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This paper develops goodness of fit statistics that can be used to
formally assess Markov random field models for spatial data, when
the model distributions are discrete or continuous and potentially
parametric. Test statistics are formed from generalized spatial resid-
uals which are collected over groups of nonneighboring spatial ob-
servations, called concliques. Under a hypothesized Markov model
structure, spatial residuals within each conclique are shown to be in-
dependent and identically distributed as uniform variables. The infor-
mation from a series of concliques can be then pooled into goodness
of fit statistics. Under some conditions, large sample distributions
of these statistics are explicitly derived for testing both simple and
composite hypotheses, where the latter involves additional paramet-
ric estimation steps. The distributional results are verified through
simulation, and a data example illustrates the method for model as-
sessment.

1. Introduction. Conditionally specified models formulated on the basis
of an underlying Markov random field (MRF) are an attractive alternative
to continuous random field specification for the analysis of problems that in-
volve spatial dependence structures. By far the most common of such models
are those formulated using a conditional Gaussian distribution (e.g., [42]),
but models may also be constructed using a number of other conditional
distributions such as a beta [23, 31], binary [8], Poisson [4] or Winsorized
Poisson [29], and general specifications are available for many exponential
families [2, 31].
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In an applied spatial setting, we assume that observations are available
at a finite set of geo-referenced locations {si : i = 1, . . . ,N}, and to these
locations we assign the random variables {Y (si) : i = 1, . . . ,N}. In general,
locations are arbitrarily indexed in d-dimensional real space. A MRF is
typically constructed by specifying for each location si a neighborhood, con-
sisting of other locations on which the full conditional distribution of Y (si)
will be functionally dependent. Let the conditional cumulative distribution
function (c.d.f.) of Y (si) given {Y (sj) = y(sj) : j 6= i} be denoted as Fi and
define Ni ≡ {sj 6= si, and Fi depends functionally on y(sj)}. Also define
y(Ni)≡ {y(sj) : sj ∈Ni}. The Markov assumption implies that

Fi(·|{y(sj) : sj 6= si}) = Fi(·|{y(sj) : sj ∈Ni}) = Fi(·|y(Ni)).(1.1)

A model is formulated by specifying, for each i= 1, . . . ,N , a conditional
c.d.f. in (1.1). Conditions necessary for a set of such conditionals to corre-
spond to a joint distribution for {Y (s1), . . . , Y (sN )} are given by Arnold,
Castillo and Sarabia [2] and a constructive process with useful conditions
sufficient for existence of a joint are laid out in Kaiser and Cressie [30]. Mod-
els may be constructed for both discrete and continuous random variables,
on regular or irregular lattices, with or without an equal number of neigh-
bors for each location (including Ni = ∅ for some locations) and possibly
including information from spatial covariates. The construction of models
for applications is thus very flexible.

A number of our results and, in particular, Theorem 2.1 to follow, can
be generalized to some of the variable situations just described, but it will
be beneficial for developing theoretical results to define a setting that is
broad but highly structured. We desire a spatial process defined on grid
nodes of the d-dimensional integer lattice Z

d, where Z= {0,±1,±2, . . .}. We
stipulate a number of restrictions for this process that, while not capable of
covering all of the finite-dimensional models mentioned previously, is flexible
enough to be meaningful in many applied situations. We formally consider
specifying an MRF model for a spatial process Y ≡ {Y (s) : s ∈ Z

d}, rather
than a model (1.1) developed with respect to a finite collection of (possi-
bly nonlattice) data sites {Y (si) : i = 1, . . . ,N}. To this end, assume that
for any s ∈ Z

d neighborhoods can be constructed using a standard template
M⊂ Z

d \{0} as N (s) = s+M, with |M|<∞ denoting the size of M. Some
examples of M are given in the next section. We then assume that the pro-
cess Y has a stationary distribution function F (·|·) such that, for any s ∈ Z

d,
the conditional c.d.f. of Y (s) given all remaining variables {Y (t) : t ∈ Z

d,
t 6= s} can be written as

F (·|{Y (t) : t ∈ Z
d, t 6= s}) = F (·|{Y (t) : t ∈N (s)})(1.2)

under a Markov assumption.
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Given a hypothesized or estimated model, our concern is how one might
conduct a goodness of fit (GOF) procedure, either through informal diag-
nostics or by using formal probability results that lead to a GOF test. The
approach we propose here may be viewed within either the context of a pure
GOF test to address the question of whether a (possibly fitted) model pro-
vides an adequate description of observed data. This is an issue of model
assessment and different from model selection, which has been considered,
for example, with penalized pseudo-likelihood for parametric MRF mod-
els; cf. [11, 21, 26]. Additionally, while other GOF tests may be possible
for certain joint model specifications (e.g., a frequency-domain approach for
Gaussian processes; cf. [1]), we focus solely on conditional model specifica-
tions. The GOF variates introduced in the next section may be used as either
diagnostic quantities or as the basis for a formal GOF test as presented in
Section 3.

The remainder of this article is organized as follows. In Section 2 we in-
troduce the concept of a conclique and derive GOF variates that form the
basis of our approach, using an adaptation of a multivariate probability
integral transform (PIT). Section 3 develops a formal methodology for com-
bining these variates over concliques to create GOF tests of Markov models
under both simple and composite hypotheses. These tests are omnibus in
the sense that they assess the hypothesized model in total, including the
neighborhood structure selected, specification of dependence as isotropic or
directional, and the form of the modeled conditional distributions. Theoret-
ical results are presented in Section 4 that establish the limiting sampling
distributions of GOF tests under the null hypothesis. Section 5 describes
a numerical study to support the theoretical findings. Section 6 provides an
application of the GOF tests in model assessment for agricultural trials. Sec-
tion 7 contains concluding remarks and discussions on extensions. Section 8
provides a proof of the foundational conclique result (Theorem 2.1), and all
other proofs regarding the asymptotic distribution of GOF test statistics
appear in supplementary material [32].

2. Generalized spatial residuals. In this section we derive the basic quan-
tities that form the basis for our GOF procedures. We consider these quan-
tities to be a type of generalized residuals because they fit within the frame-
work suggested by Cox and Snell [9]. In particular, these generalized spatial
residuals will be derived using an extended version of Rosenblatt’s [41] mul-
tivariate PIT combined with a partitioning of spatial locations into sets such
that the residuals within each set constitute a random sample from a uni-
form distribution on the unit interval, under the true model. As discussed
by Brockwell [7] and Czado et al. [12], the PIT formulation allows arbitrary
model distributions to be considered in assessing GOF, rather than simply
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continuous ones. Similar transformations, with subsequent formal or infor-
mal checks for uniformity, have been important in evaluating the GOF of,
and the quality of predictive forecasts from, various models for time series;
cf. [13, 15, 16, 19, 24, 27].

2.1. Concliques. Before providing the transform that defines our gener-
alized spatial residuals, it is necessary to develop a method for partitioning
the total set of spatial locations at which observations are available into sub-
sets with certain properties. We call such sets concliques because they are
defined as the converse of what are called cliques by Hammersley and Clif-
ford [22]. In the case of regular lattices with neighborhoods defined using ei-
ther four-nearest or eight-nearest neighbor structures, concliques correspond
exactly to the so-called coding sets of Besag [4], which were suggested for
use in forming conditional likelihoods for estimation. The key property of
concliques, however, allows construction of such sets in more general settings
including irregular lattices and hence the new name.

As defined in [22], a clique is a set of locations such that each location in
the set is a neighbor of every other location in the set. Similar terminology
exists in graph theory, where a subset of graph vertices (e.g., locations) form
a clique if every two vertices in the subset are connected by an edge [45].
We define a conclique as a set of locations such that no location in the set is
a neighbor of any other location in the set. Any two members of a conclique
may share common neighbors, but they cannot be neighbors themselves.
Additionally, every set of a single location can be treated as both a clique or
conclique. In the parlance of graphs, the analog of a conclique is a so-called
“independent set,” defined by a set of vertices in which no two vertices share
an edge. This particular graph terminology conflicts with the probabilistic
notion of independence, while a “conclique” truly represents a conditionally
independent set of locations in a MRF model.

