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jet quenching parameter in an N = 4 super Yang-Mills thermal bath. We show that this

proposed definition gives zero jet quenching parameter, independent of how the lightlike

limit is taken. In particular, the minimum-action solution giving the dominant contribution

to the Wilson loop has a leading behavior that is linear, rather than quadratic, in the quark

separation.
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1. Introduction, summary and conclusions

Results coming from RHIC have raised the issue of how to calculate transport properties

of ultra-relativistic partons in a strongly coupled gauge theory plasma. For example, one

would like to calculate the friction coefficient and jet quenching parameter, which are

measures of the rate at which partons lose energy to the surrounding plasma [1 – 9]. With

conventional quantum field theoretic tools, one can calculate these parameters only when

the partons are interacting perturbatively with the surrounding plasma. The AdS/CFT

correspondence [10] may be a suitable framework in which to study strongly coupled QCD-

like plasmas. Attempts to use the AdS/CFT correspondence to calculate these quantities

have been made in [11 – 14] and were generalized in various ways in [15 – 43].

The most-studied example of the AdS/CFT correspondence is that of the large N ,

large ’t Hooft coupling limit of four-dimensional N = 4 SU(N) super Yang-Mills (SYM)

theory and type IIB supergravity on AdS5 × S5. At finite temperature, this SYM theory

is equivalent to type IIB supergravity on the background of the near-horizon region of

a large number N of non-extremal D3-branes. From the perspective of five-dimensional
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gauged supergravity, this is the background of a neutral AdS black hole whose Hawking

temperature equals the temperature of the gauge theory [44]. Since at finite temperature

the superconformal invariance of this theory is broken, and since fundamental matter can

be added by introducing D7-branes [45], it is thought that this model may shed light on

certain aspects of strongly coupled QCD plasmas.

According to the AdS/CFT dictionary, the endpoints of open strings on this back-

ground can correspond to quarks and antiquarks in the SYM thermal bath [46 – 49]. For

example, a stationary single quark can be described by a string that stretches from the

probe D7-brane to the black hole horizon. A semi-infinite string which drags behind a

steadily-moving endpoint and asymptotically approaches the horizon has been proposed

as the configuration dual to a steadily-moving quark in the N = 4 plasma, and was used

to calculate the drag force on the quark [12, 13]. A quark-antiquark pair or “meson”, on

the other hand, corresponds to a string with both endpoints ending on the D7-brane. The

static limit of this string solution has been used to calculate the inter-quark potential in

SYM plasmas [48, 49]. Smooth, stationary solutions for steadily-moving quark-antiquark

pairs exist [27, 29, 31, 32, 34, 35, 42] but are not unique and do not “drag” behind the

string endpoints as in the single quark configuration. This lack of drag has been interpreted

to mean that color-singlet states such as mesons are invisible to the SYM plasma and ex-

perience no drag (to leading order in large N) even though the string shape is dependent

on the velocity of the meson with respect to the plasma. Nevertheless, a particular no-drag

string configuration with spacelike worldsheet [27, 42] has been used to evaluate a lightlike

Wilson loop in the field theory [11, 15, 17, 19, 21 – 23, 25, 29, 33, 39]. It has been proposed

that this Wilson loop can be used for a non-perturbative definition of the jet quenching

parameter q̂ [11].

The purpose of this paper is to do a detailed analysis of the evaluation of this Wilson

loop using no-drag spacelike string configurations in the simplest case of finite-temperature

N = 4 SU(N) SYM theory.

Summary. We use the Nambu-Goto action to describe the classical dynamics of a smooth

stationary string in the background of a five-dimensional AdS black hole. We put the end-

points of the string on a probe D7-brane with boundary conditions which describe a quark-

antiquark pair with constant separation moving with constant velocity either perpendicular

or parallel to their separation.

In section 2, we present the string embeddings describing smooth and stationary quark-

antiquark configurations, and we derive their equations of motion. In section 3, we discuss

spacelike solutions of these equations. We find that there can be an infinite number of

spacelike solutions for given boundary conditions, although there is always a minimum-

length solution.

In section 4, we apply these solutions to the calculation of the lightlike Wilson loop

observable proposed by [11] to calculate the jet quenching parameter q̂, by taking the

lightlike limit of spacelike string worldsheets [27, 42]. We discuss the ambiguities in the

evaluation of this Wilson loop engendered by how the lightlike limit is taken, and by

how self-energy subtractions are performed. Technical aspects of the calculations needed
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in section 4 are collected in two appendices. We also do the calculation for Euclidean-

signature strings for the purpose of comparison.

Conclusions. We find that the lightlike limit of the spacelike string configuration used

in [11, 42] to calculate the jet quenching parameter q̂ is not the solution with minimum

action for given boundary conditions, and therefore gives an exponentially suppressed con-

tribution to the path integral. Regardless of how the lightlike limit is taken, the minimum-

action solution giving the dominant contribution to the Wilson loop has a leading behavior

that is linear in its width, L. Quadratic behavior in L is associated with radiative energy

loss by gluons in perturbative QCD, and the coefficient of the L2 term is taken as the def-

inition of the jet-quenching parameter q̂ [11]. In the strongly coupled N = 4 SYM theory

in which we are computing, we find q̂ = 0.

We now discuss a few technical issues related to the validity of the dominant spacelike

string solution which gives rise to the linear behavior in L.

Depending on whether the velocity parameter approaches unity from above or below,

the minimum-action string lies below (“down string”) or above (“up string”) the probe

D7-brane, respectively. The down string worldsheet is spacelike regardless of the region of

the bulk space in which it lies. On the other hand, in order for the up string worldsheet

to be spacelike, it must lie within a region bounded by a certain maximum radius which is

related to the position of the black hole horizon. The lightlike limit of the up string involves

taking the maximal radius and the radius of the string endpoints to infinity simultaneously,

such that the string always lies within the maximal radius. Therefore, even though the

string is getting far from the black hole, its dynamics are still sensitive to the black hole

through this maximal radius.

In the lightlike limit, the up and down strings with minimal action both approach

a straight string connecting the two endpoints. This is the “trivial” solution discarded

in [11], though we do not find a compelling physical or mathematical reason for doing

so. If the D7-brane radius were regarded as a UV cut-off, then one might presume that

the dominant up string solution should be discarded, since it probes the region above the

cut-off. However, this is unconvincing for two reasons. First, if one approaches the lightlike

limit from v > 1, then the dominant solution is a down string, and so evades this objection.

Second, and more fundamentally, in a model which treats the D7-brane radius as a cut-off

one does not know how to compute accurately in the AdS/CFT correspondence. For this

reason we deal only with the N = 4 SYM theory and a probe brane D7-brane, for which

the AdS/CFT correspondence is precise.

A spacelike string lying straight along a constant radius is discussed briefly in [42].

This string also approaches the “trivial” lightlike solution in [11] as the radius is taken

to infinity. As pointed out in [42], this straight string at finite radius is not a solution of

the (full, second order) equations of motion, and should be rejected. We emphasize that

our dominant string solutions are not this straight string, even though they approach the

straight string as the D7-brane radius goes to infinity, and are genuine solutions to the full

equations of motion.

To conclude, the results in this paper show these solutions to be robust, in the sense
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that they give the same contribution to the path integral independently of how the lightlike

limit is taken. Therefore, for the non-perturbative definition of q̂ given in [11], direct

computation of q̂ 6= 0 within the AdS/CFT correspondence for N = 4 SU(N) SYM would

require either a compelling argument for discarding the leading contribution to the path

integral, or a different class of string solutions giving the dominant contribution. On

the other hand, this computation may simply imply that at large N and strong ’t Hooft

coupling, the mechanism for relativistic parton energy loss in the SYM thermal bath gives

a linear rather than quadratic dependence on the Wilson loop width L.

