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Hotspot identification (HSID) is an important component of the highway safety management process. A number of methods have
been proposed to identify hotspots. Among these methods, previous studies have indicated that the empirical Bayes (EB) method
can outperform other methods for identifying hotspots, since the EB method combines the historical crash records of the site and
expected number of crashes obtained from a safety performance function (SPF) for similar sites. However, the SPFs are usually
developed based on a large number of sites, which may contain heterogeneity in traffic characteristic. As a result, the hotspot
identification accuracy of EB methods can possibly be affected by SPFs, when heterogeneity is present in crash data. Thus, it is
necessary to consider the heterogeneity and homogeneity of roadway segments when using EB methods. To address this problem,
this paper proposed three different classification-based EB methods to identify hotspots. Rural highway crash data collected in
Texas were analyzed and classified into different groups using the proposedmethods. Based on the modeling results for Texas crash
dataset, it is found that one proposed classification-based EBmethod performs better than the standard EBmethod as well as other
HSID methods.

1. Introduction

For the purpose of prioritizing safety improvements on
roadway network, identifying sites with consistently elevated
accident risk, often referred to as hotspots or black spots, is of
critical importance. To address this need, a number of ana-
lytical methods for hotspot identification (HSID) have been
developed over the last several decades, with the overarching
objective of optimizing the allocation of limited funding. An
inaccurate HSID method will result in inefficient allocation
of safety treatment resources, with potentially serious costs
in terms of overall safety performance of the network. The
need for accuratemethods to identify and prioritize accident-
prone locations is underscored by the U.S. 2012 Federal
MovingAhead for Progress in the 21st CenturyAct (MAP-21),
which emphasizes data-driven crash risk analysis and safety
treatment prioritization. Further, the performance reporting
requirements outlined inMAP-21 provide an additional layer

of incentive for public agencies to maximize the impact of
safety spending by selecting and treating sites with high
improvement potential.

A number of papers in past years have focused on the
accident frequency (AF) or accident rate (AR) based HSID
methods, which rely on observed accident counts as the
primary measure of accident risk. Because sites are ranked
and identified based on observed accident data only, there
is no mechanism for identifying sites with elevated risk (due
to some combination of geometric and traffic characteristics)
but few accidents. Further, these methods cannot distinguish
between actual high risk locations and those with higher
occurrence of accidents due to random fluctuations. The
empirical Bayes (EB) HSID method addresses these issues
by combining two clues, the historical crash record of the
entity and the expected number of crashes obtained from
a safety performance function (SPF) for similar entities.
This approach is less sensitive to random fluctuations in
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accident frequency and in theory can identify truly high risk
locations with greater accuracy. Building on the EB approach,
additional methods have been developed based on estimated
accident reduction potential (ARP). Suchmethods attempt to
quantify the difference between the actual accident count at
the location of interest (as estimated using EB method) and
the expected accident count for similar locations, under the
supposition that this difference represents the potential for
improvement.

Unfortunately, the definition of “similar” sites is a some-
what open question, and the accuracy of the EB method
depends largely on the selection of the reference population.
When estimating the SPF, the studied crash data are often
collected from different geographic locations to ensure the
adequacy of sample size for valid statistical estimation. Since
crash data observed from different geographic locations may
exhibit different characteristics, the aggregation of these crash
data may result in heterogeneity. For the aggregated crash
data, it is reasonable to assume that the sites with differ-
ent combinations of characteristics (i.e., geometric design
features) can constitute distinct subpopulations [1]. Under
this assumption, applying the EB method to the entire crash
data may become inappropriate because the second clue
of the EB method requires the homogeneity of the crash
data. Therefore, as proposed by some previous studies [2–
8], it is reasonable to assume that the crashes on highway
entities (i.e., road segments or intersections) are generated
from a certain number of hidden subpopulations. Since
entities are heterogeneous across but homogeneous within
the subpopulations, the EB method can be applied to the
crash data in each subpopulation.

The primary objectives of this research are (1) to propose
three different classification-based EB methods to identify
accident-prone sites and (2) to compare the proposed meth-
ods with the commonly used HSID approaches (i.e., AF, AR,
EB, and ARP methods). To accomplish the objective of this
study, the finite mixture of NB regression models with fixed
or varying weight parameter is considered to classify the
crash data into different subgroups. The effectiveness of the
proposed HSID approaches is examined using the crash data
collected at 4-lane undivided rural highways in Texas and
performance is evaluated using criteria proposed by Cheng
and Washington [9].