While the result of the next subsection holds for any collection of con-
cliques, in practice what is desired is a collection of concliques that suit-
ably partition all observed locations. To achieve this under the process
model (1.2), we identify a collection of concliques {Cj : j = 1, . . . , q} that par-
tition the entire grid Z

d. We define a collection of concliques to be a minimal
conclique cover if it contains the smallest number of concliques needed to
partition the set of all locations. In graph theory, this concept is related to
determining the smallest (or chromatic) number of colors needed to color
a graph (with no two edge-connected vertices sharing the same color) or,
equivalently, the smallest number of independent sets needed to partition
graph vertices [25]. In practice, identifying a minimal conclique cover is
valuable since our procedure produces one test statistic for each conclique
in a collection, and those statistics must then be combined into one overall
value for a formal GOF test.
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Example 2.1 (A 4-nearest neighbor model on Z
2). Here, let s= (u, v)′ ∈

Z
2 for a horizontal coordinate u and a vertical coordinate v. The neighbor-

hood structure of a 4-nearest neighbor model is produced with the template
M = {(−1,0)′, (1,0)′, (0,1)′, (0,−1)′}, so that N (s) for a given location s

and neighbors ∗ is as shown in the following figure:

· ∗ ·
∗ s ∗
· ∗ ·

In this case, the minimal conclique cover contains two members, C1 and C2,
with elements denoted by 1’s and 2’s, respectively, as shown below.

Minimal conclique collection for a 4-nearest neighbor model :

1 2 1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2
2 1 2 1 2 1 2 1 2 1
1 2 1 2 1 2 1 2 1 2

Example 2.2 (An 8-nearest neighbor model on Z
2). As in the previ-

ous example, let s = (u, v)′ but take M = {(u, v)′ :max{|u|, |v|} = 1}. The
neighborhood structure of an 8-nearest neighbor model is then shown in the
following figure for a location s ∈ Z

2 and neighbors ∗:

∗ ∗ ∗
∗ s ∗
∗ ∗ ∗

For the 8-nearest neighbor model, there are four concliques in the mini-
mal cover, C1, . . . ,C4, with elements denoted by 1’s, 2’s, 3’s and 4’s in the
following figure, respectively.

Minimal conclique cover for an 8-nearest neighbor model :

1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2 1 2
3 4 3 4 3 4 3 4 3 4
1 2 1 2 1 2 1 2 1 2

2.2. Defining generalized spatial residuals. Let {A(s) : s ∈ Z
d} denote a col-

lection of independent and identically distributed (i.i.d.) random variables,
which are Uniform (0,1) and also independent of the spatial process Y. For
any s ∈ Z

d, we then define a random generalized spatial residual as

U(s) = (1−A(s)) · F (Y (s)|{Y (t) : t ∈N (s)})
(2.1)

+A(s) · F−(Y (s)|{Y (t) : t ∈N (s)}),
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where F (·|·) denotes the (stationary) c.d.f. from (1.2), and F−(·|·) denotes
the left limit of the c.d.f., that is, F−(y|{Y (t) : t ∈ N (s)}) = P (Y (s) < y|
{Y (t) : t ∈ N (s)}), y ∈ R. This residual applies the notion of a random-
ized PIT [7], allowing for a noncontinuous c.d.f. F (·|·) to be considered.
When F (·|·) is continuous, the spatial residual reduces to a PIT U(s) =
F (Y (s)|{Y (t) : t ∈ N (s)}) in Rosenblatt’s [41] format. Given that a collec-
tion of concliques is available for a particular situation, the fundamental
result that serves as the basis for our GOF procedures is as follows.

Theorem 2.1. Let the spatial process {Y (s) : s ∈ Z
d} have conditional

distribution functions as in (1.2), and let {Cj : j = 1, . . . , q} be a collection of
concliques that partition the integer grid Z

d. Then for any j = 1, . . . , q, the
variables {U(s) : s ∈ Cj} given by (2.1) are i.i.d. Uniform (0,1) variables.

Typically, the conditional c.d.f. F (·|·) of expression (1.2) will be a pa-
rameterized function, and we now write this as Fθ(·|·) to emphasize the
parametrization. Let θ0 denote the true value of the parameter. In an appli-
cation we have available a set of observations taken to represent realizations
of the random variables {Y (si) : i= 1, . . . ,N}. Theorem 2.1 indicates that if
we compute generalized spatial residuals as, in the notation of (2.1),

U(si) = (1−A(si)) · Fθ0(y(si)|{y(t) : t ∈N (si)})
(2.2)

+A(si) · F
−
θ0
(y(si)|{y(t) : t ∈N (si)}), si ∈ Cj ,

then within any conclique Cj these variables should behave as a random
sample from a uniform distribution on the unit interval. If we use a minimal
conclique cover having q members, then we will have q sets of residuals, each
of which should behave as a random sample from a uniform distribution.
These sets of residuals will not, however, be independent, so we will not
have a total collection that behaves as q independent random samples.

In practice we will usually also replace the parameter θ with an estimate θ̂
computed on the basis of the observations so that, technically, the values
within any conclique will not actually be independent either. We expect,
however, that if the model is appropriate, then these residuals will exhibit
approximately the same behavior as independent uniform variates, in the
same way that ordinary residuals from a linear regression model with normal
errors behave as an approximate random sample of normal variates, despite
the fact that they cannot technically represent such a sample.

A basic diagnostic plot can be constructed by plotting the empirical dis-
tribution function of each set of residuals {u(si) : si ∈ Cj}, j = 1, . . . , q, and
examining them for departures from a standard uniform distribution func-
tion. See, for instance, Gneiting et al. [19], Section 3.1, for a summary of
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graphical approaches for exploring uniformity in PIT values. Tests for unifor-
mity may be used for individual sets of residuals to guide the decision about
whether a given fitted model is adequate or to choose between two compet-
ing (even nonnested) models. Such procedures do not constitute a formal
GOF test, however, because there is no guarantee that results will agree
across differing sets of residuals in a conclique cover. Formal procedures for
combining evidence from the residual sets into one overall GOF test are
presented in the next section.

3. Methodology: Goodness of fit tests.

3.1. General setting. Suppose that for a set of locations on the d-dimen-
sional integer lattice {s1, . . . , sN} ⊂ Z

d, we want to assess the GOF of a con-
ditional model specification, based on a set of observed values {Y (si) : i =
1, . . . ,N}. We assume that the observed values are a partial realization of
a class of process models defined on Z

d for which the conditional c.d.f.
of Y (s) given {Y (t) : t 6= s} belongs to a class of parameterized conditional
distribution functions,

Fθ = {Fθ(·|{Y (t) : t ∈N (s)}) : θ ∈Θ},(3.1)

where Θ⊆ R
p, 1≤ p <∞, is a parameter space, N (s) = s+M and, analo-

gously to (1.2), M⊂ Z
d \{0}. Two testing problems fit into this framework,

where the null hypothesis is simple and where it is composite.
In the next subsections, we describe GOF tests for simple and compos-

ite hypotheses based on the observations {Y (si) : i = 1, . . . ,N}, which are
assumed to have arisen in the following way. Suppose that R⊂R

d denotes
a sampling region within which N observations are obtained at a set of sam-
pling locations SN ≡R ∩ Z

d = {s1, . . . , sN}. Define the interior of the set of
sampling locations as S int

N ≡ {s ∈ SN :N (s)⊂ SN}. Locations in this set are
those sampling locations for which all neighbors are also sampling locations,
allowing generalized spatial residuals to be computed for all s ∈ S int

N , even if
the physical sampling region R is irregular. Finally, let C1N , . . . ,CqN denote
the conclique partition of S int

N determined by CjN = Cj ∩S int
N , j = 1, . . . , q. In

practice we will desire a minimal conclique cover but this is not necessary
in what follows.

