

Another way of obtaining a Euclidean-signature theory is to perform a dimensional reduc-

tion on a space that includes the time direction, instead of making a Wick rotation on the
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time direction. Although such Euclidean-signature solutions may not be directly relevant

for vacuum tunnelling considerations such as those discussed in the previous two subsec-

tions, we shall nonetheless take the opportunity to discuss them here. Previous discussions

of such reductions have principally focussed on reductions on Minkowski-signature tori.

Such compactifications have been considered in connection with the classification of static

p-brane solutions in terms of instanton solutions of non-compact sigma models [47, 48].

Here, we shall instead be concerned with reduction on an AdS spacetime, as discussed in

appendix A. Principally, we shall consider the reduction of D = 11 supergravity on AdS7.

The generalisation to the other cases, for example D = 11 on AdS4 and type IIB on AdS5,

is straightforward.

It is worth emphasising that the Euclidean-signature supergravities obtained by mak-

ing timelike reductions from standard Minkowskian-signature supergravities are themselves

perfectly real, and, by contrast with the Euclidean-signature theories obtained by Wick

rotation, all fields should be taken to be real. In particular, the notions of extremality,

duality and supersymmetry will now all require that the fields of the Euclidean-signature

theory be real (see, for example, [48]).

From the results in appendix A, we see that after dualising the 4-form field strength the

four-dimensional Lagrangian will be given by

e−1 L = R− 1
2(∂ϕ)2 − Ṽ (ϕ) , (4.40)

where the potential Ṽ (ϕ) is given by

Ṽ (ϕ) = −1
2c

2 e6αϕ − e
18
7 αϕR7 . (4.41)

Comparing with the potential V (ϕ) for the usual theory obtained by dimensional reduction

on S7, given in (2.7), we see that the sign of the c2 term here is reversed. In addition,

although the R7 term is identical in form, it should be recalled that R7 is negative in (4.41),

since it is now the Ricci scalar of the AdS7 space on which the dimensional reduction is being

performed. In fact, the net effect is therefore simply to reverse the sign of the scalar potential

that we considered previously. Thus Ṽ now has a maximum Ṽmax = −Vmin > 0. This is

true generally: the scalar potential for the breathing mode in supergravity compactified on

an AdS is opposite in sign to that arising in the compactification on a sphere.

In this case, we have ϕ′′(0+) = Ṽ,ϕ(ϕ0) < 0. Thus (ϕ−ϕ0) in this case becomes negative

as σ increases. The potential Ṽ (ϕ) is again always positive, implying that the acceleration

b′′ is always negative. Thus the velocity b′ will decrease. Whether the end of the universe
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is singular or not depends on whether the dilaton stabilises. We note that the first-order

constraint (4.11) implies in this case that(b′
b

)2
= 1

12ϕ
′2 +

1

b2
− 1

6 Ṽ (ϕ) . (4.42)

Since in the region (ϕ − ϕ0) < 0, the potential Ṽ (ϕ) is positive, it is possible that the

velocity b′ can reach zero at some finite time, and the negative acceleration b′′ then implies

that the universe will eventually shrink down to zero size at finite σf . When this happens,

there are two possible outcomes. The first one is that the dilaton diverges, and runs to −∞,

in which case the potential vanishes. The solution near σf is then given by

b ∼ (σf − σ)
1
3 , ϕ′ ∼ −

2
√

3
(σf − σ)−1 , (4.43)

and hence the universe ends up in a singularity.

However, there can be a non-singular end-point as well. Note that Ṽ (ϕ) does not increase

monotonically for (ϕ − ϕ0) < 0 ; in fact it decreases when ϕ passes the minimum point

ϕAdS < ϕ0. This implies that ϕ′′ can be positive, and hence can cause the value of ϕ to

increase. The net effect is that ϕ eventually stabilises at ϕAdS. In this case we eventually

have b′′ = −1
6 Ṽmaxb, and so

b ∼ sin(
√

1
6 Ṽmax (σf − σ)) . (4.44)

In this case, the “end of the universe” is an S4. The solution has no singularity at σf ; in

fact the metric becomes purely Euclidean. The universe afterwards becomes periodic.