2. String embeddings and equations of motion

We consider a smooth and stationary string in the background of a five-dimensional AdS

black hole with the metric

ds2
5 = hµνdxµdxν = −r4 − r4

0

r2R2
dx2

0 +
r2

R2
(dx2

1 + dx2
2 + dx2

3) +
r2R2

r4 − r4
0

dr2. (2.1)

R is the curvature radius of the AdS space, and the black hole horizon is located at r = r0.

We put the endpoints of the string at the minimal radius r7 that is reached by a probe

D7-brane. The classical dynamics of the string in this background is described by the

Nambu-Goto action

S = − 1

2πα′

∫

dσdτ
√
−G, (2.2)

with

G = det[hµν(∂Xµ/∂ξα)(∂Xν/∂ξβ)], (2.3)

where ξα = {τ, σ} and Xµ = {x0, x1, x2, x3, r}.
The steady state of a quark-antiquark pair with constant separation and moving with

constant velocity either perpendicular or parallel to the separation of the quarks can be de-

scribed (up to worldsheet reparametrizations), respectively, by the worldsheet embeddings

[v⊥] : x0 = τ, x1 = vτ, x2 = σ, x3 = 0, r = r(σ),

[v||] : x0 = τ, x1 = vτ + σ, x2 = 0, x3 = 0, r = r(σ). (2.4)

For both cases, we take boundary conditions

0 ≤ τ ≤ T, −L/2 ≤ σ ≤ L/2, r(±L/2) = r7, (2.5)

where r(σ) is a smooth embedding.

The endpoints of strings on D-branes satisfy Neumann boundary conditions in the

directions along the D-brane, whereas the above boundary conditions are Dirichlet, con-

straining the string endpoints to lie along fixed worldlines a distance L apart on the D7-

brane. The correct way to impose these boundary conditions is to turn on a worldvolume

background U(1) field strength on the D7-brane [12] to keep the string endpoints a distance

L apart. Thus at finite r7, it is physically more sensible to describe string solutions for a

– 4 –
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fixed force on the endpoints instead of a fixed endpoint separation L.1 Our discussion of

spacelike string solutions in the next section will describe both the force-dependence and

the L-dependence of our solutions. In the application to evaluating a Wilson loop in section

4, though, we are interested in string solutions (in the r7 → ∞ limit) with endpoints lying

along the given loop, i.e., at fixed L.

According to the AdS/CFT correspondence, strings ending on the D7-brane are equiv-

alent to quarks in a thermal bath in four-dimensional finite-temperature N=4 SU(N)

super Yang-Mills (SYM) theory. The standard gauge/gravity dictionary is that N =

R4/(4πα′2gs) and λ = R4/α′2 where gs is the string coupling, λ := g2
YMN is the ’t Hooft

coupling of the SYM theory. In the semiclassical string limit, i.e., gs → 0 and N → ∞,

the supergravity approximation in the gauge/gravity correspondence holds when the cur-

vatures are much greater than the string length `s :=
√

α′. Furthermore, in this limit, one

identifies

β = πR2/r0, m0 = r7/(2πα′), (2.6)

where β is the (inverse) temperature of the SYM thermal bath, and m0 is the quark mass

at zero temperature.

It will be important to note that the velocity parameter v entering in the string world-

sheet embeddings (2.4) is not the proper velocity of the string endpoints. Indeed, from (2.1)

it is easy to compute that the string endpoints at r = r7 move with proper velocity

V =
r2
7

√

r4
7 − r4

0

v. (2.7)

We will see shortly that real string solutions must have the same signature everywhere on

the worldsheet. Thus a string wroldsheet will be timelike or spacelike depending on whether

V , rather than v, is greater or less than 1. Thus, translating V ≶ 1 into corresponding

inequalities for the velocity parameter v, we have

timelike

string worldsheet
⇔ both v < 1 (γ2 > 1) and z7 >

√
γ,

(2.8)

spacelike

string worldsheet
⇔

{

either v ≥ 1 (γ2 < 0) and any z7,

or v < 1 (γ2 > 1) and z7 <
√

γ.

Here we have defined the dimensionless ratio of the D7-brane radial position to the horizon

radius,

z7 :=
r7

r0
, and γ2 :=

1

1 − v2
. (2.9)

Furthermore, since the worldsheet has the same signature everywhere, this implies that

timelike strings can only exist for r >
√

γ r0, but spacelike strings may exist at all r, as

illustrated in figure 1. In this respect, r =
√

γ r0 plays a role analogous to that of the

ergosphere of a Kerr black hole, although in this case it is not actually an intrinsic feature

of the background geometry but instead a property of certain string configurations (2.4)

in the background geometry (2.1).

1We thank A. Karch for discussions on this point.
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Figure 1: Both timelike and spacelike worldsheets can exist above the radius r =
√

γr0 (blue line)

for v < 1 and v > 1, respectively. On the other hand, only spacelike worldsheets exist in the region

between the blue line and the event horizon, given by r0 < r <
√

γr0.

With the embeddings (2.4) and boundary conditions (2.5), the string action becomes2

[v⊥] : S =
−T

γ πα′

∫ L/2

0
dσ

√

r4 − γ2r4
0

R4
+

r4 − γ2r4
0

r4 − r4
0

r′2,

[v||] : S =
−T

γ πα′

∫ L/2

0
dσ

√

γ2
r4 − r4

0

R4
+

r4 − γ2r4
0

r4 − r4
0

r′2, (2.10)

where r′ := ∂r/∂σ. The resulting equations of motion are

[v⊥] : r′2 =
1

γ2 a2r4
0R

4
(r4 − r4

0)(r
4 − γ2[1 + a2]r4

0),

[v||] : r′2 =
γ2

a2r4
0R

4
(r4 − r4

0)
2 (r4 − [1 + a2]r4

0)

(r4 − γ2r4
0)

, (2.11)

where a2 is a real integration constant. Here we have taken the first integral of the second

order equations of motion which follows from the existence of a conserved momentum in

the direction along the separation of the string endpoints. Since a is associated with this

conserved momentum, |a| is proportional to the force applied (via a constant background

U(1) field strength on the D7 brane) to the string endpoints in this direction [12].

Although we have written a2 as a square, it can be either positive or negative. Us-

ing (2.11), the determinant of the induced worldsheet metric can be written as

[v⊥] : G = − 1

γ4 a2r4
0R

4
(r4 − γ2r4

0)
2,

[v||] : G = − 1

a2r4
0R

4
(r4 − r4

0)
2. (2.12)

2These expressions for the string action are good only when there is a single turning point around which

the string is symmetric. We will later see that for [v⊥] there exist solutions with multiple turns. For such

solutions the limits of integration in (2.10) are changed, and appropriate terms for each turn of the string

are summed.
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Thus, the sign of G is the same as that of −a2 (since the other factors are squares of real

quantities). In particular, the worldsheet is timelike (G < 0) for a2 > 0 and spacelike

(G > 0) for a2 < 0.

The reality of r′ implies that the right sides of (2.11) must be positive in all these

different cases, which implies certain allowed ranges of r. Therefore, there can only be real

string solutions when the ends of the string, at r = r7, are within this range. The edges

of this range are (typically) the possible turning points rt for the string, whose possible

values will be analyzed in the next section.