3.2. Testing a simple null hypothesis. First consider the case of the sim-
ple (S) null hypothesis in which the testing problem is given by, for some
specified θ0 ∈Θ,

H0(S): The data {Y (si) : i= 1, . . . ,N} represent a partial sample of

the process model class (3.1) with θ = θ0;

H1(S): Not H0(S).
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To construct test statistics appropriate for these hypotheses, we consider
the generalized spatial residuals under H0(S),

U(s) = (1−A(s)) · Fθ0(Y (s)|{Y (t) : t ∈N (s)})
(3.2)

+A(s) · F−
θ0
(Y (s)|{Y (t) : t ∈N (s)}), s ∈ S int

N .

Now define, for j = 1, . . . , q, the (generalized residual) empirical distribution
function over the jth conclique by

GjN (u) =
1

|CjN |

∑

s∈CjN

I(U(s)≤ u),

u ∈ [0,1]. Here and in the following, I(A) denotes the indicator function of
a statement A, where I(A) = 1 if A is true and I(A) = 0 otherwise. Note that
under H0(S), E{GjN (u)}= u, u ∈ [0,1], as a result of Theorem 2.1. Hence,
to assess the GOF of the model over the jth conclique Cj , we consider the
scaled deviations of the empirical distribution function from the Uniform
(0,1) distribution,

WjN (u)≡N1/2(GjN (u)− u), u ∈ [0,1].(3.3)

A number of GOF test statistics for testing H0(S) may be obtained by
combining the WjN ’s in different ways:

T1N = max
j=1,...,q

sup
u∈[0,1]

|WjN(u)|,(3.4)

T2N =

(

1

q

q
∑

j=1

[

sup
u∈[0,1]

|WjN (u)|
]2
)1/2

,(3.5)

T3N = max
j=1,...,q

(
∫ 1

0
|WjN(u)|r du

)1/r

,(3.6)

T4N =
1

q

q
∑

j=1

(
∫ 1

0
|WjN (u)|r du

)1/r

,(3.7)

where r ∈ [1,∞) in (3.6) and (3.7). Note that T1N and T2N are obtained
by combining conclique-wise Kolmogorov–Smirnov test statistics, while T3N

and T4N are obtained by combining conclique-wise Cramér–von Mises test
statistics. While our statistics are based exclusively on paired differences
(e.g., GjN (u)−u, u ∈ [0,1]), other test statistics may be formulated to assess
agreement between the empirical GjN and Uniform(0,1) distributions, such
as GOF tests based on φ-divergences studied in [24]. In Section 4, we provide
asymptotic distributions for the empirical processes (3.3), which may be
an ingredient for determining limit distributions of statistics based on φ-
divergences; cf. Theorem 3.1 [24].
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3.3. Testing a composite null hypothesis. The composite (C) null hy-
pothesis can be stated as

H0(C): The data {Y (si) : i= 1, . . . ,N} represent a partial sample of

some member of the process model class (3.1) for an unknown θ;

H1(C): Not H0(C).

Let θ̂ denote an estimator of θ based on {Y (si) : i= 1, . . . ,N}. Since θ is
unknown, instead of the U(s)’s of (3.2), we work with an estimated version
of the generalized spatial residuals,

Û(s) = (1−A(s)) · Fθ̂(Y (s)|{Y (t) : t ∈N (s)})
(3.8)

+A(s) · F−
θ̂
(Y (s)|{Y (t) : t ∈N (s)}), s ∈ S int

N ,

where, as before, N (s) = s +M. Note that if θ̂ is a reasonable estimator

of θ and if Fθ(·|·) is a smooth function of θ, then the Û(s)’s of (3.8) are
approximately distributed as Uniform (0,1). This suggests that we can base
tests of H0(C) versus H1(C) on the processes

ŴjN(u)≡N1/2(ĜjN (u)− u), u ∈ [0,1],(3.9)

for j = 1, . . . , q, where

ĜjN (u) =
1

|CjN |

∑

s∈CjN

I(Û(s)≤ u), u ∈ [0,1].

The test statistics for testing H0(C) versus H1(C) are now given by

T̂1N , . . . , T̂4N ,(3.10)

where T̂jN is obtained by replacingWjN in expressions (3.4)–(3.7) with ŴjN .
In the next section, we describe the limit distributions of the test statistics
under the null hypothesis.

4. Asymptotic distributional results.

4.1. Basic concliques. To formulate large sample distributional results
for the GOF statistics, we shall assume that the concliques C1, . . . ,Cq used
for these statistics can be “built up” from unions of structurally more basic
concliques, say C∗

1 , . . . ,C
∗
q∗ , q

∗ ≥ q. For any given template M ⊂ Z
d \ {0}

defining neighborhoods as N (s) = s+M, s ∈ Z
d, we suppose such concliques

are constructed as follows.
Let ei ∈ Z

d denote a vector with 1 in the ith component and 0 elsewhere,
and define mi ≡ max{|e′is| : s ∈ M} as the maximal absolute value of ith
component over integer vectors in the neighborhood template s ∈M, i =
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1, . . . , d. Define a collection of sublattices as

C∗
j = {aj +∆s : s ∈ Z

d}, j = 1, . . . , q∗ ≡
d
∏

i=1

(mi + 1),(4.1)

where ∆= diag(m1 +1, . . . ,md +1) is a positive diagonal matrix and

aj ∈ I ≡ {(a1, . . . , ad)
′ ∈ Z

d : 0≤ ai ≤mi, i= 1, . . . , d},

where aj 6= ak if C∗
j 6= C∗

k .
Proposition 4.1 shows that these sets provide a collection of “basic” con-

cliques (or coding sets) since locations within the same sublattice C∗
j are

separated by directional distances ∆ that prohibit neighbors within C∗
j . Ad-

ditionally, the proposition gives a simple rule for merging basic concliques C∗
j

to create larger concliques Cj . In the following, write ±M=M∪−M, and
define ‖s‖∞ =max1≤i≤d |si| for s= (s1, . . . , sd)

′ ∈ Z
d.

Proposition 4.1. Under the process assumptions of Theorem 2.1 and
for any neighborhood specified by a finite subset M⊂ Z

d \ {0}:

(a) sets C∗
1 , . . . ,C

∗
q∗ of form (4.1) are concliques that partition Z

d;

(b) if a1, . . . ,ai,ai+1 ∈ I , i≥ 1, such that C ≡
⋃i

j=1 C
∗
j is a conclique, then

C ∪ C∗
i+1 is a conclique if and only if

aj − ai+1 +∆s /∈±M for all s ∈ Z
d, ‖s‖∞ ≤ 1, and any j = 1, . . . , i.

In addition to providing a systematic approach for building concliques,
the purpose of this basic conclique representation is to allow the covariance
structure of the limiting Gaussian process of the conclique-wise empirical
processes [cf. (3.3)] to be written explicitly and to simplify the distributional
results to follow (as basic concliques C∗

j above have a uniform structure and
are translates of one another). With many Markov models on a regular
lattice described by the neighborhoods in Besag [4] involving coding sets or
“unilateral” structures, there is typically no loss of generality in building
a collection of concliques C1, . . . ,Cq from such basic concliques. We illustrate
Proposition 4.1 with some examples.

Example 2.1 (Continued). Under the four-nearest neighbor structure
in Z

2, we have M= {±(0,1)′,±(1,0)′}=±M, m1 =m2 = 1, ∆= diag(2,2)
and q∗ = 4, so there are four basic concliques {C∗

j }
4
j=1 determined by the

vectors

a1 = (0,0)′, a2 = (1,1)′, a3 = (1,0)′, a4 = (0,1)′.

Because a2 − a1 +∆ · s= (1,1)′ + 2s /∈ ±M for any s ∈ Z
2, ‖s‖∞ ≤ 1, then

C1 ≡ C∗
1 ∪ C∗

2 is a conclique, and, similarly, so is C2 ≡ C∗
3 ∪ C∗

4 . Additionally,
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Proposition 4.1 shows also that C1, C2 cannot be further merged so that
these represent the previously illustrated minimal conclique cover.