A priori, one would expect that if Ṽmax were sufficiently small, such that b′ never reached

zero, then the universe would expand forever. In this case (ϕ − ϕ0) would be driven to

negative infinity, since we have seen above that the stabilisation of ϕ implies that b′ becomes

negative after a certain amount of time. Whether this possibility arises or not depends on

whether there is such a solution. It is easy to verify that the solution exists only for

potentials Ṽ ∼ 1
2g

2eaϕ with a2 < 1/2. To see this, we note that (4.10) leads to a solution

that asymptotically approaches

b ∼ τ
1
a2 , eaφ ∼

2
√

3− a2

a2g
τ−1 , (4.45)

where τ = iσ. The first-order constraint (4.11) implies that only if a2 < 1/2 can the 1/b2

contribution can be ignored. In our case we have Ṽ (ϕ) ∼ R7 e
18αϕ/7 = R7 e

3ϕ/
√

7, and hence

such a solution does not occur here.

Thus we see that there are two possible evolutionary scenarios in this AdS reduction

case, depending presumably on the parameters c and R7 in the potential. If the slope Ṽ,ϕ
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is sufficiently mild, then ϕ will stabilise at ϕAdS, and the universe will become periodic,

without a singularity. On the other hand if the slope is steeper then ϕ will be driven to

negative infinity, and consequently the universe will end up at the singular point σf , with

a near-singularity solution given by (4.14).

So far, we have studied the solution in terms of the four-dimensional Einstein metric

ds2
Ein. In terms of the eleven-dimensional metric, the first possibility above, where the

dilaton stabilises to ϕ = ϕAdS and b is given by (4.44), the size of the internal AdS7 space

stabilises also. The eleven-dimensional metric approaches the form

ds2
11 ∼ dσ

2 + sin2(
√

1
6 Ṽmin (σf − σ)) dΩ2

3 + ds2
7 (4.46)

when σ → σf . In the second possibility, given by (4.45), the dilaton is instead driven to

negative infinity, and hence the “internal” AdS space becomes infinite in size. The eleven-

dimensional metric is given by

ds2
11 ∼ (σf − σ)

2
√

7
3
√

3 dσ2 + (σf − σ)
2
3 (1+
√

7/3)dΩ2
3 + (σf − σ)

−
4

3
√

21 ds2
7

∼ dρ2 + ρ
2(
√

3+
√

7)

3
√

3+
√

7 dΩ2
3 + ρ

− 4
7+3
√

21ds2
7 , (4.47)

where ρ ∼ (σf − σ)1+
√

7/27. Thus from the eleven-dimensional point of view, this solution

really describes an expanding eight-dimensional universe.

5 Conclusions

In this paper, we have considered various Kaluza-Klein dimensional reductions of D = 11

supergravity and type IIB supergravity, focussing principally on the cases where the internal

space is a sphere. The goal was to construct lower-dimensional Lagrangians that could be

used for describing cosmological instanton and domain-wall solutions. In order that these

should also be solutions of the original D = 11 or type IIB supergravities, it is important

that the dimensional reduction procedure be a consistent one. We achieved this by making

a truncation to the subset of Kaluza-Klein modes that are the singlets under a transitively-

acting symmetry group of the compactifying sphere. Our main examples were the S7 and

S4 reductions of D = 11 supergravity, and the S5 reduction of type IIB supergravity, since

in all these cases there exist anti-de Sitter “vacuum” solutions in the lower-dimensional

spacetime. The simplest consistent truncations arise when one just retains the singlets under

the SO(n+1) isometry group of the n-sphere. In the gravitational sector this corresponds to

keeping only the metric and the breathing-mode scalar in the lower-dimensional theory. In
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the case of spheres of odd dimension, a slightly enlarged consistent truncation is possible,

where one keeps the singlets under the SU(m + 1) × U(1) subgroup of the SO(2m + 2)

isometry group of the “round” (2m+1)-sphere. In the gravitational sector this has the effect

of including a further scalar mode in the lower-dimensional theory, which parameterises the

homogeneous “squashing” along the Hopf fibres of S2m+1, viewed as a U(1) bundle over

CPm. We also considered other consistent reductions, on S2, S3 and AdS spaces.