Given these turning points, (2.11) can be integrated to give

[v⊥] :
L

β
=

2|aγ|
π

∣

∣

∣

∣

∣

∫ z7

zt

dz
√

(z4 − 1)(z4 − γ2[1 + a2])

∣

∣

∣

∣

∣

,

[v||] :
L

β
=

2|a|
π|γ|

∣

∣

∣

∣

∣

∫ z7

zt

dz
√

z4 − γ2

(z4 − 1)
√

z4 − [1 + a2]

∣

∣

∣

∣

∣

, (2.13)

where we have used r0 = πR2/β. Also, in (2.13) we have rescaled z = r/r0 and likewise

zt := rt/r0 and z7 := r7/r0. (The absolute value takes care of cases where z7 < zt.) These

integral expressions determine the integration constant a2 in terms of L/β and v.

Also, we can evaluate the action for the solutions of (2.11):

[v⊥] : S = ±T
√

λ

γβ

∫ z7

zt

(z4 − γ2) dz
√

(z4 − 1)(z4 − γ2[1 + a2])
,

[v||] : S = ±T
√

λ

γβ

∫ z7

zt

dz

√

z4 − γ2

z4 − [1 + a2]
, (2.14)

where we have used R2/α′ =
√

λ. The plus or minus signs are to be chosen depending on

the relative sizes of z7, zt, and γ2, and will be discussed in specific cases below. For finite z7,

these integrals are convergent. They diverge when z7 → ∞ and need to be regularized by

subtracting the self-energy of the quark and the antiquark [46, 47], which will be discussed

in more detail in section 4.

Note that, in writing (2.13) and (2.14), we have assumed that the string goes from z7 to

the turning point zt and back only once. We will see that more complicated solutions with

multiple turning points are possible. For these cases, one must simply add an appropriate

term, as in (2.13) and (2.14), for each turn of the string.

3. Spacelike solutions

Positivity of the determinant of the induced worldsheet metric (2.12) implies that the

integration constant a2 < 0 for spacelike configurations. It is convenient to define a real

integration constant α by

α2 := −a2 > 0. (3.1)

As remarked above, α is proportional to the magnitude of a background U(1) field strength

on the D7 brane. We will now classify the allowed ranges of r for which r′2 is positive in

– 7 –
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HcL0 HcL0 HaL1 HbL1 HcL1 HaL2
z=1

z=2

Figure 2: Spacelike string solutions with fixed L/β = 0.25, γ = 20 (v ≈ 0.99875), z7 = 2, and

with low values of n (the number of turns at the horizon). The horizon is the solid line at z = 1,

and the minimum radius of the D7-brane is the dashed line at z = 2.

the equations of motion (2.11). These ranges, as well as the associated possible turning

points of the string depend on the relative values of α, v and 1.

3.1 Perpendicular velocity

The configurations of main interest to us are those for which the string endpoints move in

a direction perpendicular to their separation. As we will now see, the resulting solutions

have markedly different behavior depending on whether the velocity parameter is greater

or less than 1.

3.1.1
√

1 − z−4
7 < v < 1

If v < 1, we have seen that the string worldsheet can be spacelike as long as v >
√

1 − z−4
7 .

A case-by-case classification of the possible turning points of the v⊥ equation in (2.11)

gives the following table of possibilities:

parameters allowed ranges
0 < α < v < 1 1 ≤ z

4
≤ γ

2(1 − α
2)

0 < v < α < 1 γ
2(1 − α

2) ≤ z
4
≤ 1

0 < v < 1 < α 0 ≤ z
4
≤ 1

The left column of allowed ranges are those that lie inside the horizon and the right one

are the allowed ranges outside the horizon.

At the horizon, r′ = 0 and the string becomes tangent to z = 1 at finite transverse

distance giving a smooth turning point for the string. In the last entry in the above table,

“0 ≤ z4” indicates that there is no turning point before meeting the singularity at z = 0

and the string necessarily meets the singularity.

Since only string solutions that extend into the z > 1 region can reliably describe

quarks, this eliminates the left column of allowed ranges. Thus, the only viable configu-

rations are those in the right column with α < v, which all have turning points at 1 or

γ2(1 − α2). This restricts the D7-brane minimum radius to lie between these two turning

points which, in turn, gives rise to string configurations with multiple turns.

In order for the D7-brane to be within the allowed range 1 < z4
7 < γ2(1 − α2), the

parameter v must be at least v2 > 1 − z−4
7 . For a given z7, v, and α satisfying these

– 8 –
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0.25 0.5
Α

0.25

0.5
L�Β HΓ=4.2L

0.5 1
Α

0.5

1
L�Β HΓ=7L

0.5 1
Α

0.5

1
L�Β HΓ=20L

Figure 3: L/β as a function of α for spacelike string configurations with perpendicular velocity,

z7 = 2 and γ = 4.2, 7, and 10. Green curves correspond to the (a)–series, blue to (b)–series, and

red to (c)–series. Only the series up to n = 20 are shown; the rest would fill the empty wedge near

the L/β axis. Note that the scale of the γ = 4.2 plot is half that of the other two.

inequalities, we integrate (2.13) to obtain L/β. There are two choices for the range of

integration: [1, z7] and [z7, γ
2(1 − α2)]. The first one is appropriate for a string which

decends down to the horizon and then turns back up to the D7-brane; we will call this

a “down string”. The second range describes a string which ascends to larger radius and

then turns back down to the D7-brane; we will call this an “up string”. Given these two

behaviors, it is clear that we can equally well construct infinitely many other solutions

by simply alternating segments of up and down strings. In particular, there are three

possible series of string configurations, which we will call the (a)n, (b)n, and (c)n series.

An (a)n string starts with a down string then adds n−1 pairs of up and down strings, thus

ending with a down string; a (b)n string concatenates n pairs of up and down strings—

for example, starts with an up string and ends with a down string; and a (c)n string starts

with an up string and then adds n pairs of down and up strings, thus ending with an up

string. n counts the number of turns the string makes at the horizon, z = 1. In particular,

for the (a)n and (b)n series, n is an integer n ≥ 1, while for the (c)n series, n ≥ 0. Examples

of these string configurations appear in figure 2. If the separation of the ends of the up

and down strings are Lup and Ldown, respectively, then the possible total separations of

the strings fall into three classes of lengths

L(a),n = nLdown + (n − 1)Lup,

L(b),n = nLdown + nLup,

L(c),n = nLdown + (n + 1)Lup. (3.2)

Figure 3 illustrates the systematics of the L(a,b,c),n dependence on α. Here we have

chosen z7 = 2, so the minimum value of v for the solutions to exist has γ = 4. The

leftmost plot illustrates that, for small γ, L(c),0 = Lup ¿ Ldown for all α. Thus, for

each n ≥ 1, L(a),n ≈ L(b),n ≈ L(c),n, and are virtually indistinguishable in the figure. As

γ increases, Lup and Ldown begin to approach each other for most α, except for α near

αmax :=
√

1 − z4
7/γ2, where Lup decreases sharply back to zero.
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This behavior implies that, for every fixed L and v, there is a very large number

of solutions3 in each series but that the minimum value of n that occurs decreases as v

increases. In detail, it is not too hard to show that the pattern of appearance of solutions

as v increases for fixed L is as follows: if for a given v there is one solution (i.e., value of

α) for each (a,b,c)n-string with n > n0, then as v increases first two (c)n0
solutions will

appear, then the (c)n0
solution with the greater α will disappear just as a (b)n0

and an

(a)n0
solution appear. Also, α((a)n) < α((b)n) < α((c)n). For example, in figure 3, when

L/β = 0.25 and γ = 4.2, there are (a,b,c)n solutions for n ≥ 2. Increasing v to γ = 7 (for

the same L), there are now (a,b,c)n solutions for n ≥ 1. Increasing v further to γ = 20,

there are now in addition two (c)0 (i.e., up string) solutions. Figure 2 plots the string

solutions when z7 = 2, L/β = 0.25, and γ = 20, for low values of n.