2. Background

2.1. Hotspot IdentificationMethods. AF based HSIDmethods
have been in use for many years. Such approaches typically
rank locations or segments along a highway by observed acci-
dent count over a specified time interval and define hotspots
as those exceeding some critical value [10]. Road segments
or intersections are ranked by accident count among similar
locations (such as along a relatively homogeneous section
of highway), to insure that the identified hotspots repre-
sent specific opportunities for remediation instead of some
inherent characteristic of a particular roadway class or driver
population. One criticism often raised with regard to the AF
method is that this approach lacks the ability to differen-
tiate between actual hotspots and locations with increased

accident frequency attributable to the randomness of traffic
accidents [9, 10].

It is readily apparent that, all else being equal, a segment
with higher traffic volume can be expected to have a higher
accident count, and so hotspots identified using AF methods
tend to overrepresent high volume locations that may or
may not be amenable to remediation efforts [11]. In response,
AR methods have been developed which rely on accident
count per unit traffic volume for HSID, typically in units of
accidents per million vehicle miles traveled. Similar to the
AF methodology, sites are ranked by accident rate and those
exceeding a critical value are identified as hotspots. Implicit
in this approach is the assumption that accident count and
exposure are linearly related, which is often not the case. In
addition, by normalizing accident count by entering traffic
volume, locations with very low traffic volume are sometimes
over represented [11, 12].

The EB method for traffic accident HSID was intro-
duced by Abbess et al. [13] to address issues with existing
methodologies, most notably regression-to-the-mean (RTM)
bias and low precision due to limited accident history. It
has since been refined and widely used in a range of safety
performance modeling applications [14–16]. In the EB crash
modeling procedure, the expected number of crashes at a
location is estimated by combining two pieces of information:
(1) the accident count at the location of interest and (2)

the expected accident count at locations determined to be
similar based on traffic and roadway characteristics [17]. It
is assumed that the actual accident count for the location
of interest is available, and the expected accident count
for similar locations is generally estimated from the SPF.
The SPF describing accident counts as a function of traffic
volume, lane width, and so forth is typically fitted using
the negative binomial (NB) regression model. The observed
accident count for a given roadway segment is combinedwith
the expected value estimate as shown in
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Another measure often used in HSID is ARP. It was

originally suggested that ARP be estimated as the difference
between the observed accident count at the site of interest
and the expected count as estimated from a set of reference
sites. More recently, it has been proposed that the observed
accident count at the site of interest be replaced by the EB-
estimated accident count. This approach can account for
random fluctuations in accident frequency and so gives a
better estimate of the true safety of the location of interest.
Using the EB-estimated accident count, the ARP is calculated
as shown in
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where ARP
𝑖
= ARP for site 𝑖.
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Persaud et al. [12] suggested that a better estimate of the
true ARP can be derived using a full predictor set in the EB-
estimated accident count and a subset of available regressors
(i.e., those not describing a correctable site-specific geometric
feature) in the expected accident count model. This way, the
estimated ARP is ameasure of the difference between the EB-
estimated “true” safety and the expected safety of what could
be considered a base scenario.

2.2. Negative Binomial Model. In highway safety, the dis-
persion parameter of NB models refines the estimates of
the predicted mean when the EB method is used. So far,
the NB distribution is the most frequently used model by
transportation safety analysts to generate SPFs [18]. The NB
model has the following structure: the number of crashes
𝑦
𝑖
during some time period is assumed to be Poisson

distributed, which is defined by

𝑝 (𝑦
𝑖
| 𝜆) =

𝜆𝑦 exp (−𝜆)

𝑦
𝑖
!

, (3)

where 𝜆 is the mean response of the observation.
TheNBdistribution can be viewed as amixture of Poisson

distributions where the Poisson rate is gamma distributed.
For the complete derivation of the NB model, the reader is
referred to Hilbe [19].The probability density function (PDF)
of the NB is defined as follows:
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where 𝜇 is the mean response of the observation and 𝛼 is the
dispersion parameter.

Compared to the Poisson distribution, the NB distribu-
tion can allow for overdispersion.

2.3. Finite Mixture of NB Regression Models. This study
adopts a 𝑔-component finite mixture of NB regression mod-
els (termed as the FMNB-𝑔model) to classify heterogeneous
crash data. For the FMNB-𝑔 model, it is assumed that the
marginal distribution of 𝑦

𝑖
follows a mixture of NB distribu-

tions, as shown in the following:
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where 𝑤
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The term 𝑤

𝑗
is assumed to be fixed for the FMNB-

𝑔 models. However, instead of estimating a fixed weight
parameter, a generalized FMNB-𝑔model (GFMNB-𝑔model)
can be derived by modeling the varying weight 𝑤

𝑖𝑗
as a

function of covariates, shown in (8). The GFMNB-𝑔 model
allows each entity to have a different weight that is dependent
on the sites’ attributes (i.e., covariates). Previous studies [1]
have shown that the GFMNB-𝑔 model can provide more
reasonable classification results than the FMNB-𝑔 model.
Note that the GFMNB-𝑔 model has the same PDF shown in
(5), but the weight factors are calculated using
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vector of covariates.