Having obtained the consistently-truncated lower dimensional theories, we then studied

solutions of two kinds. One class consisted of supersymmetric domain-wall solutions, also

known as (D − 2)-branes. An interesting feature of these solutions is that, once oxidised

back to the original higher-dimensional theory, they become standard isotropic p-branes. In

fact the domain wall can be understood as arising from performing a dimensional reduction

on the spheres that foliate the space transverse to the isotropic p-brane. For example, we

found a domain wall (i.e. a membrane) in D = 4, which can be interpreted as coming from

the dimensional reduction of the eleven-dimensional M2-brane on the 7-spheres that foliate

its transverse space.

The other class of solutions that we considered consisted of instanton solutions of the

Euclideanised theories, that could, in the spirit of [1, 4], be interpreted via appropriate

analytic continuations as describing open universes. Our analysis of the instanton solutions

concentrated on the four-dimensional case of greatest phenomenological interest. In our

solutions the rôle of the inflaton is played by the breathing-mode scalar of the spherical

reduction, and hence the form of the scalar potential is precisely determined. This potential

is similar to the sorts of potential that were postulated in [1,4], and in particular one finds

singular instanton solutions of the SO(4)-invariant deformed S4 kind. However, the details

of the solutions, and in particular the nature of the singularity, are somewhat different

from the generic ones obtained in [1,4], owing to the fact that certain of their assumptions

about the asymptotic form of the scalar potential are not satisfied by the explicit potential

that we obtained. This is reflected in the fact that the scale factor b(σ) in the instanton

metric (4.9) near the singularity is of the form b ∼ (σf − σ)1/7 rather than of the form

b ∼ (σf − σ)1/3 which was found in [1, 4]. The precise origin of the inflaton mode in the

7-sphere compactification of D = 11 supergravity discussed in [4] is not specified. It is

presumably to be thought of as one of the scalars coming from the Kaluza-Klein reduction,

although from its coupling to the 4-form it is evidently not the breathing mode. It is

interesting that the outcome from our analysis where we do use the breathing mode as the

inflaton, allowing us to give an explicit form for its scalar potential, is a singular instanton
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solution exhibiting many of the same features that were obtained in [1,4] for generic forms

of a postulated potential. The specific potentials that we have obtained in this paper give

only a very small amount of inflation, however. Thus, the search for realistic inflationary

models based on a fundamental underlying theory remains an open subject.

38



Acknowledgements and Note Added

We are grateful for discussions with Raphael Bousso, Gary Gibbons, Stephen Hawking,
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Rapael Bousso, Stephen Hawking and André Linde that led to clarification of the amount

of inflation that can be expected in the type of model considered in this paper. After dis-

tributing this paper, we received Ref. [52], which also addresses some of the issues discussed

in the present work.

Appendices

A General sphere and AdS reductions

Let us consider the general ansatz for a “breathing-mode” reduction on an internal space

Y which is allowed to be either a sphere, or an anti-de Sitter spacetime, or, indeed, any

other Einstein space or spacetime, with positive, negative or zero Ricci scalar. In the case of

reductions on AdS or other spacetimes, the time coordinate itself forms part of the internal

space, and the resulting lower-dimensional theory is of Euclidean signature. We shall begin

by considering the reduction of a pure Einstein theory in D = dx+dy dimensions, where the

lower-dimensional theory has coordinates xµ and dimension dx, while the internal space Y

has coordinates ym and dimension dy. The reduction ansatz for the D-dimensional metric

is

dŝ2 = e2αϕ ds2
x + e2βϕ ds2

y , (A.1)

where the subscripts x and y indicate the lower-dimensional space and the compactifying

space respectively. We find that the reduced action will have a canonical pure Einstein-