Note that if one keeps the D7-brane U(1) field strength, α, constant instead of the

endpoint separation, L, then there will still be an infinite sequence of string solutions

qualitatively similar to that shown in figure 2. In this case the endpoint separation L

increases with the number of turns.

The action for spacelike configurations is imaginary because the Nambu-Goto La-

grangian is
√
−G = ±i

√
G. Ignoring the ±i factor (which we will return to in the next

section), the integral of
√

G just gives the area of the worldsheet. Dividing by the “time”

parameter T in (2.14) then gives the length of the string: ` = ±iS/T . Figure 4 plots the

lengths of the various series of string configurations for increasing values of the velocity

parameter. There are negative lengths because the length of a pair of straight strings

stretched between the D7-brane and the horizon has been subtracted, for comparison pur-

poses. It is clear from the figure that the (c)0 up strings are the shortest for any given L

less than a velocity-dependent critical value. Furthermore, for L small enough, they are

also shorter than the straight strings.

In particular, the shorter (larger α) of the two up strings has the smallest ` of all. As

v → 1, the critical value of L below which the up string is the solution with the minimum

action increases without bound. In this case, any of the other spacelike strings will decay

to this minimum-action configuration. Therefore, it is this configuration which must be

used for any calculations of physical quantities, such as the jet quenching parameter q̂.

3.1.2 v > 1

A case-by-case classification of the possible turning points of the v⊥ equation in (2.11)

when v > 1 gives the following table of possibilities:

parameters allowed ranges
0 < α < 1 < v 1 ≤ z

4
< ∞

0 < 1 < α < v 0 ≤ z
4
≤ γ

2(1 − α
2) 1 ≤ z

4
< ∞

0 < 1 < v < α 0 ≤ z
4
≤ 1 γ

2(1 − α
2) ≤ z

4
< ∞

The left column of allowed ranges are those that lie inside the horizon, while the right one

3Although n does not formally have an upper bound, as n increases the turns of the string become

sharper and denser. Therefore, for large enough n the one can no longer ignore the backreaction of the

string on the background.
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Figure 4: Spacelike string lengths ` in units of
√

λ/β as a function of endpoint separation L/β

and z7 = 2, for γ = 6, 15 and 100. The gray line along the L/β axis is the (subtracted) length of a

pair of straight strings stretched between the D7-brane and the horizon. Note that the scale of the

γ = 6 plot is half that of the others.

lists the allowed ranges which are outside the horizon. At the horizon, r′ = 0 and the

string becomes tangent to z = 1 at finite transverse distance. This can be either a smooth

turning point for the string or, if there is an allowed region on the other side of the horizon,

then the string can have an inflection point at the horizon and continue through it. From

the table, we see that this can only happen at the crossover between the last two lines —

in other words, when α = v > 1. In the above table we have written “0 ≤ z4” when there

is no turning point in an allowed region before the singularity at z = 0. In these cases,

a string extending towards smaller z will necessarily meet the singularity. As before, we

are only interested in string solutions that extend into the z > 1 region. This eliminates

the left column of allowed ranges, with the possible exception of the v = α > 1 crossover

case, for which the string might inflect at the horizon and then extend inside. However, if

it does extend inside, then it will hit the singularity. Therefore, we can also discard this

possibility as being outside the regime of validity of our approximation. Thus, the only

viable configurations are those given in the right column, which all have turning points at

either 1 or γ2(1 − α2), or else go off to infinity. Since we want to identify the quarks with

the ends of the strings on the D7-brane, we are only interested in string configurations that

begin and end at z7 > 1, and so discard configurations which go off to z → ∞ instead of

turning. Thus the v > 1 ranges compatible with these conditions all have only one turning

point, describing strings dipping down from the D7-brane and either turning at the horizon

or above it, depending on α versus v.

Indeed, it is straightforward to check that for any L there are two v > 1 solutions,

one with α > v and one with α < v. L/β as a function of α is plotted in figure 5.

(The rescalings by powers of v are just so the curves will nest nicely in the figure.) The

α < v solutions are long strings which turn at the horizon, while the α > v solutions are

short strings with turning point z4
t = (α2 − 1)/(v2 − 1). The norm of the action for these

configurations (which is proportional to the length of the strings) is likewise greater for the

α < v solutions than for the α > v ones.

If, instead, one keeps the D7-brane U(1) field strength α constant, then there is at
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Figure 5: Lv8/β as a function of α/v for spacelike string configurations with perpendicular velocity,

z7 = 2, and v = 1.005 (red), 1.05 (green), and 1.2 (blue).

most a single string solution with a given velocity v.

3.2 Parallel velocity

For completenes, though we will not be using these confurations in the rest of the paper,

we briefly outline the set of solutions for suspended spacelike string configurations with

velocity parallel to the endpoint separation. A case-by-case analysis of the equations of

motion (2.11) gives the following table of allowed ranges for string solutions:

parameters allowed ranges
0 < (α, v) < 1 1 − α

2
≤ z

4
< 1 1 < z

4
≤ γ

2

0 < v < 1 < α 0 ≤ z
4

< 1 1 < z
4
≤ γ

2

0 < α < 1 < v 1 − α
2
≤ z

4
< 1 1 < z

4
< ∞

0 < 1 < (α, v) 0 ≤ z
4

< 1 1 < z
4

< ∞

Although z = 1 is always included in the allowed ranges, in the table we have split each

range into two regions: one inside the horizon and one outside. The reason is that the

string equation of motion (2.11) near r = r0 is r′2 ∼ (r − r0)
2, whose solutions are of the

form r − r0 ∼ ±e±σ. This implies that these solutions asymptote to the horizon and never

turn. Thus, the parallel spacelike strings can never cross the horizon.

As always, we only look at solutions that extend into the z > 1 region, since that is

where we can reliably put D7-branes. This eliminates the left-hand column of configura-

tions. Recall that the signature of the worldsheet metric for a string with v < 1 changes

at z =
√

γ. A string that reaches this radius will have a cusp there. This is qualitatively

similar to the timelike parallel solutions with cusps described in [32], except that in the

spacelike case the strings extend away from the horizon (towards greater z). Thus, the

string solutions corresponding to the ranges in the right-hand column all either asymptote

to z = 1, go off to infinity or have a cusp at z =
√

γ. The first two cases do not give

strings with two endpoints on the D7-brane at z = z7. Therefore, the only potentially

interesting configurations for our purposes are those with 1 < z7 < z <
√

γ, which occur

for v < 1 and any α. However, since these configurations have cusps, their description in

terms of the Nambu-Goto action is no longer complete. That is, there must be additional

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
0
4
9

boundary conditions specified, which govern discontinuities in the first derivatives of the

string shape. As discussed in [32] for the analogous timelike strings, these cusps cannot be

avoided by extending the string to include a smooth but self-intersecting closed loop, since

real string solutions cannot change their worldsheet signature.

4. Application to jet quenching

We will now apply the results of the last two sections to the computation of the expecta-

tion value of a certain Wilson loop W [C] in the SYM theory. The interest of this Wilson

loop is that it has been proposed [11] as a non-perturbative definition of the jet quenching

parameter q̂. This medium-dependent quantity measures the rate per unit distance trav-

eled at which the average transverse momentum-squared is gained by a parton moving in

plasma [1].

In particular, [11] considered a rectangular loop C with parallel lightlike edges a distance

L apart which extend for a time duration T . Motivated by a weak-coupling argument, the

leading behavior of W [C] (after self-energy subtractions) for large T and L/β ¿ 1 is claimed

to be

〈W A(C)〉 = exp

[

− 1

4
q̂ TL2

]

, (4.1)

where 〈W A(C)〉 is the thermal expectation value of the Wilson loop in the adjoint rep-

resentation. We will simply view this as a definition of q̂.4 Note that exponentiating

the Nambu-Goto action gives rise to the thermal expectation value of the Wilson loop

in the fundamental representation 〈W F (C)〉. Therefore, we will make use of the relation

〈W A(C)〉 ≈ 〈W F (C)〉2, which is valid at large N .