Example 2.2 (Continued). Under the eight-nearest neighbor structure
in Z

2, we have that M= {±(0,1)′,±(1,0)′,±(1,1)′,±(1,−1)′} and the basic
concliques {C∗

j }
4
j=1 are the same as in Example 2.1 and correspond to Be-

sag’s [4] coding sets. However, these basic concliques cannot be merged into
larger concliques by Proposition 4.1 and hence match the minimal cover of
four concliques as illustrated previously (i.e., Cj = C∗

j ).

Example 4.1. Under a “simple unilateral” neighbor M = {(0,−1)′,
(−1,0)′} in Z

2 (cf. [4], Section 6.2), the basic concliques are again the same
and Proposition 4.1 gives C1 ≡ C∗

1 ∪ C∗
2 , C2 ≡ C∗

3 ∪ C∗
4 as a minimal conclique

cover.

4.2. Asymptotic framework. We now consider a sequence of sampling
regions Rn indexed by n. For studying the large sample properties of the
proposed GOF statistics, we adopt an “increasing domain spatial asymp-
totic” structure [10], where the sampling region Rn becomes unbounded
as n→∞. Let R0 be an open connected subset of (−1/2,1/2]d containing
the origin. We regard R0 as a “prototype” of the sampling region Rn. Let
{λn}n≥1 be a sequence of positive numbers such that λn →∞ as n→∞. We
assume that the sampling region Rn = λnR0 is obtained by “inflating” the
set R0 by the scaling factor λn (cf. [40]). Since the origin is assumed to lie
in R0, the shape of Rn remains the same for different values of n. To avoid
pathological cases, we assume that for any sequence of real numbers {an}n≥1

with an → 0+ as n→∞, the number of cubes of the lattice anZ
d that inter-

sect both R0 and Rc
0 is O((an)

−(d−1)) as n→∞. This implies that, as the
sampling region grows, the number of observations near the boundary of Rn

is of smaller order O(N
(d−1)/d
n ) than the total number Nn of observations

in Rn so that the volume of Rn, Nn and the number of interior locations
are equivalent as n→∞. The boundary condition on R0 holds for most re-
gions Rn of practical interest, including common convex subsets of Rd, such
as rectangles and ellipsoids, as well as for many nonconvex star-shaped sets
in R

d. (Recall that a set A⊂ R
d is called star-shaped if for any x ∈A, the

line segment joining x to the origin lies in A.) The latter class of sets may
have a fairly irregular shape. See, for example, [38, 43] for more details.

We want to assess the GOF of the process model specification (1.2), under
either the simple or composite hypothesis sets of Section 3. As described in
Section 3.1, we suppose that the spatial process is observed at locations
on the integer grid Z

d that fall in the sampling region Rn producing a set
of sampling locations SNn (indexed by n). To simplify notation, we will
use Sn rather than the more cumbersome SNn and S int

n rather than S int
Nn

.
Similarly, we will use Wjn to denote the empirical distribution of generalized
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spatial residuals for the jth conclique under a simple hypothesis as given
by (3.3) with N =Nn and T1n, . . . , T4n, the corresponding test statistics of

(3.4)–(3.7). Also, Ŵjn, and T̂1n, . . . , T̂4n will denote the quantities in (3.9)
and (3.10) with N =Nn.

4.3. Results for the simple testing problem. For studying the asymp-
totic distribution of the test statistics T1n, . . . , T4n under the null hypothe-
sis H0(S), we shall make use of the following condition, which imposes the
structure on the concliques described in Section 4.1.

Condition (C.1): Each conclique C1, . . . ,Cq is union of basic concliques
C∗
1 , . . . , C∗

q∗ as in (4.1). Namely, for each j = 1, . . . , q, there exists Jj ⊂

{1, . . . , q∗ ≡ det(∆)} where Cj =
⋃

i∈Jj
C∗
i and the index sets {Jj}

q
j=1 are

disjoint.

The following result gives the asymptotic null distribution of conclique-
wise empirical processes Wn = (W1n, . . . ,Wqn)

′ based on the scaled and cen-
tered empirical distributions Wjn(u), u ∈ [0,1], as in (3.3). Note that, while
each individual empirical process Wjn can be expected to weakly converge
to a Brownian bridge under H0(S) (cf. [3]), the limit law of Wn will not
similarly be distribution-free due to the dependence in observations across
concliques. In particular, the null model Fθ0 influences the asymptotic co-
variance structure of Wn.

Let Lq
∞ denote the collection of bounded vector-valued functions f =

(f1, . . . , fq)
′ : [0,1] → R

q defined on the unit interval. Also, let |B| denote
the size of a finite set B ⊂R.

Theorem 4.2. Suppose that condition (C.1) holds. Then, there exists
a zero-mean vector-Gaussian process W(u) = (W1(u), . . . ,Wq(u))

′, u ∈ [0,1],
with continuous sample paths on [0,1] (with probability 1) such that

Wn
d
→W as n→∞

as elements of Lq
∞. Further, P (W(u) = 0) = 1 for u = 0,1 and the q × q

covariance matrix function of W is given by

EWj(u)Wk(v) =



















det(∆)

|Jj |
(min{u, v} − uv), if j = k,

det(∆)

|Jj| · |Jk|

∑

i∈Jj ,l∈Jk

σi,l(u, v), if j 6= k,

for 0≤ u, v ≤ 1, 1≤ j, k ≤ q and

σi,l(u, v)≡
∑

s∈Zd,‖s‖∞≤1

{P [U(0)≤ u,U(al − ai +∆s)≤ v]− uv}

× I(al − ai +∆s ∈±M).
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The indicator function I(·) above pinpoints terms in the covariance ex-
pression which automatically vanish by the independence of residual vari-
ables U(s) within conclique structures (Theorem 2.1). For example, when
it is possible to combine two basic concliques C∗

i and C∗
l , i 6= l, into a larger

conclique, Proposition 4.1 gives that, for all ‖s‖∞ ≤ 1, it holds that ai−al+
∆s /∈M and so above I(ai − al +∆s ∈ ±M) = 0. All sums in the limiting
covariance structure then involve only a finite number of terms.

As a direct implication of Theorem 4.2, we get the following result on the
asymptotic null distribution of the test statistics T1n, . . . , T4n.

Corollary 4.3. Under the conditions of Theorem 4.2,

Tjn
d
→ ϕj(W) as n→∞

for j = 1, . . . ,4, where the functionals’ ϕj ’s are defined by

ϕ1(f) = max
1≤j≤q

sup
u∈[0,1]

|fj(u)|,

ϕ2(f) =

(

1

q

∑

1≤j≤q

[

sup
u∈[0,1]

|fj(u)|
]2
)1/2

,

(4.2)

ϕ3(f) = max
1≤j≤q

(
∫ 1

0
|fj(u)|

r du

)1/r

,

ϕ4(f) =
1

q

∑

1≤j≤q

(
∫ 1

0
|fj(u)|

r du

)1/r

for f = (f1, . . . , fq)
′ ∈Lq

∞, and for a given r ∈ [1,∞).

4.4. Results for the composite testing problem. As for the simple test-
ing problem, here we first derive the asymptotic null distribution of the
conclique-wise empirical processes Ŵn = (Ŵ1n, . . . , Ŵqn)

′ based on scaled

and centered empirical distributions Ŵjn(u), u ∈ [0,1], in (3.9).

Note that the estimator θ̂n appears in each summand in Ŵjn through
the estimated generalized spatial residuals (3.8). In such situations, a com-
mon standard approach to deriving asymptotic distributions of empirical
processes is based on the concept of uniform asymptotic linearity in some
local neighborhood of the true parameter value θ0 (cf. [36, 46]). However,
this approach is not directly applicable here due to the form of the condi-
tional distribution functions in (3.1) when considered as functions of θ ∈Θ.
To establish the limit distribution, we embed the empirical process of the
estimated generalized residuals in an enlarged space, namely, the space of
locally bounded q-dimensional vector functions on [0,1], equipped with the
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metric of uniform convergence on compacts, and then use a version of the
continuous mapping theorem; the argument details are provided in [32].