Hilbert form for the metric if the constants α and β satisfy α(dx − 2) + β dy = 0. The

normalisation of the kinetic term for ϕ will then be canonical if we choose α and β to be

given by

α2 =
dy

2(dx − 2)(dx + dy − 2)
, β = −

α(dx − 2)

dy
. (A.2)

Then we have the following result for the reduction of the higher-dimensional Einstein-

Hilbert Lagrangian:

ê R̂ =
√
gy Lx , (A.3)

where gy denotes the metric on the dy-dimensional space, and

e−1 Lx = R− 1
2(∂ϕ)2 + e2(α−β)ϕ Ry − α(dx − 3) ϕ . (A.4)
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The last term in (A.4) is just a total divergence, and so it can be dropped.

For future reference, we record also the expressions for the vielbein components of the

Ricci tensor of the metric dŝ2, given in terms of the lower-dimensional quantities for the

x-space and y-space metrics in (A.1). After using the expressions for α and β given in (A.2),

we find that the vielbein components of the Ricci tensor are

R̂µν = e−2αϕ
(
Rµν − α ϕηµν −

1
2 ∂µϕ∂νϕ

)
,

R̂mn = e−2βϕRmn − β e
−2αϕ ϕηmn , (A.5)

R̂µn = 0 . (A.6)

(The signatures for the local Lorentz metrics ηµν and ηmn are to be chosen appropriately,

depending upon whether a spacelike or a timelike reduction is being considered.)

The above discussion may be augmented by including a field strength F̂n of degree n in

the original D-dimensional theory, so that we now start from the Lagrangian

L̂ = ê R̂− 1
2n! ê F̂

2
n . (A.7)

There are two possible reductions, within the framework of the consistently-truncated the-

ories that we are considering, where only singlets under the isometry group of the internal

space are retained. In the generic case, where the degree n is not equal to dy, the metric

reduction ansatz (A.1) will be supplemented by the ansatz

F̂n(x, y) = Fn(x) . (A.8)

On the other hand, in the special case that n = dy, the more general ansatz

F̂n(x, y) = Fn(x) +mεdy , (A.9)

can be made, where m is a constant and εdy is the volume form on the internal space.5 The

dimensionally-reduced Lagrangian now takes the form

e−1 Lx = R− 1
2(∂ϕ)2 + e2(α−β)ϕ Ry −

1
2n! e

−2(n−1)αϕ F 2
n −

1
2ζ m

2 e2(dx−1)αϕ , (A.10)

where ζ = +1 if the internal space Y has Euclidean signature, and ζ = −1 if Y has

Minkowski signature. The last term is present only if dy = n and the more general ansatz

(A.9) is made.

5If the internal space Y is not a sphere or AdS, it may be that it has additional invariant tensors aside

from the volume form. In such cases, a consistent singlet reduction can be performed in which εdy in (A.9) is

replaced by the invariant tensor. For instance, if Y is a Kähler manifold then the Kähler form, or powers of

the Kähler form, can be used. Examples of this kind arise in the squashed S7 and S5 reductions considered

in sections 2.2 and 2.5.
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A case of particular interest arises when dx is equal to n. We can then dualise the

field strength Fn, which will have no degrees of freedom, to give a cosmological-type term.