2.4. Classification-Based EB Methods. Since the aggregated
crash data may contain heterogeneity, the FMNB-𝑔 and
GFMNB-𝑔 models are proposed to classify the crash data
into different subpopulations. Besides the mixture model, a
simple mean-based grouping method is also considered and
compared with the FMNB-𝑔 and GFMNB-𝑔 models. After
separating the aggregated crash data into different subgroups,
the EB estimates are calculated based on the crash data in each
individual subpopulation. The three grouping methods and
the procedure for prioritizing the hotspots are described as
follows.

The first classification method assumes the crash data are
generated from two subpopulations (i.e., one subpopulation
contains accident-prone sites and the other consists of low-
risk sites). To separate the sites into two groups, the mean of
the number of crashes across the entire dataset is calculated.
The sites with the observed number of crashes greater than
the mean are labeled as the accident-prone group, and the
sites with the observed number of crashes smaller than
the mean are labeled as low-risk group. The mean-based
classification method for hotspot identification consists of
three steps. First, separate the entire crash data into two
subgroups using the crash mean as the threshold value.
Second, the NB regression model is estimated using the
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crash data in accident-prone group and the corresponding EB
estimates are calculated; likewise, the NB regression model is
estimated using the crash data in the low-risk group and the
EB estimates are obtained.Third, the two sets of EB estimates
obtained from step two are aggregated and ranked; then the
hotspots are identified based on the aggregated EB estimates.
Hereinafter, we denote this HSID approach as the mean-
based EB method.

The second and third classification methods assume that
the aggregated crash data contain heterogeneity. Hetero-
geneity implies that crash data are generated from different
subpopulations (i.e., crash data in the same subpopulation
share common characteristics, while crash data across the
subpopulations may exhibit different characteristics). Given
the advantages of finite mixture models in describing the
heterogeneity in crash data, FMNB-𝑔 and GFMNB-𝑔models
are used to classify the crash data into 𝑔 components based
on the site characteristics. The FMNB-based or GFMNB-
based classificationmethod for hotspot identification consists
of four steps. First, fit the FMNB-𝑔 or GFMNB-𝑔 model
to entire crash data, and select the number of components
using the Bayesian information criterion (BIC). Second, after
determining the number of components, separate the entire
crash data into 𝑔 subgroups using the FMNB-𝑔 or GFMNB-
𝑔 model. Third, the NB regression model is estimated using
the crash data in each subgroup and the corresponding EB
estimates are obtained. Fourth, the 𝑔 sets of EB estimates
obtained from step three are aggregated and ranked; then the
hotspots are identified based on the aggregated EB estimates.
Hereinafter, the second and third HSID approaches are
denoted as the FMNB-based EB method and the GFMNB-
based EB method, respectively.

3. Hotspot Identification Method
Evaluation Criteria

With the objective of prioritizing safety treatments, the
performance of a HSID method must be described in terms
of both its ability to identify truly high risk sites and its ability
to accurately rank sites by accident risk. In combination, the
three tests proposed by Cheng and Washington [9] address
both of these performance considerations.

3.1. Site Consistency Test. Cheng and Washington [9] intro-
duced the Site Consistency Test (SCT) as a measure of a
HSID method’s consistency over subsequent time periods. It
is based on the idea that actual high risk sites will experience
consistently elevated accident frequencies, which means that
a desirable HSID method should identify as hotspots sites
which can be expected to have poor safety performance in
subsequent time periods assuming no safety treatments or
other changes have been applied.The SCT considers the sites
identified as hotspots by method 𝑗 during time period 𝑖 and
compares the methods based on the sum of accidents at
high risk sites during future time period 𝑖 + 1. The optimal
HSID method as determined by the SCT is the one with the
greatest number of accidents occurring on the sites identified
as high risk by that method during time period 𝑖 + 1. Out
of 𝑛 sites, a threshold is defined for each method such that

𝑐 × 𝑛 are designated as high risk by each method. For
example, with 𝑛 = 200 total sites and 𝑐 = 0.05, 10 sites
will be selected by each method under comparison. With
sites ranked 1, 2, . . . , 𝑐 × 𝑛 in order of increasing accident
risk, the test statistic for each method is defined by Cheng
and Washington [9] as shown below in (9). The best method
according to the SCT, then, is that which produces the highest
𝑇sc:

𝑇sc(𝑗) =
𝑛

∑
𝑘=𝑛−𝑐𝑛

𝐶
𝑘,method=𝑗(𝑖),𝑖+1, (9)

where 𝑛 is the total number of sites under analysis; 𝐶 is the
accident count for site 𝑘; 𝑐 is the threshold for high risk sites,
defined as the fraction of all sites 𝑛 that are designated high
risk; 𝑗 is the HSID method which is being compared; and 𝑖 is
the time period of observation.