Self-energy contributions are expected to contribute on the order of TL0 and, since

this is independent of L, their subtraction does not affect the L-dependence of the results.

The subtraction is chosen to remove infinite constant contributions, but is ambiguous in

its finite terms.5 However, there may be other leading contributions of order TL−1 or

TL. Therefore, one requires a subtraction prescription. We will assume the following one:

extract q̂/4 as the coefficient of L2 in a Laurent expansion of the action around L = 0.

Thus, concretely,

W [C] ∼ exp

{

−T

(

· · · + α−1

L
+ α0 + α1L +

q̂

4
L2 + · · ·

)}

. (4.2)

Implicit in this is a choice of finite parts of leading terms to be subtracted, which could

affect the value of q̂; we have no justification for this prescription beyond its simplicity. We

will see that this issue of L-dependent leading terms indeed arises in the computation of q̂

using the AdS/CFT correspondence.

4This differs by a constant factor from the definition written in [11] since here it is expressed in the

reference frame of the plasma rather than that of the parton.
5Note that [50] shows that the correct treatment of the Wilson loop boundary conditions should au-

tomatically and uniquely subtract divergent contributions; it would be interesting to evaluate our WIlson

loop using this prescription instead of the more ad hoc one used here and throughout the literature.
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There is a second subtlety in the definition of q̂ given in (4.2), which involves how

the lightlike limit of C is approached. In the AdS/CFT correspondence, we evaluate the

expectation value of the Wilson loop as the exponential exp{iS} of the Nambu-Goto action

for a string with boundary conditions corresponding to the Wilson loop C. If we treat C
as the lightlike limit of a sequence of timelike loops, then the string worldsheet will be

timelike and the exponential will be oscillatory, instead of exponentially suppressed in T

as in (4.2). The exponential suppression requires either an imaginary action (of the correct

sign) or a Wick rotation to Euclidean signature.

The authors of [11] advocate the use of the lightlike limit of spacelike strings to evaluate

the Wilson loop [27, 42]. Below, we will evaluate the Wilson loop using both the spacelike

prescription and the Euclidean one. Our interest in the Euclidean Wilson loop is mainly for

comparison purposes and to help elucidate some subtleties in the calculation; we emphasize

that it is not the one proposed by the authors of [11] to evaluate q̂. (Though the Euclidean

prescription is the usual one for evaluating static thermodynamic quantities, we are here

evaluating a non-static property of the SYM plasma and so the usual prescription may not

apply.)

In both cases we will find that, regardless of the manner in which the above ambiguities

are resolved, the computed value of q̂ is zero.

4.1 Euclidean Wilson loop

Euclidean string solutions [32] are reviewed in appendix A. Here we just note their salient

properties. In Euclidean signature, nothing special happens in the limit V → 1 (v →
√

1 − z−4
7 ). When V = 1 there are always only two Euclidean string solutions: the “long

string”, with turning point at the horizon z = 1, and the “short string”, with turning point

above the horizon. The one which gives the dominant contribution to the path integral is

the one with smallest Euclidean action. For endpoint separation L less than a critical value,

the dominant solution is the short string. This is the string configuration that remains the

furthest from the black hole horizon [32].

We are interested in evaluating the Euclidean string action for the short string in

the small L limit (the so-called “dipole approximation”). However, there is a subtlety

associated with taking this limit since it does not commute with taking the z7 → ∞ limit,

which corresponds to infinite quark mass. Recall that the quark mass scales as r7 in string

units; introduce a rescaled length parameter

ε :=
1

z7
=

r0

r7
(4.3)

associated with the Compton wavelength of the quark. Then the behavior of the Wilson

loop depends on how we parametrically take the L → 0 and ε → 0 limits. For instance, if

one keeps the mass (ε−1) fixed and takes L → 0 first, then the Wilson loop will reflect the

overlap of the quark wave functions. On the other hand, if one takes ε → 0 before L, then

the Wilson loop should reflect the response of the plasma to classical sources. The second

limit is presumably the more physically relevant one for extracting the q̂ parameter. We

perform the calculation in both limits in appendix A to verify this intuition.
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In the L → 0 limit at fixed (small) ε, the action of the short string as a function of L

and ε is found in appendix A to be

S =
πT

√
λ√

2β2

{

L

ε2

[

1 +
1

4
ε4 + O(ε8)

]

− π2L3

β2ε4

[

1

3
− 1

6
ε4 + O(ε8)

]

+ O
(

L5

β4ε6

)}

. (4.4)

(In fact, this result is valid as long as L → 0 as L ∝ ε or faster.) The main thing to note

about this expression is that it is divergent as ε → 0. This is not a self-energy divergence

that we failed to subtract, since any self-energy subtraction (e.g., subtracting the action of

two straight strings extending radially from z = z7 to z = 1) will be independent of the

quark separation and so cannot cancel the divergences in (4.4). (In fact, it inevitably adds

an ε−1L0 divergent piece.) This divergence as the quark mass is taken infinite is a signal

of the unphysical nature of this order of limits.

The other order of limits, in which ε → 0 at fixed (small) L, is expected to reflect more

physical behavior. Indeed, appendix A gives

βŜ

T
√

λ
= −0.32

β

L
+ 1.08 − 0.76

L3

β3
+ O(L7). (4.5)

Here Ŝ is the action with self-energy subtractions. This result (which is in the large mass,

or ε → 0, limit) is finite for finite quark separation L. The L−1 term recovers the expected

Coulombic interaction. Since there is no L2 term in (4.5), the subtraction prescription (4.2)

implies that the Euclidean analog of the jet quenching parameter vanishes.

For the sake of comparison, we also compute the long string action in this limit with

the same regularization in appendix A, giving

Ŝlong

T
√

λ
= +2.39

L2

β3
+ O(L4). (4.6)

This does have the leading L2 dependence, giving rise to an unambiguous nonzero q̂. But

it is exponentially suppressed compared to the short string contribution (4.5), and so gives

no contribution to the effective q̂ in the T → ∞ limit.

4.2 Spacelike Wilson loop

We now turn to the spacelike prescription for calculating the Wilson loop. We will show that

a similar qualitative behavior to that of the Euclidean path integral shown in (4.5) and (4.6)

also holds for spacelike strings. In particular, the leading contribution is dominated by

a confining-like (L) behavior with no jet quenching-like (L2) subleading term, and only

an exponentially suppressed longer-string contribution has a leading jet quenching-like

behavior. The analogous results are recorded in (4.7) and (4.8), below.

Since −G < 0 for spacelike worldsheets, the Nambu-Goto action is imaginary and

so exp{iS} = exp{±A}, where A is the positive real area of the string worldsheet. The

sign ambiguity comes from the square root in the Nambu-Goto action. For our stationary

string solutions, the worldsheet area is the time of propagation T times the length of the

string. Thus, with the choice of the plus sign in the exponent, the longest string length
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Figure 6: The shaded region is the set of (v, z7) for which the string worldsheet is spacelike

and outside the horizon. The curved boundary corresponds to lightlike worldsheets. The various

approaches to the lightlike z7 = ∞ limit discussed in the text are shown.

exponentially dominates the path integral, while for the minus sign, the shortest string

length dominates. Only the minus sign is physically sensible, though, since we have seen in

section 3 that the length of the spacelike string solutions is unbounded from above (since

there are solutions with arbitrarily many turns). Thus we must pick the minus sign, and,

as in the Euclidean case, the solution with shortest string length exponentially dominates

the path integral.