We require some notation and conditions in addition to those introduced
in the earlier section. Letting again |B| denote the size of a finite set B,
define the strong mixing coefficient of the process {Y (s) : s ∈ Z

d} by

α(a; b) = sup{|P (A ∩B)−P (A)P (B)| :A ∈D(S1),B ∈D(S2),

|S1| ≤ b, |S2| ≤ b, d(S1, S2)≥ a,S1, S2 ⊂ Z
d},

where D(S) = σ〈Y (s) : s ∈ S〉 generically denotes the σ-algebra generated by
variables Y (s) with locations in S ⊂ Z

d, d(S1, S2) = inf{‖s − t‖1 : s ∈ S1,

t ∈ S2}, ‖x‖1 =
∑d

i=1 |xi| for x = (x1, . . . , xd)
′ ∈ R

d, and P (·) represents

probabilities for the process. Write F
(1)
θ (·|·) and F

(1)−
θ (·|·) to denote p× 1

vectors of first order partial derivatives of Fθ(·|·) and F−
θ (·|·) with respect

to θ, when these exist. Let Uθ(0) = (1−A(0)) · Fθ(Y (0)|{Y (t) : t ∈M}) +

A(0) · F−
θ (Y (0)|{Y (t) : t ∈M}), and denote U

(1)
θ (0) ∈ R

p as the vector of
partial derivatives of Uθ(0) with respect to θ, when this exists.

Condition (C.2):

(i) There exist constants δ0 ∈ (0,1), c0 ∈ (0,∞) such that

|P (Uθ(0)≤ u)− P (Uθ0(0)≤ v)| ≤ c0[‖θ− θ0‖+ |u− v|]

for all 0≤ u, v ≤ 1 and θ ∈Θ satisfying max{‖θ − θ0‖, |u− v|} ≤ δ0.

(ii) sup{‖F
(1)
θ (y|x)‖+ ‖F

(1)−
θ (y|x)‖ :‖θ − θ0‖ ≤ δ0, y ∈R,x ∈R

p} ≤ c0.

(iii) E{sup‖θ−θ0‖<δ ‖U
(1)
θ (0)−U

(1)
θ0

(0)‖}= o(δ) as δ→ 0.

Condition (C.3): Suppose that the joint distribution of (Uθ0(0),U
(1)
θ0

(0)) is
absolutely continuous with respect to L×µ with Radon–Nikodym derivative
f̃(u,x), where L is the Lebesgue measure on R, and µ is a σ-finite measure
on R

p. Suppose that

lim
t→∞

sup
u∈(0,1)

∫

‖x‖>t
‖x‖f̃ (u,x)dµ(x) = 0

and
∫

‖x‖ · sup{|f̃(u,x)− f̃(v,x)| : |u− v| ≤ δ}dµ(x)→ 0

as δ→ 0+.
Condition (C.4):

(i) There exist zero-mean random variables {V(s) : s ∈ Z
d} such that

N1/2
n (θ̂n − θ0) =N−1/2

n

∑

s∈Sn

V(s) + op(1).

(ii) For each s ∈ Z
d, the variable V(s) = (V1(s), . . . , Vp(s))

′ is D(s+M)-
measurable.
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(iii) There exist a ∈ (2,∞), κ > 0 such that sup{E‖V(s)‖2+κ : s ∈ Z
d}<

∞ and
∞
∑

j=1

jd−1α(j; 1)κ/(2+κ) <∞,
∞
∑

j=1

jd(2r−1)α(j; 2r − 1)1/a <∞

for some integer r satisfying r > (p+ 1)/(1− a−1).

(iv) Σ≡ limn→∞Var(N
−1/2
n

∑

s∈Sn
V(s)) exists and is nonsingular.

Conditions (C.2) and (C.3) are exclusively used for handling the effects
of the perturbation of the empirical process of the generalized residuals due
the estimation of θ. The first displayed condition in (C.3) is an uniform in-
tegrability condition, while the second one is a continuity condition on the
densities f̃(·, ·) (in u) in a weighted L1(µ)-norm. Without loss of generality,
we shall suppose that f̃(u,x) = 0 for all u /∈ (0,1) except on a set of x-values
with µ-measure zero. Condition (C.4) allows us to relate the limit law of
the (unperturbed) empirical process part with the variability in estimat-

ing θ by θ̂n. If the conditional model specification is such that the spatial
process satisfies Dobrushin’s uniqueness condition (cf. [20]), then the MRF
is strongly mixing (actually, φ-mixing) at an exponential rate and, hence,
mixing conditions in (C.4) trivially hold.

Theorem 4.4. Suppose that conditions (C.1)–(C.4) and the composite
null hypothesis H0(C) hold. Then, there exist a zero-mean vector-Gaussian
process W(u) = (W1(u), . . . ,Wq(u))

′, u∈ [0,1], with continuous sample paths
on [0,1] (with probability 1) and a random variable Z = (Z1, . . . ,Zp)

′ ∼
Np(0,Σ), both defined on a common probability space, such that as n→∞,

Ŵn
d
→W+ 1 ·Z′

∫

xf̃(·,x)dµ(x)

as elements of Lq
∞, where 1= (1, . . . ,1)′ ∈R

q. The q × q covariance matrix
function of W is as in Theorem 4.2 and for j = 1, . . . , q, k = 1, . . . , p and
u ∈ (0,1),

EWj(u)Zk =
1

|Jj|

∑

i∈Jj

∑

s∈Zd

E(Vk(s− ai) · I(U(0)≤ u)).

The following result is a direct consequence of Theorem 4.4 and gives the
asymptotic distribution of the test statistics under the composite nullH0(C).

Corollary 4.5. Under the conditions of Theorem 4.4,

T̂jn
d
→ ϕj

(

W+ 1 ·Z′

∫

xf̃(·,x)dµ(x)

)

as n→∞

for j = 1, . . . ,4, where the functionals ϕj ’s are as defined in (4.2).
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Under the composite null H0(C), the limiting distributions involved are
not distribution-free (i.e., depending on the true model c.d.f. Fθ0 in a com-
plex covariance structure). Empirical processes based on PIT residuals with
parameter estimates are known to exhibit this behavior in other inference
scenarios with time series and independent data (cf. [17]), and often two
general approaches are considered for implementing GOF tests [37]: resam-
pling or Khmaladze’s [33] martingale transformation. The latter involves
a type of continuous de-trending to minimize effects of parameter estimation
and has been applied to obtain asymptotically distribution-free tests with
other model checks using residual empirical processes based on estimated
parameters (cf. [34, 35]). In particular, Bai [3] justified this transformation
for tests in parametric, conditionally specified (continuous) distributions for
time series, but considered only one empirical process of residuals. If modi-
fied to the spatial setting, this result would entail a transformation of ŴjN

from one conclique j = 1, . . . ,1 so that its limiting distribution is Brownian
motion and distribution-free under H0(C). The complication here is that
with residual empirical processes from multiple concliques, after applying
a conclique-wise transformation, the resulting limit distribution of a test
statistic under H0(C) would not be distribution-free due to dependence
across concliques (akin to Theorem 4.2 in the case of no parameter esti-
mation). Another option might be to use plug-in estimates of the covariance
structure, using, for example, that asymptotic variances of maximum likeli-
hood and pseudolikelihood estimators (i.e., Σ in Theorem 4.4) are known for
some Markov field models [21]. But one would also have to estimate other
complicated covariances in the limiting distribution of Theorem 4.4, which
might be possible with subsampling variance estimation [43].