3.2. Method Consistency Test. Similar to the SCT, theMethod
Consistency Test (MCT) is based on the notion that actual
high risk sites will consistently experience poor safety perfor-
mance, assuming that operating conditions are similar and
that no safety treatments have been applied. However, the
MCT estimates the performance of a HSID method by the
extent to which the same sites are identified as hotspots over
two consecutive time periods. Given 𝑐 × 𝑛 hotspots identified
by each method 𝑗, the best performing method is that which
identifies the greatest number of hotspots that are consistent
between time period 𝑖 and time period 𝑖+1. FromCheng and
Washington [9], the performance of method 𝑗 is computed as
shown in

𝑇MC(𝑗) = {𝑘
𝑛−𝑐𝑛

, 𝑘
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, . . . , 𝑘
𝑛
}
𝑗,𝑖+1

.
(10)

3.3. Total Rank Differences Test. Similar to the MCT, the
Total rank Differences Test (TRDT) is a measure of a HSID
method’s consistency across multiple time periods, again
assuming that none of the sites have undergone safety
treatments. However, the TRDT explicitly takes into account
the safety performance ranking assigned by each method
and estimates performance based on the ranking consistency
between subsequent time periods. While the MCT would
assign a high score to a method which consistently identifies
the same sites in two time periods as being in the top 𝑐 ×

100% in terms of accident risk, the TRDT considers the
relative rankings of all sites identified in time period 𝑖. The
performance of each method is calculated as the sum of
differences between the rank assigned to all 𝑐×𝑛 high risk sites
in time period 𝑖 and the rank assigned to the same 𝑐×𝑛 sites in
time period 𝑖 + 1. Note that the sites identified in time period
𝑖 are compared by rank in the two time periods whether or
not they are identified as high risk in time period 𝑖 + 1. The
performancemeasure for the TRDT is computed as described
by Cheng and Washington 2008 [9], shown in

𝑇TRDT(𝑗) =
𝑛

∑
𝑘=𝑛−𝛼𝑛

(R (𝑘
𝑗,𝑖
) −R (𝑘

𝑗,𝑖+1
)) , (11)
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Table 1: Summary statistics of characteristics for individual road segments in the Texas data for Periods 1 and 2.

Variable Period 1 (1997 and 1998) Period 2 (1999–2001)
Min. Max. Mean (SD) Min. Max. Mean (SD)

Number of crashes 0 59 2.93 (4.81) 0 78 4.58 (7.81)
Average daily traffic over the study period (𝐹) 40 24000 6391 (3835.01) 43.33 25333.3 6761.8 (4149.84)
Lane width (LW) (ft) 9.75 16.5 12.57 (1.59) 9.75 16.5 12.57 (1.59)
Total shoulder width (SW) (ft) 0 40 9.96 (8.02) 0 40 9.96 (8.02)
Curve density (CD) 0 18.07 1.43 (2.35) 0 18.07 1.43 (2.35)
Segment length (𝐿) (miles) 0.1 6.28 0.55 (0.68) 0.1 6.28 0.55 (0.68)
SD: standard deviation.

Table 2: Modeling results of NB models for Periods 1 and 2.

Estimates Period 1 (years 1997 and 1998) Period 2 (years 1999, 2000, and 2001)
Value SE Value SE

Intercept ln(𝛽
0
) −7.836 0.497 −8.116 0.453

Ln(average daily traffic) 𝛽
1

1.093 0.054 1.137 0.048
Lane width 𝛽

2
−0.044 0.020 −0.055 0.018

Total shoulder width 𝛽
3

−0.013 0.004 −0.012 0.004
Curve density 𝛽

4
0.026 0.014 0.024 0.013

𝛼 0.825 0.062 0.792 0.049
Log-likelihood 2924.490 3409.444
AIC 5860.980 6830.880
BIC 5892.850 6862.763
SE: standard error.

where R(𝑘
𝑗,𝑖
) is the rank of site 𝑘 from method 𝑗 for time

period 𝑖.