Specifically, we will have

Fn = me2(n−1)αϕ εdx . (A.11)

The two cases dx = n or dy = n can then be treated in a symmetrical way, by taking Fn = 0

in the latter case. The equations of motion in the lower dimension will then be

Rµν = 1
2∂µϕ∂νϕ−

1

dx − 2
Ry e

2(α−β)ϕ gµν +
ζ m2

2(dx − 2)
e2(dx−1)αϕ gµν ,

ϕ = −2(α− β)Ry e
2(α−β)ϕ + ζ m2 (dx − 1)αe2(dx−1)αϕ . (A.12)

These can be derived from the Lagrangian

e−1 Lx = R− 1
2(∂ϕ)2 + e2(α−β)ϕ Ry −

1
2ζ m

2 e2(dx−1)αϕ . (A.13)

B A general class of domain walls

First, consider a general class of Lagrangians in D dimensions of the form

e−1 L = R− 1
2(∂ϕ)2 − V (ϕ) (B.1)

with the potential V (ϕ) given by

V (ϕ) = 1
2g

2
1 e

a1ϕ − 1
2g

2
2 e

a2ϕ − λ g1 g2 e
1
2 (a2+a1)ϕ . (B.2)

If we look for domain-wall solutions where the metric is

ds2 = e2A dxµ dxµ + e2B dy2 , (B.3)

where A and B are functions only of y, the equations of motion are

ϕ′′ + (dA′ −B′)ϕ′ = V,ϕ(ϕ) ,

A′′ + (dA′ −B′)A′ = dA′′ + d(A′ −B′)A′ + 1
2ϕ
′2 = −

V (ϕ)

D − 2
, (B.4)

where we have d = D − 1. The equations can be solved by making the ansatz

ϕ′ = b1 e
1
2a1ϕ+B + b2 e

1
2a2ϕ+B ,

A′ = c1 e
1
2a1ϕ+B + c2 e

1
2a2ϕ+B , (B.5)

for constants b1, b2, c1, c2, provided that λ satisfies

λ2 = −
((D − 2)a1a2 − 2(D − 1))2

[(D − 2)a2
1 − 2(D − 1)][(D − 2)a2

2 − 2(D − 1)]
. (B.6)
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This fist-order ansatz for the solutions is inspired by the equations that come from requiring

supersymmetry in those cases where (B.1) is part of a supergravity Lagrangian. We have

encountered several examples in this paper where such first-order equations are indeed seen

to arise in this way.

The dilaton coupling constants a1 and a2 that we consider in this paper satisfy

a1a2 =
2(D − 1)

D − 2
, (B.7)

and therefore λ = 0. The domain-wall solutions with non-vanishing λ were constructed

in [49] for gauged supergravities in D = 7 [50] and D = 6 [51]. Substituting the ansatz to

the equations of motion, we find that the four constants are given by

b21 =
(D − 2)a2

1 g
2
1

(D − 2)a2
1 − 2(D − 1)

, c1 = −
b1

(D − 2)a1
,

b22 = −
(D − 2)a2

2 g
2
2

(D − 2)a2
2 − 2(D − 1)

, c2 = −
b2

(D − 2)a2
. (B.8)

Now write ϕ′′ + (dA′ − B′)ϕ′ = ν1 ϕ
′2 + ν2 ϕ

′A′. This is consistent with the above if

ν1 = 1
2(a2 + a1), and ν2 = (D − 1) + 1

2(D − 2)a1a2. We can choose B at will by making

coordinate transformations of y, so we may choose B = (d − ν2)A = −1/2(D − 1)a1a2A.

This then implies ϕ′′ = ν1 ϕ
′2. Thus the domain-wall solution is given by

e−
1
2 (a1+a2)ϕ = H ,

e
1
2 (D−2)a1a2A = e−B = b̃1H

a2
a2+a1 + b̃2H

a1
a2+a1 , (B.9)

where H is the harmonic function H = e−
1
2 (a1+a2)ϕ0 + k |y|, and b̃i = bi (a1 + a2)/(2k). If

b1 and b2 are of opposite signs, we can take a limit of k → 0, in which the dilaton becomes

a constant, given by

e(a1−a2)ϕ = e(a1−a2)ϕAdS = −
a2

2g
2
2 [(D − 2)a2

1 − 2(D − 1)]

a2
1g

2
1 [(D − 2)a2

2 − 2(D − 1)]
. (B.10)