Spatial resampling methodologies, such as the block bootstrap (cf. [39],
Chapter 12), might also be used to approximate sampling distributions of
GOF statistics based on spatial residuals and knowledge of the limit distri-
butions in Theorem 4.4 could be applied to toward justifying such bootstrap
estimators. Simulations in Section 5 also suggest that the finite sample ver-
sions of the GOF statistics appear to converge fairly quickly to their limits,
at least in the case of simple null hypotheses. This implies that, in ap-
plication, large-sample bootstrap approximations of finite-sample sampling
distributions may be reasonable. The theoretical development of a spatial
bootstrap for our GOF statistics is outside of the scope of this paper, but
in Section 6 we use a parametric spatial bootstrap to calibrate GOF test
statistics for a composite null hypothesis.

5. Numerical results. Here we provide a small numerical verification of
the large sample distributional results in the simple null hypothesis case,
considering observations generated from a conditional Gaussian MRF on Z

2

with a four-nearest neighbor structure specified by M= {±(0,1)′,±(1,0)′}
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as in Example 2.1. The conditional model family (3.1) of Y (s) given {Y (t) :
t ∈ N (s)}, s ∈ Z

2 (N (s) = s + M), is normal with mean µα,η(s) ≡ α +
η
∑

t∈N (s)[Y (t) − α], and variance τ2 > 0, where E(Y (s)) = α ∈ R is the

marginal process mean and |η| < 0.25 denotes a dependence parameter. In
total, the model parameters θ are (α, τ, η)′.

5.1. Limit distributions under a simple null hypothesis. We first examine
asymptotic null distributions of GOF test statistics in the simple testing
problem H0(S) : (α, τ, η)

′ = (α0, τ0, η0)
′ of Section 3.2 with residuals (3.2)

given by U(s) = Φ[{Y (s) − µα0,η0(s)}/τ0]. Here Φ(·) denotes the standard
normal cumulative distribution function, and, for simplicity, we will write
hypothesized parameters α0, τ0, η0 as α, τ, η in the following.

As described in Section 3.1, the four-nearest-neighbor structure produces
a minimal cover of two concliques C1,C2 (cf. Example 2.1), each of which
is a union of two basic concliques C∗

1 , . . . ,C
∗
4 provided in Section 4.1. These

concliques yield an empirical distribution process Wn = (W1n,W2n)
′ and

GOF test statistics T1n, . . . , T4n as in (3.4)–(3.7). By Theorem 4.2, Wn has
a mean-zero Gaussian limit W= (W1,W2)

′ with covariances

EWj(u)Wk(v) =

{

2(min{u, v} − uv), if j = k,
8[P (X1 ≤Φ−1(u),X2 ≤Φ−1(v))− uv], if j 6= k,

(5.1)

u, v ∈ [0,1], j, k ∈ {1,2}, where vectors (X1,X2) in (5.1) are bivariate normal,
with marginally standard normal distributions and correlation −η. Hence,
under the simple null hypothesis, the limit process depends on (α, τ, η)′ only
through the dependence parameter η, which we denote by writing W≡Wη .

To understand the distribution of ϕj(Wη), j = 1,2,3,4, as the asymp-
totic limit of GOF statistics Tjn under Corollary 4.3, we simulated from
the theoretical Gaussian process Wη as follows. For each value of η =
0,0.1,0.24, we generated 50,000 sequences of mean-zero bivariate Gaus-
sian variables (W1(i/3001), W2(i/3001)), i = 0, . . . ,3001, with covariance
structure (5.1) over a grid in [0,1]; the sequence length of 3002 was dic-
tated by computational stability. These provide approximate observations
of Wη , with η values chosen to reflect no, weak and strong forms of positive
spatial dependence. Cumulative distribution functions of each functional
ϕ1(Wη), . . . , ϕ4(Wη) were then approximated from Wη-realizations. The
resulting distribution curves appear in Figure 1 for η = 0.1 and η = 0.24,
with ϕ3(Wη) and ϕ4(Wη) computed using r = 2 in (4.2).

5.2. Comparisons to finite sample distributions. To compare the agree-
ment of finite sample distributions of TjN under the simple null hypothesis
with their limit distributions ϕj(Wη), j = 1, . . . ,4, we simulated samples on
two grid sizes, a 10×10 grid having N = 100 locations and a 30×30 grid hav-
ing N = 900. Here, we simulated 50,000 realizations of conditional Gaussian
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Fig. 1. Cumulative distribution functions Fϕj(Wη)(w) = P [ϕj(Wη) ≤ w], w ∈ R, for
limit functionals ϕ1(Wη), . . . ,ϕ4(Wη) for η = 0.1 (dashed) and η = 0.24 (solid).

samples (setting α= 0 and τ = 1 with no loss of generality) and evaluated
functionals T1N , . . . , T4N to approximate the finite-sample distributions of
these GOF statistics. Figure 2 shows the difference between the quantiles of
the limit ϕ2(Wη) and those of T2N for η = 0.1 and η = 0.24; the agreement
among quantiles for functional 2 is quite good even though this plot was
one exhibiting the largest quantile-mismatches among the four GOF func-
tionals. Table 1 shows the proportion of GOF statistics TjN falling above
the 95th and 99th quantiles of the corresponding limit ϕj(Wη) distribution,
j = 1,2,3,4. The agreement between the finite-sample and theoretical limit
distributions is again close in Table 1.

For various sample sizes and dependence parameters, Table 2 compares
the finite-sample distributions of the four GOF statistics {TjN}4j=1 against
their limiting distributions ϕj(W) in terms of a Kolmogorov–Smirnov DKS
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Fig. 2. Difference in quantiles for ϕ2(Wη) and T2N when N = 100 (dashed line) and
900 (solid line) for η = 0.1,0.24. Pointwise 95% confidence bands (dotted) indicate the
Monte Carlo error in each difference.

and a Cramér–von Mises-like DCM distance metric, defined by

DKS(X,Z)≡ sup
t∈R

|FX (t)−FZ(t)|,

DCM(X,Z)≡

[
∫

|FX(t)−FZ(t)|
2 dt

]1/2

,

relative to the cumulative distributions FX , FZ of arbitrary random vari-
ables X,Z. To interpret the relative values of these metrics in assessing the
distributional distance between TjN and ϕj(Wη), it is helpful to reference

Table 1

Proportion of GOF statistics TjN from a conditional Gaussian model falling above the
95th and 99th quantiles (denoted q95,η and q99,η) of the their limit ϕj(Wη) distribution,
j = 1,2,3,4, for sample sizes N = 100 and N = 900 and with dependence parameters

η = 0,0.1,0.24

% of TjN > q95,η % of TjN > q99,η

η N j = 1 2 3 4 j = 1 2 3 4

0 100 4.67 4.38 5.09 4.97 0.90 0.90 0.98 0.91
0 900 5.11 4.91 4.95 4.86 1.03 1.09 1.03 1.03
0.1 100 4.60 4.60 4.88 4.92 0.94 0.95 0.95 1.08
0.1 900 5.11 5.13 5.05 5.08 1.08 1.13 1.07 1.15
0.24 100 4.52 4.57 5.02 5.06 0.80 0.76 0.86 0.92
0.24 900 4.92 4.97 4.86 5.03 0.97 0.96 0.93 0.95
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Table 2

Computed values (×1000) from distance metrics comparing finite-sample distributions of
statistics T1N , . . . , T4N to their limiting distributions ϕ1(Wη), . . . ,ϕ4(Wη)

DKS(ϕj(Wη), TjN) DCM(ϕj(Wη), TjN)

η N j = 1 2 3 4 j = 1 2 3 4

0 100 19.6 23.0 8.9 9.1 12.9 14.8 3.7 3.2
0 900 6.7 9.7 3.4 4.8 3.8 4.7 1.0 1.4
0.1 100 24.0 27.7 5.3 5.4 16.5 18.2 2.2 1.7
0.1 900 9.9 10.0 6.5 5.7 5.3 4.7 2.5 1.8
0.24 100 21.6 25.2 7.2 7.0 14.7 15.6 2.7 2.2
0.24 900 9.1 8.2 4.2 3.8 4.8 4.8 1.4 1.4

DKS(ϕj(Wη1
), ϕj(Wη2

)) DCM(ϕj(Wη1
), ϕj(Wη2

))

η1 η2 j = 1 2 3 4 j = 1 2 3 4

0 0.1 14.4 11.9 14.9 13.4 7.0 5.7 7.7 6.1
0.1 0.24 70.0 59.6 90.3 72.9 49.9 35.0 50.4 33.1
0 0.24 81.8 69.1 102.3 84.3 56.6 40.5 58.0 38.9

DKS,DCM values for comparing the distributions of ϕj(Wη1) and ϕj(Wη2)
over parameters η1 6= η2, which Table 2 also provides. Generally, the conver-
gence of the finite-sample distributions TjN to their limits ϕj(Wη) appears
to occur fairly uniformly over different dependence parameters η and, rel-
ative to the distributional differences among different limits [e.g., ϕj(Wη1)
and ϕj(Wη2)], the agreement in distributions of TjN and ϕj(Wη) is quite
close even for samples of size 100.