4. Data Description

The crash dataset used for comparing different HSID meth-
ods was collected at 4-lane undivided rural segments in
Texas as a part of NCHRP 17–29 research project. This
dataset records crash data collected on 1,499 undivided rural
segments over a five-year period from 1997 to 2001. In order
to compare different HSID methods using the three criteria,
the five-year crash data were divided into two time periods,
Period 1 (years 1997 and 1998) and Period 2 (years 1999,
2000, and 2001). Table 1 provides the summary statistics for
individual road segments in the Texas data for time periods 1
and 2.

5. Results

5.1. Modeling Results. This section describes the modeling
results for the NB, FMNB-𝑔, and GFMNB-𝑔 models. For
the NB model, a mean function of the form shown in the
following is adopted:

𝜇
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= 𝛽
0
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where 𝜇
𝑖
is the estimated number of crashes at segment 𝑖

over the study period; 𝐿
𝑖
is the segment length in miles for

segment 𝑖; 𝐹
𝑖
is the traffic flow (average daily traffic over the

study period) traveling on segment 𝑖; LW
𝑖
is the lane width in

feet for segment 𝑖; SW
𝑖
is the total shoulder width in feet for

segment 𝑖; CD
𝑖
is curve density (curves per mile) for segment

𝑖; and 𝛽
0
, 𝛽
1
, 𝛽
2
, 𝛽
3
, and 𝛽

4
are estimated coefficients.

The NB model is applied to the Texas data, and the
parameters were estimated separately for Periods 1 and 2.
The results of the fitted NB models are shown in Table 2,
along with the NB dispersion parameter (𝛼) estimated for
each time period. The estimated coefficients are reasonable
and consistent between the two time periods. This fitted NB
model is used in the EB and ARP HSID methods only.

For the FMNB-𝑔 and GFMNB-𝑔 models, the mean
functional form for each component is adopted as follows:
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are the estimated numbers of crashes at segment
𝑖 for component 𝑗 and 𝛽

𝑗,0
, 𝛽
𝑗,1
, 𝛽
𝑗,2
, 𝛽
𝑗,3
, and 𝛽

𝑗,4
are the

estimated coefficients for component 𝑗.
For the GFMNB-𝑔 model, the weight parameter is mod-

eled using all available explainable variables:
𝑤
𝑖𝑗

𝑤
𝑖𝑔

= 𝑒
𝛾0𝑗𝑒
𝛾
1𝑗
∗𝐿 𝑖+𝛾2𝑗∗𝐹𝑖+𝛾3𝑗∗LW𝑖+𝛾4𝑗∗SW𝑖+𝛾5𝑗∗CD𝑖 , (14)

where𝑤
𝑖𝑗
is the estimated weight of component 𝑗 at segment 𝑖

and 𝛾
𝑗
= (𝛾
0𝑗
, 𝛾
1𝑗
, 𝛾
2𝑗
, . . . , 𝛾

𝑚𝑗
)󸀠 are the estimated coefficients

for component 𝑗,𝑚 being the number of coefficients.
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Table 3: BIC values for FMNB-𝑔 and GFMNB-𝑔 models with
number of components 𝑔 = 2, 3, and 4.

Model Number of components
2 3 4

Period 1
FMNB 5904.54 5932.72 5969.38
GFMNB 5833.49 5868.99 5940.98

Period 2
FMNB 6820.89 6857.04 6870.91
GFMNB 6755.59 6810.57 6873.91

To evaluate the performance of classification-based EB
methods, the crash data in Periods 1 and 2 are separated
into different subgroups using the mean-based classification
method and FMNB-𝑔 and GFMNB-𝑔 models. For each
period, the NB regression model is estimated using the crash
data in each subgroup and the corresponding EB estimates
are calculated. For each period, the hotspots are identified
based on the EB estimates obtained from each subgroup.

To determine the number of components for FMNB-𝑔
and GFMNB-𝑔 models, an approach suggested by Park et al.
[20] is applied to the crash data in Periods 1 and 2. Specifically,
this approach fits a series of models with an increasing
number of components and selects the most plausible model
using model choice criteria. As discussed by Eluru et al.
[21], compared to the Akaike information criterion (AIC),
the BIC imposes a higher penalty on overfitting with excess
parameters. Thus, the BIC is preferred for selecting the
optimal number of components. For the crash data in Periods
1 and 2, we applied the FMNB-𝑔 and GFMNB-𝑔models with
an increasing number of components 𝑔 = 2, 3, 4. As shown
in Table 3, 𝑔 = 2 is preferred for bothmodels, which provides
the smallest BIC value.Overall, based on reported BIC values,
we selected the optimal number of components 𝑔 = 2 and
use the FMNB-2 and GFMNB-2 models to group the crash
data. Compared to the standard NB model, the GFMNB-2
model has a significantly smaller BIC value. The goodness-
of-fit statistics suggest that the crash data may contain two
subpopulations with different characteristics, rather than a
single population.