The metric then becomes AdSD. This can be easily seen since in this case, we have A ∼

log |y| and e2B ∼ y−2. In all the examples in our paper, we have a1 > a2. Different

situations arise according to whether ϕ0 is chosen to be less than, greater than, or equal

to, ϕAdS . The solution is real provided that b2 > b1. Except when ϕ0 = ϕAdS , there is

a delta-function curvature singularity at y = 0, since the harmonic function is taken to

depend on |y|. One can then think of y = 0 as defining a domain wall, separating the

two regions of spacetime with y > 0 and y < 0. For k > 0, the solution is real for all

values of y, and the metric is singular at |y| =∞, where its behaviour is dominated by the
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contribution of the g2 cosmological term. By contrast, for k < 0 the solution is real for

|y| < y0 ≡ e
−

1
2 (a1+a2)ϕ0 , and the metric is singular at y0, where its behaviour is dominated

by the g1 cosmological term. In both cases the solution near the horizon at y = 0 describes

two reflection-symmetric portions of spacetime. If ϕ0 = ϕAdS , then the metric becomes the

AdS metric at y = 0. If k > 0 and ϕ0 > ϕAdS , or k < 0 and ϕ0 < ϕAdS , the metrics on the

two sides of y = 0 reach the AdS form for some value of |y| that is greater than zero. On

the other hand, if k > 0 and ϕ0 < ϕAdS , or k < 0 and ϕ0 > ϕAdS , the metrics on the two

sides will not have reached the AdS form when they join at y = 0.

C A general class of cosmological instantons

We consider a general class of Lagrangian in D-dimensions of the form given in (B.1) and

(B.2) with λ = 0, i.e.

e−1L = R− 1
2(∂ϕ)2 − V (ϕ) , (C.1)

where

V (ϕ) = 1
2g

2
1e
a1ϕ − 1

2g
2
2e
a2ϕ (C.2)

and dilaton coupling constants a1 and a2 satisfy

a1a2 =
2(D − 1)

D − 2
. (C.3)

Thus without loss of generality, we can assume that both a1 and a2 are positive. This scalar

potential arises as breathing mode of spherically reduction of supergravities with admits

AdS×Sphere solution. For example, M-theory reduction on S7, S4, Type IIB string on S5

and self-dual three string on S3. In particular, in Minkowskian signature these theories all

have a1 > a2. The potential has the following properties

V (ϕ0) = 0 , for e(a1−a2)ϕ0 =
g2

2

g2
1

,

V,ϕ0 = 1
2(a1 − a2)g

−
2a2
a1−a2

1 g
2a1
a1−a2
2 , (C.4)

V,ϕ(ϕAdS) = 0 , for e(a1−a2)ϕAdS =
a2g

2
2

a1g
2
2

,

VAdS = V (ϕAdS) = 1
2(a2 − a1)(g2

2/a1)
a1

a1−a2 (g2
1/a2)

−
a2

a1−a2 . (C.5)

Note that we always have ϕAdS < ϕ0.

As in the case of D = 4 discussed in section 4.1, the solution is better analysed in

Euclidean-signatured space, and thus the metric ansatz we have for the instanton is of the
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form

ds2 = dσ2 + b(σ)2dΩ2 . (C.6)

The scalar ϕ also depends only on σ. The equations of motion are then given by

ϕ′′ + (D − 1)ϕ′
b′

b
= V,ϕ(ϕ) , b′′ = −

1

(D − 2)(D − 1)
b (ϕ′

2
+ V (ϕ)) (C.7)

together with the first-order constraint(b′
b

)2
−

1

b2
=

1

(D − 2)(D − 1)
(1

2ϕ
′2 − V (ϕ)) . (C.8)

Following [1], we assume at the initial time σ = 0 that ϕ(0) = ϕ0, and hence the

potential V (ϕ) vanishes, and also that ϕ′(0) = 0. Then at small values of σ, the space is

purely Euclidean, with b = v0σ, where v0 is the initial velocity. The evolutionary structure

depends on whether a1 > a2, or a1 < a2, corresponding to the two cases discussed in

sections 4.1 and 4.3 for D = 4.