As we illustrated in our discussion of the Euclidean Wilson loop, the physically sensible

limit is to take the quarks infinitely massive (z7 → ∞) at fixed quark separation L. In

the spacelike case, however, there is a new subtlety: a priori it is not obvious that the

lightlike limit V → 1 will commute with the z7 → ∞ limit. Since V = v(1 − z−4
7 )−1/2, the

lightlike limit is v → 1 when z7 → ∞. We will examine four different approaches to this

limit, shown in figure 6.6

Limit (a): limz7→∞ limV→1+. This is the limit in which we take the lightlike limit at

fixed z7, then take the mass to infinity. Recall from (2.8) that a spacelike worldsheet

requires either v ≥ 1 (γ2 < 0) for any z7, or v < 1 (γ2 > 1) and z7 <
√

γ. Since, at

fixed z7, V = 1 corresponds to γ = z2
7 , we necessarily have v < 1. Thus, only the v < 1

spacelike solutions discussed in section 3.1.1 will contribute. Recall that for these solutions

1 ≤ z4 ≤ γ2(1−α2), where the integration constant is in the range 0 < α < v. In particular,

we must keep γ2(1 − α2) ≥ z4
7 and γ2 ≥ z4

7 while taking the γ2 → z4
7 limit. This implies

that we must take solutions with α → 0. However, such solutions necessarily have L → 0

(see figure 3), which contradicts our prescription of keeping L fixed. Therefore, this limit

is not interesting.

Limit (b): limz7→∞ limv→1−. Another approach to the lightlike limit takes v → 1

from below and then takes z7 → ∞. Then the conditions for a spacelike worldsheet are

automatically satisfied. Again, only the v < 1 spacelike solutions discussed in section 3.1.1

contribute, but now the γ2(1−α2) ≥ z4
7 condition places no restrictions on α. In particular,

this limit will exist at fixed L. The behavior of figure 3 as v → 1 suggests that, at any given

6See [29] for a related discussion of the lightlike limit.
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(small) L, all the series of string solutions illustrated in figure 2 occur. The lengths of these

strings follow the pattern plotted in figure 4. Actually, the analysis given in appendix B

shows that the short (c)0 “up” string does not exist in the limit with fixed L. Thus the long

(c)0 “up” string dominates the path integral, with the (a)1 “down” string and all longer

strings relatively exponentially suppressed.

The result from appendix B.1 for the action of the (c)0 string as a function of L is

βŜ

T
√

λ
= −1.31 +

π

2

L

β
. (4.7)

This result is exact, in the sense that no higher powers of L enter. The constant term is

from the straight string subtraction.

For comparison, the next shortest string is the (a)1 down string solution. Appendix A

computes its action to be

βŜlong

T
√

λ
= 0.941

L2

β2
+ O(L4), (4.8)

which shows the jet-quenching behavior found in [11]. However, since the contribution from

this configuration to the path integral is exponentially suppressed, the actual jet quenching

parameter is zero.

Limit (c): limz7→∞ limv→1+. When v > 1, the string worldsheet is spacelike regardless

of the value of z7. Thus, we are free to take the order of limits in many ways. Limit (c)

takes v → 1 from above at fixed z7 and then takes z7 → ∞. We saw in section 3.1.2 that

there are always two string solutions for v > 1: a short one with α > v, which turns at

z = zt := γ2(1−α2), and a long one with α < v, which turns at the horizon z = 1. Appendix

B.2 shows that in the (c) limit, the short string gives precisely the same contribution as the

(c)0 up string did in the (b) limit. Similarly, the long string contribution coincides with

the (a)1 down string. This agreement is reassuring, showing that the path integral does

not jump discontinuously between the (b) and (c) limits even though they are evaluated on

qualitatively different string configurations. (The (b) and (c) limits approach the lightlike

limit in the same way, see figure 6.)

Limit (d): limv→1+ limz7→∞. Limit (d) approaches the lightlike limit in the opposite

order to the (c) limit. Somewhat unexpectedly, the results for the string action in the (d)

limit are numerically the same as those found in the (b) and (c) limits. This is unexpected

since the details of evaluating the integrals in the (c) and (d) limits are substantially

different. We take this agreement as evidence that the result is independent of how the

lightlike limit is taken. (Note that there are, in principle, many different lightlike limits

intermediate between the (c) and (d) limts.)

A. Euclidean action

Euclidean string solutions. Wick rotate x0 → ix4 in (2.1), and adopt the rotated

boundary conditions (2.5) with x0 → x4. Then the Euclidean version of the [v⊥] embed-
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ding (2.4) becomes

x4 = τ, x1 = vτ, x2 = σ, x3 = 0, r = r(σ). (A.1)

One then finds [32] that the integral expressions (2.13) and (2.14) for the quark separation

and string action stay the same except for the replacement

γ2 → γ2
E :=

1

1 + v2
. (A.2)

Real Euclidean string configurations must have the integration constant a2 be positive,

to have positive G. Then an analysis of the Euclidean string equations of motion [32] shows

that real solutions can exist for any v as long as the string is at radii satisfying

z4 > max
{

1, γ2
E(1 + a2)

}

. (A.3)

(These are for the string configurations with endpoint “velocity” perpendicular to their

separation.)

For a > v and v sufficiently large, there is a unique Euclidean solution with turning

point at z4 = z4
t := (1 + a2)/(1 + v2) > 1. We call these the “short string” solutions.

For a < v there is a branch of Euclidean solutions which have the radial turning point

on the black hole horizon z = 1. These are the “long string” solutions. The solution

with the smallest energy dominates the path integral. The energy of the Euclidean string

configurations is given by E = S/T , where S is the Nambu-Goto action and T is the

time interval. For L less than a critical value, the energetically favorable state is the short

string [32].

The Euclidean rotation of strings whose endpoints have lightlike worldlines are those

with Euclidean worldsheet (A.1) with V = 1. By (2.7) this is when v =
√

1 − z−4
7 . But

since nothing special happens to the Euclidean string configurations at this velocity, we

will do our computations below at arbitrary v, and specialize to the lightlike value at the

end.

We are interested in evaluating the action for this string in the small L and small

ε := z−1
7 (large mass) limit. These two limits do not commute, so we evaluate them

separately in the two different orders.

L → 0 at fixed (small) ε. From (2.13) with γ → γE, the L → 0 limit corresponds to

taking zt → z7. So introduce a small parameter δ defined by

z4
t :=

z4
7

(1 + δ)4
=

1

ε4(1 + δ)4
. (A.4)

Thus δ replaces the parameter a.

Changing variables to y = ε(1 + δ)z, (2.13) and (2.14) can be rewritten in terms of δ

as

L

β
=

2

π
ε(1 + δ)

∫ 1+δ

1

dy
√

1 − γ2
Eε4(1 + δ)4

√

(y4 − 1)(y4 − ε4(1 + δ)4)
,

βS

T
√

λ
=

1

γEε(1 + δ)

∫ 1+δ

1

dy
[

y4 − γ2
Eε4(1 + δ)4

]

√

(y4 − 1)(y4 − ε4(1 + δ)4)
. (A.5)
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Systematically expanding in small δ gives series expressions in terms of integrals of the

form

Jnm :=

∫ 1+δ

1

y4mdy

(y4 − 1)
1

2 (y4 − ε4)
1

2
+n

, (A.6)

which have a series expansion of the form
∑∞

n=0 cnδn+ 1

2 , but whose coefficients cn(ε) lack

closed-form expressions. Nevertheless, the Jmn are uniformly convergent for ε < 1, so we

can expand the integrands in power series in small ε to find

L

β
=

2εδ1/2

π

{[

1 +
1

2
(1 − γ2

E)ε4 + O(ε8)

]

+ δ

[

1

12
+

1

24
(33 − 49γ2

E)ε4 + O(ε8)

]

+ O(δ2)

}

,

βS

T
√

λ
=

δ1/2

γEε

{[

1 +
1

2
(1 − γ2

E)ε4 + O(ε8)

]

+ δ

[

−5

4
+

17

24
(1 − γ2

E)ε4 + O(ε8)

]

+ O(δ2)

}

.