The parameter estimation results for Periods 1 and 2 are
provided in Table 4. Table 4 shows that some models include
some insignificant covariates. Note that, for the FMNB-2
model in Period 1, the estimated coefficient for variable
curve density in component 1 is counterintuitive and it may
indicate that the FMNB-2 model provides an unreasonable
group classification. Due to the inappropriate grouping, the
estimated coefficient is counterintuitive.

5.2. Grouping Results. The FMNB-2 and GFMNB-2 models
were used to classify the crash data observed in Period 1 (years
1997 and 1998). Based on themodeling results of FMNB-2 and
GFMNB-2 models, the 1,499 road segments were classified
into two groups by assigning each site to the component with
the highest posterior probability. The posterior probability is
used to calculate the probability that observation 𝑦

𝑖
is from

component 𝑗 [1]. In the EM algorithm, at iteration 𝑟 + 1,
the posterior probability 𝜀

(𝑟+1)

𝑖𝑗
that observation 𝑦

𝑖
is from

component 𝑗, given 𝑦
𝑖
and Θ̂(𝑟), is defined as [22]

𝜀
(𝑟+1)

𝑖𝑗
= 𝑝 (𝛿

𝑖𝑗
= 1 | 𝑦

𝑖
, Θ̂
(𝑟)

, x
𝑖
)

=

𝑤
(𝑟)

𝑖𝑗
𝑓
𝑗
(𝑦
𝑖
| 𝜃̂
(𝑟)

𝑗
, x
𝑖
)

∑
𝑔

𝑘=1
𝑤
(𝑟)

𝑖𝑘
𝑓
𝑘
(𝑦
𝑖
| 𝜃̂
(𝑟)

𝑘
, x
𝑖
)

,

(15)

where 𝛿
𝑖𝑗
is the indicator variable and𝑤

(𝑟)

𝑖𝑗
= 𝑝(𝛿

𝑖𝑗
= 1 | Θ̂

(𝑟)

)

is the prior probability that observation 𝑦
𝑖
is from component

𝑗, given Θ̂(𝑟), which is estimated from iteration 𝑟.
The grouping results from mean-based classification

method and FMNB-2 and GFMNB-2 models are provided in
Table 5 for Periods 1 and 2. Note that the means and standard
deviations of the variables are calculated for each group. For
Periods 1 and 2, the two components generated from mean-
based classification method show a significant difference in
the mean value of number of crashes; on the other hand,
the difference in the mean values of other variables is not
very noticeable. For Periods 1 and 2, the two components in
GFMNB-2model demonstrate a remarkable difference in the
mean values of segment length and curve density. Note that
the difference in themean values of variables is not significant
in FMNB-2 model. For each period (i.e., Period 1 or 2), the
NB regressionmodel is estimated using the crash data in each
subgroup and the corresponding EB estimates are obtained.
Formean-based EBmethod, FMNB-based EB, andGFMNB-
based EB methods, the hotspots are identified based on the
EB estimates and the three criteria are calculated.

5.3. Testing Results. This section describes the HSID method
performance evaluation and comparison results, which was
conducted using the tests described in Section 3. For each
test, seven HSID methods are compared over the two
time periods identified in Table 1. The following high risk
cutoff points are used to compare the methods: 𝑐 =

{0.99, 0.90, 0.95}. The 𝑐 value in this case describes the
fraction of the total number of points that will be identified
as high risk. For example, the selected dataset contains 1,499
highway segments, which will result in approximately 150
high risk sites being identified as hotspots given 𝑐 = 0.90.

As described previously, the SCT is a measure of a HSID
method’s ability to identify truly high risk sites, which it does
by comparing the safety performance of sites identified as
hotspots during an out of sample test observation period.
Table 6 shows the accident count during time period 2, for
hotspots identified by each method during time period 1. It
is clear from these results that the EB with GFMNB-based
classification method performs best for all high risk cutoff
points 𝑐. The worst performing subpopulation EB method is
FMNB-based classification in all cases.

The MCT is a measure of a HSID method’s consistency
over two subsequent time periods. That is, the best per-
forming method will identify the largest number of sites
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Table 4: Parameter estimates for the FMNB-2 and GFMNB-2 models.