Case (1): a1 > a2

In this case, from (C.4) we see that V,ϕ(ϕ0) > 0, so the dilaton field will be driven

towards positive infinity, and it will not stabilise at ϕ = ϕAdS, since ϕAdS < ϕ0. The

negative acceleration b′′ will eventually reverse the sign of the velocity, and the universe will

end up at a singularity at finite σf . At large value of ϕ, we have V (ϕ) ∼ 1
2g

2
1e
a1ϕ, and if

a1 > acrit the potential contribution is less divergent than the other terms in the equations

of motion, and hence the solution becomes

b ∼ (σf − σ)
1

D−1 , ϕ′ ∼
D − 2
√
D − 1

(σf − σ)−1 . (C.9)

Substituting this solution into the potential, it straightforward to show that

a2
crit =

4(D − 1)

(D − 2)2
. (C.10)

Thus for our set of dilaton coupling constants a1, a2, satisfying (C.3), we have a1a2 > a2
crit.

(Note that in D = 4, we have a1a2 = acrit.) Thus in all our cases, we have a1 > acrit. The

late-time solution can then be obtained by making the following ansatz

b ∼ (σf − σ)b1 , e
1
2a1ϕ ∼

b2
σf − σ

, (C.11)

where the constants b1 and b2 can be determined by substituting this ansatz into the equa-

tions of motion.
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Case (2): a1 < a2

In this case, we have V,ϕ(ϕ0) < 0, so the dilaton will be driven towards left. It will either

stabilise at ϕ = ϕAdS, or else ϕ will head towards −∞, depending on the initial conditions.

Note that V (ϕ) does not monotonically increase in the region; it has a maximum value

VAdS. Two possible scenarios emerge: if the potential is mild, then the dilaton will stabilise

at ϕ = ϕAdS, and the solution will be described by an AdS Lagrangian e−1L = R − VAdS,

with solution given by

b ∼ sin(

√
VAdS

(D − 2)(D − 1)
(σf − σ)) . (C.12)

Note that in this case, the solution has no singularity, and the universe smoothly shrinks

back to zero size, and the metric at σ → σf is again purely Euclidean. The universe

afterwards become periodic. Of course, if the sloop of the potential is sharp, then the

dilaton will be driven to infinity, and the universe will end up at a singularity, with the

solution near σf of the form (C.9).

D Curvatures for instanton and cosmological metrics

We look for solutions in D dimensions where the metric has Euclidean or Minkowskian

signature, and takes the form

Euclidean : ds2 = dσ2 + b(σ)2 dΩ2 , (D.1)

Minkowskian : ds2 = −dτ2 + b(τ)2 dΩ2 , (D.2)

where dΩ2 is the metric on the unit n-sphere. In the obvious orthonormal basis ê0 = dσ (or

ê0 = dτ), êi = b ei, we find that the vielbein components of the Riemann tensor are given

by

Euclidean : R̂ijk` =
1

b2
Rijk` −

(b′
b

)2
(δik δj` − δ

i
` δjk) ,

R̂i0j0 = −
b′′

b
δij (D.3)

Minkowskian : R̂ijk` =
1

b2
Rijk` +

( ḃ
b

)2
(δik δj` − δ

i
` δjk) ,

R̂i0j0 = −
b̈

b
δij . (D.4)

(This is in fact true for an arbitrary metric dΩ2; it need not yet be specified to be a unit

sphere.) Thus we find that the vielbein components of the Ricci tensor are given by

Euclidean : R̂ij =
1

b2

(
(n− 1)(1 − b′

2
)− b b′′

)
δij ,
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R̂00 = −n
b′′

b
, (D.5)

Minkowskian : R̂ij =
1

b2

(
(n− 1)(1 + ḃ2) + b b̈

)
δij ,

R̂00 = −n
b̈

b
, (D.6)

where we have now substituted that the metric dΩ2 is for the unit n-sphere, whose its Ricci

tensor is Rij = (n − 1) δij . (In fact the Ricci tensor R̂ab will take the same form for any

Einstein metric dΩ2 normalised to have Ricci tensor Rij = (n− 1) δij .)