5.3. Power of GOF statistics under simple null hypothesis. Under the
simple null H0(S) : (α, τ, η)

′ = (0,1,0)′, we next consider the power of GOF
tests based on statistics T1N , . . . , T4N computed from conditional Gaussian
data generated with η = 0.1 and η = 0.24 and α = 0, τ = 1. This gives an
idea of the power in testing a hypothesis of no spatial dependence, when
the data exhibit forms of positive dependence, both fairly weak (η = 0.1)
and strong (η = 0.24). For a given GOF statistic TjN from a sample of
size N = 100 or N = 900, a size γ test is conducted by rejecting H0 if TjN

exceeds the 1− γ quantile of the limit distribution ϕ(Wη=0) under the null
hypothesis. Figure 3 plots power versus size γ for these tests when η = 0.1
and η = 0.24, based on 50,000 simulated data sets. Power is low under the
alternative η = 0.1, as might be expected, but considerably higher when
η = 0.24. Tests with functionals T2N , T4N (based conclique-wise averages of
GOF statistics) tend to perform similarly and exhibit slightly more power
than tests with T1N , T3N (based conclique-wise maxima of GOF statistics).
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Fig. 3. Plots of power versus size γ for GOF tests of H0 :η = 0 in conditional Gaussian
models (fixed α= 0, τ = 1) based on functionals T1N , . . . , T4N , determined by data generated
under η = 0.1,0.24. In these power versus size curves, each functional is numbered 1–4
under sample sizes N = 100 (grey) and N = 900 (black).

6. An application to agricultural field trials.

6.1. The problem. Besag and Higdon [5] present an analysis of six agri-
cultural field trials of corn varieties conducted in North Carolina using a hi-
erarchical model that included an intrinsic Gaussian MRF as an improper
prior for spatial structure. An intrinsic Gaussian MRF results from fixing
dependence parameters at the boundary of the parameter space. In discus-
sion of this paper, Smith [44] raised the question of what diagnostics were
available to examine potential evidence for spatial structure based on the
available data, and presented variograms of three of the trials. Kaiser and
Caragea [28] used data from these same three trials to illustrate a model-
based diagnostic they called the S-value. Questions about the spatial struc-
ture suggested by the data included the possibilities of nonstationarity and
directional dependencies. Here, we use data from all six trials to examine the
question of whether a simple model with constant mean and unidirectional
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dependence can be rejected as a plausible representation of spatial structure.
Our question is simply one of whether a basic Gaussian MRF with constant
mean and a single dependence parameter could be rejected as a possible
data generating mechanism for the data, not whether it might be be most
preferred model available.

Each field trial consisted of observations of yield from 64 corn varieties
with each variety replicated 3 times in each trial. The spatial layout of each
trial was essentially that of a 11×18 regular lattice, although the last column
of that lattice contained only 5 locations. After subtracting variety by trial
means in the same manner as [28, 44], we deleted the last column to obtain
a rectangular 11× 17 lattice containing 187 observations for each trial. We
assumed a four-nearest-neighborhood structure but without use of a border
strip, so that locations had a variable number of neighboring observations,
4 for each of the 135 interior locations, 3 for each of the 48 edge locations,
and 2 for each of the four corner locations.

6.2. The model. Although each trial should nominally have marginal
mean zero, to examine a full composite setting we fit a model with con-
ditional Gaussian distributions having expected values {µ(si) : i= 1, . . . , n}
and constant conditional variance τ2 where, with Ni denoting the neighbor-
hood of location si; i= 1, . . . , n,

µ(si) = α+ η
∑

sj∈Ni

{y(sj)− α}.(6.1)

The joint distribution of this model is then Gaussian with marginal means α
an n-vector with each element equal to α and covariance matrix (I−C)−1M
where I is the n× n identity matrix, M is an n× n diagonal matrix with
all nonzero entries equal to τ2 and C = ηH with H an n× n matrix having
element (i, j) equal to 1 if locations si and sj are neighbors and 0 other-
wise. With this structure, the parameter space of η can be determined to
be (−0.2563,0.2563) based on eigenvalues of H (cf. [10]); this differs slightly
from the parameter space for a lattice with four-nearest-neighborhood struc-
ture wrapped on a torus due to the size of the lattice and the use of varying
numbers of neighbors for edge locations.

6.3. The GOF procedure. The model of expression (6.1) was fit to (cen-
tered) data from each of the six trials using maximum likelihood estimation.
Generalized spatial residuals were computed for each of the two concliques,
one having 93 and the other 94 locations. Using the fitted models, a para-
metric bootstrap procedure was used to arrive at p-values for each of the four
test statistics introduced as T̂jN ; j = 1, . . . ,4, in Section 3.3. For each fitted
model (i.e., trial) 5000 bootstrap data sets were simulated using a Gibbs al-
gorithm with a burn-in of 500 and spacing of 10, which appeared adequate
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Table 3

Estimates for conditional Gaussian models fit to data from six agricultural field trials;
the point estimates for α for all trials differ from zero by at most 10−15

Point Interval

Trial τ2 η α τ2 η

1 95.56 0.2526 (−10.21,10.40) (79.43,119.54) (0.2107,0.2544)
2 156.90 0.1855 (−3.19,3.42) (125.96,190.08) (0.0922,0.2257)
3 128.94 0.2476 (−7.66,7.76) (105.63,159.54) (0.1976,0.2533)
4 129.92 0.2095 (−3.57,3.74) (104.54,159.76) (0.1264,0.2380)
5 69.33 0.2522 (−8.29,8.23) (57.20,86.44) (0.2091,0.2543)
6 210.75 0.2542 (−20.57,19.68) (175.39,268.45) (0.2136,0.2549)

to result in convergence of the chain based on scale reduction factors [18]
and eliminate dependence between successive data sets based on autocor-
relations. Model (6.1) was fit, generalized spatial residuals produced and
the four test statistics computed for each bootstrap data set, from which p-
values were taken as the proportion of simulated test statistic values greater
than those from the actual data sets. Bootstrap data sets were also used to
produce percentile bootstrap intervals for parameters (cf. [14]). Percentile
intervals were chosen because basic bootstrap intervals extended beyond the
parameter space for η for each of the six trials.

6.4. Results. Results of estimation are presented in Table 3. Intervals
were computed at the 95% level and values for η are reported to four decimal
places because estimates tended to be close to the upper boundary of the
parameter space (0.2563). Overall, estimation was fairly similar for these
six trials, which were conducted in different counties of North Carolina,
including an indication of high variability in estimating these parameters,
particularly α and τ2. Estimates of η indicate moderate to strong spatial
structure in each of the six trials, and estimates of τ2 indicate substantial
local variability despite this structure.