Method Component Statistic Ln(𝛽
0
) 𝛽

1
𝛽
2

𝛽
3

𝛽
4

𝛼

Period 1

FMNB-2
1 Estimate −6.275 0.991 −0.056 −0.013 −0.188 0.626

SE 0.628 0.067 0.025 0.005 0.024 0.091

2 Estimate −10.026 1.248 −0.035∗ −0.014 0.216 0.450
SE 0.660 0.072 0.025 0.005 0.016 0.115

GFMNB-2

1 Estimate −6.045 0.830 −0.044∗ −0.011 0.079 0.482
SE 0.628 0.066 0.026 0.005 0.016 0.107

2 Estimate −3.906 0.669 −0.027∗ −0.024 0.080 0.894
SE 0.899 0.103 0.027 0.005 0.028 0.087

𝛾
0

𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

Estimate 64.211 −199.09 0.019 −6.908 1.499 −18.618
Period 2

FMNB-2
1 Estimate −7.424 1.113 −0.049∗ −0.015 0.027∗ 0.833

SE 0.685 0.071 0.028 0.006 0.020 0.075

2 Estimate −8.085 1.086 −0.068 −0.009 0.029 0.247
SE 0.473 0.051 0.018 0.004 0.014 0.125

GFMNB-2

1 Estimate −3.138 0.715 −0.089 −0.036 0.067 0.708
SE 0.731 0.077 0.026 0.005 0.021 0.088

2 Estimate −7.111 1.004 −0.082 −0.013 0.041 0.344
SE 0.487 0.051 0.020 0.004 0.014 0.091

𝛾
0

𝛾
1

𝛾
2

𝛾
3

𝛾
4

𝛾
5

Estimate 2.282 4.8630 −0.0003 −0.091 −0.066 0.187
∗Not significant at 5% significance level; SE: standard error.

Table 5: Summary statistics of each component for Periods 1 and 2.

Method Component (sample) Statistic Crashes 𝐹 LW SW CD 𝐿

Period 1 (years 1997 and 1998)

Mean-based
classification
method

Component 1 (1007) Mean 0.68 5461.00 12.63 10.62 1.45 0.40
SD 0.77 3376.75 1.60 7.95 2.53 0.40

Component 2 (492) Mean 7.51 8296.00 12.46 8.61 1.39 0.87
SD 6.15 4012.35 1.55 7.98 1.92 0.93

FMNB-2
Component 1 (545) Mean 3.91 6274 12.51 9.99 1.69 0.42

SD 4.76 3573.48 1.52 7.99 2.85 0.45

Component 2 (954) Mean 2.37 6458 12.61 9.95 1.28 0.63
SD 4.75 3977 1.63 8.03 2 0.75

GFMNB-2
Component 1 (738) Mean 3 8191 12.58 11.22 0.7 0.29

SD 4.45 3867.52 1.62 8.31 1.54 0.17

Component 2 (761) Mean 2.85 4646 12.57 8.74 2.14 0.81
SD 5.13 2878.96 1.56 7.53 2.75 0.85
Period 2 (years 1999 to 2001)

Mean-based
classification
method

Component 1 (421) Mean 12.92 9420.99 12.46 8.51 1.39 0.96
SD 10.79 4374.44 1.59 7.97 1.82 0.98

Component 2 (1078) Mean 1.33 5723.28 12.62 10.53 1.44 0.39
SD 1.31 3556.24 1.58 7.97 2.53 0.39

FMNB-2
Component 1 (289) Mean 10.29 7601.30 12.68 9.89 1.44 0.38

SD 10.72 4495.77 1.60 7.97 2.46 0.34

Component 2 (1210) Mean 3.22 6561.29 12.55 9.98 1.43 0.60
SD 6.21 4039.09 1.58 8.03 2.32 0.72

GFMNB-2
Component 1 (452) Mean 6.27 9145.69 12.95 12.98 0.85 0.26

SD 8.60 4457.79 1.74 8.12 1.90 0.15

Component 2 (1047) Mean 3.85 5732.65 12.41 8.66 1.68 0.68
SD 7.33 3546.66 1.49 7.61 2.48 0.76



8 Mathematical Problems in Engineering

Table 6: Accumulated results of Site Consistency Test of various
methods.

Method 𝑐 = 0.99 𝑐 = 0.95 𝑐 = 0.90

AF 620 1967 3079
AR 341 1482 2342
EB 636 1999 3068
ARP 536 1574 2298
Mean-based EB method 618 1980 3085
FMNB-based EB method 575 1937 3025
GFMNB-based EB method 637 2042 3096
Number in bold indicates the best result under each cutoff level.

Table 7: Accumulated results ofMethodConsistency Test of various
methods.

Method 𝑐 = 0.99 𝑐 = 0.95 𝑐 = 0.90

AF 7 46 107
AR 6 43 85
EB 8 49 109
ARP 7 46 86
Mean-based EB method 7 48 108
FMNB-based EB method 6 46 105
GFMNB-based EB method 9 50 106
Number in bold indicates the best result under each cutoff level.