E Effective cosmological constants in sphere reductions

Although it is not directly relevant to our calculations in this paper, it is perhaps worthwhile

to investigate the form of the effective cosmological constant that one obtains in a sphere

reduction, if the breathing mode scalar is eliminated using its equation of motion. This

result is, however, relevant in the model of Hawking and Turok [4], which is inspired by the

7-sphere reduction of D = 11 supergravity. They consider a four-dimensional Lagrangian

where the breathing mode does not appear, and has evidently been integrated out. (This

can be seen from the fact that although there is an F 2
(4) term in their Lagrangian, it is not

multiplied by the exponential of the breathing-mode scalar, unlike the situation in (2.3).)

The inflaton scalar in the Lagrangian in [4] is presumably, therefore, to be thought of as

one of the other scalars coming from the S7 reduction of D = 11 supergravity. One of the

other features of the Lagrangian in [4] is that the sign of the kinetic term for F 2
(4) is the

opposite of the one that is directly inherited from D = 11 under dimensional reduction.

The explanation for this sign reversal is implicitly contained in [15], although they do not

discuss the effective lower-dimensional Lagrangian. Using the results obtained in this paper,

we can present a more explicit demonstration of this.

Consider the four-dimensional Minkowski-signature Lagrangian (2.3), which includes

the breathing-mode scalar ϕ. As we have observed, there exist solutions where ϕ = ϕAdS is

a constant, which, in terms of the (constant) antisymmetric tensor F(4) is given by

R7 = − 7
144 e

− 60
7
αϕAdS F 2

(4) , (E.1)

as can be seen from (2.4b). Substituting this into the equation of motion (2.4a) for the

metric, one finds

Rµν = −1
9 e
−6αϕAdS (F 2

(4)µν −
3
8F

2
(4) gµν) ,
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= −2
7 e

18
7
αϕAdS R7 gµν . (E.2)

Thus we see that indeed Rµν is a negative multiple of gµν , as one expects from the Freund-

Rubin AdS4 × S7 vacuum solution.

If one were to derive (E.2) from a Lagrangian involving only the metric and some 4-index

antisymmetric tensor field strength H(4), then this Lagrangian would have to have the form

e−1 L = R+ 1
48 H

2
(4) , (E.3)

with a positive, rather than negative, sign for the kinetic term for H(4). Comparing the

equations of motion from this Lagrangian with (E.2), we obtain agreement if we choose

H(4) = 2√
3
e−3αϕAdS F(4) , (E.4)

where, however, one still needs to take into account the relation (E.1).

Although in this sense one can say that the effect of the 7-sphere compactification of

D = 11 supergravity is to reverse the sign of the kinetic term for the 4-form field strength,

this viewpoint strikes us as somewhat artificial, since H(4) appearing in (E.3) is not the

same as the 4-form field strength F(4) of D = 11 supergravity. At the classical level the two

are related by (E.4), but at the quantum level it might be more appropriate to retain both

the original supergravity F(4) and the breathing mode ϕ in deriving the dynamics of the

inflaton field. If one wants to take seriously the proposition that the inflationary mechanism

follows from D = 11 supergravity, then the inflaton considered in [4] must be one of the

scalar fields coming from the S7 reduction. Even at the classical level, the interactions of

the inflaton will involve the original supergravity 4-form F(4), the breathing mode ϕ, and

the scalar curvature R7 of the 7-sphere. It would therefore be misleading to think of the

field strength H(4) in the effective Lagrangian (E.3) as being synonymous with the true

supergravity field strength F(4).
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