Eliminating δ between these two expressions order-by-order in δ then gives the action as a

function of L and ε:

βS

T
√

λ
=

π

2γE

L

β

[

1

ε2
+ O(ε6)

]

− π3

6γE

L3

β3

[

1

ε4
− 1

2
(2 − γ2

E) + O(ε4)

]

+ O(L5). (A.7)

The lightlike limit corresponds to taking γE = (2 + ε4)−1/2, giving

βS

T
√

λ
=

π√
2

L

β

[

1

ε2
+

1

4
ε2 + O(ε6)

]

− π3

3
√

2

L3

β3

[

1

ε4
− 1

2
+ O(ε4)

]

+ O(L5). (A.8)

Note that because of the nice convergence properties of the integrals in (A.6), the order

of limits as ε → 0 and δ → 0 does not affect this result. The limiting case where ε → 0

with δ fixed (and small) corresponds to taking L ∝ ε. Thus the result (A.8) is valid for all

limits ε → 0 with L → 0 as L ∝ ε or faster.

ε → 0 limit at fixed L. To keep L fixed, examination of (A.5) shows that we need to

scale δ → ∞ as ε → 0 keeping ε(1 + δ) fixed. So change variables in (A.5) from δ to

` := ε(1 + δ). Since for fixed ` < 1 the integral is convergent, we can take the ε → 0 limit

directly, and then expand in powers of ` to get

L

β
=

2

π
`

∫ ∞

1

dy
√

1 − γ2
E`4

√

(y4 − 1)(y4 − `4)
=

2√
π

Γ[34 ]

Γ[14 ]
`

(

1 +
3 − 5γ2

E

10
`4 + O(`8)

)

. (A.9)

Similarly, the S integral is

βS

T
√

λ
= lim

ε→0

1

γE`

∫ `/ε

1

dy
[

y4 − γ2
E`4

]

√

(y4 − 1)(y4 − `4)

=
1

εγE
−

√
π

`γE

Γ[34 ]

Γ[14 ]

{

1 − 1 − 2γ2
E

2
`4 + O(`8)

}

, (A.10)
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where we used the fact that only the leading term at small ` diverges as 1/ε, and so the

ε → 0 limit can be taken directly in all the other terms.

Since S is divergent as ε → 0, we regulate the action by subtracting the action of a pair

of straight strings with the same boundary conditions. (See, however, [29] for a discussion

of an alternative regularization procedure.) The straight string solutions have embeddings

x4 = τ, x1 = vτ, x2 = ±L/2, x3 = 0, r = σ, (A.11)

with boundary conditions 0 ≤ τ ≤ T and r0 ≤ σ ≤ r7. The action evaluated on these two

solutions is then

βS0

T
√

λ
= lim

ε→0

1

γE

∫ 1/ε

1
dz

√

z4 − γ2
E

z4 − 1
=

1

εγE
−

√
π

γE

Γ[34 ]

Γ[14 ]
2F1

[

− 1

2
,−1

4
,
1

4
, γ2

E

]

,

where 2F1 is a hypergeometric function. Thus the regularized action Ŝ := S − S0 is

βŜ

T
√

λ
=

√
π

γE

Γ[34 ]

Γ[14 ]

{

2F1

[

−1

2
,−1

4
,
1

4
, γ2

E

]

− 1

`
+

1 − 2γ2
E

2
`3 + O(`7)

}

. (A.12)

Eliminating ` order-by-order between (A.9) and (A.12) gives

βŜ

T
√

λ
= −Γ[34 ]

4

π2γE

β

L
+

Γ[34 ]
2

√
2πγE

2F1

[

−1

2
,−1

4
,
1

4
, γ2

E

]

+ Γ[14 ]
4
(2 − 5γ2

E)
L3

β3
+ O(L7). (A.13)

The lightlike limit corresponds to γ2
E = 1/2, giving

βŜ

T
√

λ
= −0.32

β

L
+ 1.08 − 0.76

L3

β3
+ O(L7). (A.14)

ε → 0 limit at fixed L: long string. For comparison purposes, we also compute the

contribution to the Wilson loop from the long Euclidean string solution. This is the solution

with turning point at the horizon, zt = 1. The integral expression for L is convergent as

ε → ∞ and, to keep L fixed and small, we just need to keep a fixed and small. So expanding

in small a gives

L

β
=

2aγE

π

∫ ∞

1

dz
√

(z4 − 1)(z4 − γ2
E[1 + a2])

, (A.15)

= aγE 23/2π1/2Γ[14 ]
2
[

2F1

[

3

4
,
3

2
,
5

4
, γ2

E

]

− 3

5
γ2

E 2F1

[

3

2
,
7

4
,
9

4
, γ2

E

]

+
3

10
a2γ2

E 2F1

[

3

2
,
7

4
,
9

4
, γ2

E

]

+ O(a4)
]

.

The same expansion of the regularized action gives

βŜlong

T
√

λ
=

1

γE

∫ ∞

1

dz
√

z4 − γ2
E√

z4 − 1





√

z4 − γ2
E

√

z4 − γ2
E [1 + a2]

− 1



 (A.16)

= a2γE 2−1/2π3/2Γ[14 ]
−2

[

2F1

[

3

4
,
3

2
,
5

4
, γ2

E

]

− 3

5
γ2

E 2F1

[

3

2
,
7

4
,
9

4
, γ2

E

]

+
9

20
a2γ2

E 2F1

[

3

2
,
7

4
,
9

4
, γ2

E

]

+ O(a4)

]

.
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Eliminating a order-by-order between these two expressions gives

βŜlong

T
√

λ
=

L2

β2

5
√

π

8
√

2γE

Γ[14 ]
2
(

5 2F1

[

3

2
,
3

4
,
5

4
, γ2

E

]

− 3 γ2
E 2F1

[

3

2
,
7

4
,
9

4
, γ2

E

])−1

+ O(L4).

(A.17)

The lightlike limit is γ2
E = 1/2, giving

βŜlong

T
√

λ
= +2.39

L2

β2
+ O(L4). (A.18)

B. Spacelike action

Here we calculate the regulated action of spacelike strings in the various limits described

in section 4, keeping L fixed and small. Specifically, this requires expanding the quark

separation (2.13) and string action (2.14) in terms of the appropriate small parameter, and

then eliminating that parameter to obtain Ŝ as a function of L. Recall from the discussion

in section 3 that for spacelike strings the integration constant a is imaginary, so we replace

a2 = −α2 with α2 > 0. Also, recall that γ2 := (1 − v2)−1 and ε := z−1
7 . Then our main

equations (2.13) and (2.14) become

L

β
=

∣

∣

∣

∣

∣

2αγ

π

∫ 1/ε

zt

dz
√

(z4 − 1)(z4 − γ2(1 − α2))

∣

∣

∣

∣

∣

, (B.1)

and

βŜ

T
√

λ
=

1

|γ|

{∣

∣

∣

∣

∣

∫ 1/ε

zt

(z4 − γ2) dz
√

(z4 − 1)(z4 − γ2(1 − α2))

∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

∫ 1/ε

1
dz

√

z4 − γ2

z4 − 1

∣

∣

∣

∣

∣

}

, (B.2)

where zt is either zt = 1 or z4
t := γ2(1 − α2), depending on which configuration we are

considering, and we have subtracted the action of two straight strings to regulate the action.