Table 8: Accumulated results of Total Rank Differences Test of
various methods.

Method 𝑐 = 0.99 𝑐 = 0.95 𝑐 = 0.90

AF 131 3244 10138
AR 232 8804 24745
EB 110 2722 9032
ARP 1494 12985 37715
Mean-based EB method 111 2757 9015
FMNB-based EB method 246 3565 12059
GFMNB-based EB method 92 2533 8517
Number in bold indicates the best result under each cutoff level.

that are consistent between two observation periods. The
results in Table 7 show that the EB with GFMNB-based
classification method performs best for all cutoff values
(except for 0.90, when the EB method is slightly better). The
least consistent subpopulation EB method is again FMNB-
based classification.

The TRDT compares the accident risk rankings over
two subsequent observation periods, with the best method
producing the smallest sum of rank differences between time
periods 1 and 2. Table 8 shows the results of the TRDT in
which, unlike the SCT and MCT, a lower value indicates
better performance. As with the SCT andMCT, the GFMNB-
based classification method performs best overall with the
lowest sum rank differences for all values of 𝑐.

To summarize the results of the three HSID performance
tests, the EB with GFMNB-based classification method per-
formed the best overall in all three tests.Themost substantial
relative performance advantage offered by theGFMNB-based

method is in the TRDT, more so at higher values of 𝑐.
The regular EB and mean-based classification EB methods
performed somewhat comparably in all tests, and both out-
performed the AF, AR, ARP, and FMNB-based classification
methods. Generally, EB methods (i.e., EB, mean-based EB,
FMNB-based EB, and GFMNB-based EB methods) perform
better than other methods (i.e., AF, AR, and ARP), which is
consistent with previous studies [9, 23–25].

6. Discussion

The HSID results in Section 5.3 suggest that the EB with
GFMNB-based classification method provides the most
accurate ranking in identifying crash-prone locations for the
Texas dataset. The possible explanation for this is that the
EB method is based on two clues, the historical crash record
of the entity and the expected number of crashes obtained
from a safety performance function for similar entities. If
the aggregated crash data contain heterogeneity (i.e., the
crash data are collected from different regions with different
characteristics), the requirement for the second clue is not
satisfied. As a result, although the EB method increases the
precision of estimation and corrects for the RTM bias, the
advantage of EB method may be restricted to some extent
when analyzing the heterogeneous crash data. Therefore, the
GFMNB-𝑔model is adopted to separate the aggregated crash
data into a certain number of homogeneous subgroups and
the EB method is applied to the sites in each subpopulation.
Since the entities in the same subgroup share common
characteristics, the proposed EB with GFMNB-based clas-
sification method is capable of analyzing the heterogeneous
crash data.

There are several other important points worth mention-
ing. First, the results in this study support the findings in
some previous studies [1, 26] that the modeling of the weight
parameter is necessary when using the finite mixture of NB
regression models to analyze the crash data. For example, as
shown in Section 5.3, the EB with FMNB-based classification
method even provides worseHSID results than the simple EB
with mean-based classification method. Second, since some
crash datasets may contain a small number of observations,
one important issue associated with EB with GFMNB-based
classification method is that this approach may suffer from
the small sample bias problem. As discussed by Lord [27],
data characterized by small sample size can result in biased
estimated coefficients for the NB regression models. If only
a small number of observations (e.g., 100 sites or less) are
assigned to one subgroup, the estimated coefficients for this
subgroup may be unreliable and erroneous inferences may
be drawn from the EB method. Thus, when applying the EB
with GFMNB-based classification method for HSID, trans-
portation safety analysts are suggested to examine the size
of the data sample for each subpopulation to ensure reliable
parameter estimation and sound statistical inferences.

7. Summary and Conclusions

This study proposed three different classificationmodel based
EB methods to identify hotspots, that is, mean-based
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classification, FMNB, and GFMNB methods. The new
classification-based EB methods were evaluated against four
conventional HSID methods (i.e., AF, AR, EB, and ARP)
using the new criteria proposed by Cheng and Washington
[9]. The important findings can be summarized as follows:
first, for the considered Texas crash dataset, the EB with
GFMNB-based classification method yields better results
in identifying hotspots than the standard EB and other
methods.This implies that theHSID accuracy can be possibly
improved by properly classifying roadway segments based
on the heterogeneity in crash data. Second, caution should
be taken when classifying roadway segments. Inappropriate
classification of roadway segments can result in worse results.
And finally, the EB methods generally perform better than
other methods, which is consistent with previous studies. For
future works, accident datasets collected at other locations
should be used to further examine the performances of the
GFMNB-based EB method.
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