GOF p-values resulting from the parametric bootstrap procedure of Sec-
tion 6.3 are presented in Table 4 for each of the four test statistics of Sec-
tion 3.3. Overall these values provide no indication that we are able to
dismiss model (6.1) as a plausible representation of the spatial structure
present in these data.

7. Conclusions. In this article we have introduced a practical method to
assess the aptness of Markov random field models for representing spatial
processes. This method is based on special sets of locations we have called
concliques that partition the total set of observed locations such that gen-
eralized spatial residuals within each conclique approximate realizations of
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Table 4

Parametric bootstrap p-values for the six agricultural field trials

Trial T1 T2 T3 T4

1 0.8348 0.7976 0.7086 0.7530
2 0.3844 0.4182 0.2132 0.3262
3 0.0852 0.1168 0.1506 0.1478
4 0.1656 0.1084 0.1426 0.0972
5 0.2162 0.1828 0.1754 0.2024
6 0.3502 0.2382 0.4642 0.2984

independent random variables on the unit interval. These generalized spatial
residuals can be combined across nonindependent concliques in natural ways
to produce GOF statistics that correspond to Gaussian empirical processes
that have identifiable limit distributions. While those limit distributions
can involve complex covariance structures, we have demonstrated that finite
sample versions of the GOF statistics appear to converge rather quickly to
their limits, at least in the case of a simple null hypothesis. This implies that,
in an application, approximation of their limit distributions under a suitable
null hypothesis will provide a useful reference distribution against which to
compare the value of an observed GOF statistic. The composite hypothe-
sis setting introduces a considerably more complicated situation than does
the simple hypothesis setting, because limit laws involve covariances that
cannot be easily determined either explicitly or numerically. In an appli-
cation, resampling methods would seem to hold the greatest promise for
approximating distributions of GOF statistics based on generalized spatial
residuals. While developing spatial subsampling or block bootstraps (cf. [39],
Chapter 12) for this purpose requires further investigation, the use of such
resampling was illustrated in this article in the application to agricultural
field trials.

We wish to comment on a number of issues that involve the distinction
between application of the GOF methodology developed and the production
of theoretical results for that methodology. First is the issue of stationarity.
There is nothing in the definition or construction of generalized spatial resid-
uals, or GOF statistics constructed from them, that requires a stationary
model. All that is needed is identification of a full conditional distribution
for each location (1.1) that may then be used in (2.1), and assurance that
a joint distribution having these conditionals exists. Assumptions of sta-
tionarity made in this article facilitate the production of theoretical results
needed to justify use of the methodology. Another issue is application to
discrete cases. While the data examples given have considered continuous
conditional models, we have applied random generalized spatial residuals to
models formed from Winsorized Poisson conditional distributions [29] with
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promising empirical results. Similar to questions of stationarity and dis-
crete cases, there is nothing in the constructive methodology that requires
a regular lattice or that each location have the same number of neighbors.
Use of a regular lattice in this article again facilitates the demonstration of
theoretical properties, but this is not needed to implement the procedures
suggested. The application of Section 6 involved a regular lattice, but no
border strip or other boundary conditions were imposed to render neighbor-
hoods of equal size. It should certainly be anticipated that there may be edge
effects on GOF statistics as developed here, just as there are edge effects on
properties of estimators. How severe these effects might be in various set-
tings, and whether the use of modified boundary conditions (e.g., [6]) could
mitigate such effects is an issue in need of additional investigation. Essen-
tially the same thoughts can be offered relative to potential sparseness that
might occur in an application. Locations lacking neighbors entirely could be
considered members of any conclique one chooses, and construction of GOF
statistics would proceed unhindered. What the effects of varying degrees of
sparseness are remains an open question. Of course, if no locations have
any neighbors, then the methodology presented here reduces to statistics
constructed on the basis of the ordinary probability integral transform for
independent random variables.

As with all GOF tests, the procedure based on generalized spatial residu-
als developed in this article serves as a vehicle for assessing a selected model
for overall adequacy, not as a vehicle for selection of the most attractive
model in the first place. This is important in consideration of fitted models
under the composite setting, in which we can think of estimation as hav-
ing “optimized” a given model structure for description of a set of observed
data. There may be two or more such structures that could be, with the
best choice of parameter values possible, viewed as plausible data generat-
ing mechanisms for a set of observations. This does not necessarily mean,
however, that those different structures are equally pleasing as models for
the problem under consideration.

Finally, we mention a connection with the assessment of k-step ahead
forecasts in a time series setting. Let {Xt; t ∈ Z} denote a series of random
variables observed at discrete, equally spaced, points in time. The proba-
bility integral transform with distributions conditioned on the present and
past has been used to construct k-step ahead residuals Ut+k = Ft+k|t(Xt+k),
where the conditioning in F is on {Xt,Xt−1, . . .} (e.g., [15, 16, 19]). While
our use of the probability integral transform is similar to what is done in
this time series setting, the conditioning requirements are quite distinct. In
the spatial setting, two spatial residuals are independent only if neither is
in the conditioning set of the other (i.e., are both in the same conclique). In
time series k-step ahead forecasts, two values, Ui and Uj , will be indepen-
dent only if either Xi is in the conditioning set of Xj , or vice versa. The
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difference stems from the use of full conditionals in spatial Markov random
field models, rather than the sequential conditionals in the time series con-
text which need not invoke a Markov property at all. The approach taken
to the development of theoretical results in this article could potentially be
used in the time series setting, but the modifications require further inves-
tigation.

8. Proof of generalized spatial residual properties. As Theorem 2.1 pro-
vides the main distributional result for generalized spatial residuals (2.1)
from concliques, which are fundamental to the GOF test statistics of Sec-
tions 3 and 4, we establish Theorem 2.1 here. The proofs of other results
from the manuscript are provided in supplementary material [32].

Let Q denote a finite subset of conclique C ⊂ Z
d with |Q| = l ≥ 2, and

let IQ =
⋃

s∈Q{i : i ∈ N (s)} = {s1, . . . , sL}, L≥ 1, be the finite index set of
all neighbors of sites in Q; additionally, enumerate the l elements of Q as
Q = {s1+L, . . . , sl+L}, say. With respect to the enumeration of IQ and Q,
let F1(·) denote the marginal c.d.f. of Y (s1), and let Fj(·), 2 ≤ j ≤ L + l,
denote the conditional c.d.f. of Y (sj) given Y (s1), . . . , Y (sj−1); define the
function F−

j (·) by the left limits of Fj(·). By the randomized PIT [7], {(1−

A(sj)) ·Fj [Y (sj)]+A(sj) ·F
−
j [Y (sj)] : j = 1, . . . ,L+ l} are i.i.d. Uniform (0,1)

random variables.
For any i, k ∈ {L+ 1, . . . ,L+ l}, variables Y (si) and Y (sk) belong to the

conclique Q so that all neighbors of Y (si) and Y (sk) are among {Y (sj)}
L
j=1.

By the Markov property (1.2), Fj [Y (sj)] = F [Y (sj |{Y (s) : s ∈N (sj)})] holds
and we may equivalently write (2.1) as U(sj) = (1 − A(sj)) · Fj [Y (sj)] +
A(sj) · F

−
j [Y (sj)] for any j ∈ {L+ 1, . . . ,L+ l}, though these relationships

may not necessarily hold for j = 1, . . . ,L. Hence, {U(s) : s ∈ Q} are i.i.d.
Uniform (0,1) variables for any arbitrary finite subset Q of C.
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SUPPLEMENTARY MATERIAL

Proofs of main results for spatial GOF test statistics

(DOI: 10.1214/11-AOS948SUPP; .pdf). A supplement [32] provides proofs of
all asymptotic distributional results from Section 4, regarding the conclique-
based spatial GOF test statistics in simple and composite null hypothesis
settings (Proposition 4.1, Theorem 4.2, Corollary 4.3, Theorem 4.4, Corol-
lary 4.5). The proof in the composite hypothesis case is particularly non-
standard; see Section 4.4.

http://dx.doi.org/10.1214/11-AOS948SUPP
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