These expressions are valid for string solutions which have a single turning point, which

will be the only ones we evaluate.

B.1 The (b) limit

The (c)0 “up string” solutions. The (c)0 string solutions have a turning point at

z4
t = γ2(1 − α2) > z4

7 . Since in this limit we first take v → 1− (γ → +∞) before taking

ε → 0, (B.1) becomes

L

β
=

2αγ

π

∫ γ1/2(1−α2)1/4

1/ε

dz
√

(z4 − 1)(γ2(1 − α2) − z4)
. (B.3)

The upper limit of this integral gives a contribution that scales as α(1 − α2)−3/4γ−1/2,

while the lower limit gives α(1−α2)−1/2ε. Therefore, to keep L fixed in this limit requires

that either the contribution from the upper limit or from the lower limit remains finite

and non-zero. In order for the upper limit to remain finite and non-zero, it is required

1 − α2 ∼ γ−2/3. However, then the lower limit contributes ∼ γ1/3ε which diverges as we
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take γ → ∞. Thus, this scaling does not keep L finite. If, instead, we demand that the

lower limit remain finite, we must take 1−α2 ∼ ε2. This then implies that the upper limit

contributes ∼ (γε3)−1/2 which vanishes in the γ → ∞ limit, and so L remains finite.

We have thus found that there is a single (b) limit of the (c)0 up strings which keeps

the quark separation finite. This limit keeps

δ2 :=
ε2

1 − α2
(B.4)

fixed and gives L ∼ δ for small δ. Since for fixed L and ε and γ → ∞ this limit keeps α

fixed away from α = 1, then from the discussion in section 3.1.1 we see that this solution

corresponds to the long (c)0 string (see figure 3). In particular, the short (c)0 string does

not contribute.

Plugging (B.4) into (B.3), changing variables to y = (γε/δ)−1/2z, and expanding the

(z4 − 1)−1/2 factor for large z gives a series of hypergeometric integrals which are finite in

the γ → ∞ limit, giving

L

β
= lim

ε→0

2

π

√

δ2 − ε2

[

1 +
1

5
ε4 + O(ε8)

]

=
2

π
δ. (B.5)

Similarly, the regularized action (B.2) becomes

βŜ

T
√

λ
=

1

γ

{

∫

√
γε/δ

1/ε

(γ2 − z4) dz
√

(z4 − 1)(γ2ε2δ−2 − z4)
−

∫ 1/ε

1
dz

√

γ2 − z4

z4 − 1

}

, (B.6)

which, upon making the same change of variables and taking the large γ limit, becomes

βŜ

T
√

λ
= −

√
π

4

Γ[14 ]

Γ[34 ]
+ lim

ε→0
(δ + ε)

[

1 +
1

10
ε4 + O(ε8)

]

= −1.31 + δ. (B.7)

Eliminating δ between (B.5) and (B.7) gives

βŜ

T
√

λ
= −1.31 +

π

2

L

β
. (B.8)

The (a)1 “down string” solution. The (a)1 string descends from the D7-brane and

turns at the horizon, so that the quark separation (B.1) is given by

L

β
=

2αγ

π

∫ 1/ε

1

dz
√

(z4 − 1)(γ2(1 − α2) − z4)
. (B.9)

In the γ → ∞ limit, L is kept finite for finite α. Taking the limit directly gives

L

β
=

1

2
√

π

Γ[14 ]

Γ[34 ]

α√
1 − α2

. (B.10)

Similarly, the limit of the regularized action gives

βŜlong

T
√

λ
=

√
π

4

Γ[14 ]

Γ[34 ]

(

1√
1 − α2

− 1

)

. (B.11)

Eliminating α between these two expressions and expanding in small L yields

βŜlong

T
√

λ
=

π3/2

2

Γ[34 ]

Γ[14 ]

L2

β2
+ O(L4) = 0.941

L2

β2
+ O(L4). (B.12)
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B.2 The (c) limit.

The (c) and (d) limits take v → 1 with v > 1. In this range it is convenient to define

γ̃2 := −γ2 =
1

v2 − 1
, (B.13)

so the v → 1+ limit takes γ̃2 → +∞. The spacelike string solutions for v > 1 were discussed

in section 3.1.2, where we found that there are two solutions: a short string with turning

point z4
t = γ̃2(α2 − 1) and a long string with turning point at the horizon zt = 1.

The short string solution. For this solution, the integral expression for the quark

separation (B.1) takes the form

L

β
=

2

π
αγ̃

∫ 1/ε

γ̃1/2(α2−1)1/4

dz
√

(z4 − 1)(z4 − γ̃2(α2 − 1))
. (B.14)

The (c) limit takes γ̃ → ∞ first before taking ε → 0. Examination of (B.14) shows that,

in this limit, L remains finite if one takes α → 1+ in such a way that

δ2 := ε6γ̃2[1 − ε4γ̃2(α2 − 1)] (B.15)

remains fixed. Eliminating α in favor of δ in (B.14) and changing variables to y = εz gives

L

β
=

2

π

√

1 − γ̃−2δ2ε−6 + ε4γ̃2

∫ 1

(1−γ̃−2δ2ε−6)1/4

ε (1 − ε4y−4)−1/2 dy

y2
√

y4 − 1 + γ̃−2δ2ε−6
. (B.16)

For small fixed ε, expanding the numerator of the integrand in a power series, performing

the integrals, and taking the γ̃ → ∞ limit yields

L

β
= lim

ε→0

δ

π

[

1 + O(ε4)
]

=
δ

π
. (B.17)

Similarly, in the same limit, the regularized action

βŜ

T
√

λ
=

∫ 1/ε

γ̃1/2(α2−1)1/4

γ̃−1(z4 + γ̃2) dz
√

(z4 − 1)(z4 − γ̃2(α2 − 1))
−

∫ 1/ε

1

dz

γ̃

√

z4 + γ̃2

z4 − 1
, (B.18)

becomes

βŜ

T
√

λ
= lim

ε→0

[

δ

2
−

√
π

4

Γ[14 ]

Γ[34 ]
+ O(ε)

]

=
δ

2
− 1.31. (B.19)

Eliminating δ between (B.17) and (B.19) gives

βŜ

T
√

λ
= −1.31 +

π

2

L

β
. (B.20)
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The long string solution. The turning point for the long string is at the horizon, so

L

β
=

2αγ̃

π

∫ ε−1

1

dz
√

(z4 − 1)(z4 + γ̃2(1 − α2))
, (B.21)

from which it follows that L is kept finite in the γ̃ → ∞ limit for finite α. Taking the limit

directly then gives
L

β
=

1

2
√

π

Γ[14 ]

Γ[34 ]

α
√

|1 − α2|
. (B.22)

Similarly, the limit of the regularized action gives

βŜlong

T
√

λ
=

√
π

4

Γ[14 ]

Γ[34 ]

(

1
√

|1 − α2|
− 1

)

. (B.23)

Eliminating α between (B.22) and (B.23) and expanding in powers of small L gives

βŜlong

T
√

λ
=

π3/2

2

Γ[34 ]

Γ[14 ]

L2

β2
+ O(L4) = 0.941

L2

β2
+ O(L4). (B.24)

Note that this calculation is essentially identical to that of the (a)1 string in the (b) limit.

B.3 The (d) limit.

The short string solution. The (d) limit takes ε → 0 first, then γ̃ → ∞. Examination

of (B.14) shows that, in this limit, L remains finite if one takes α → 1+ in such a way that

δ := γ̃−1/2(α2 − 1)−3/4 (B.25)

remains fixed. Eliminating α in favor of δ in (B.14) and changing variables to y =

γ̃−1/3δ1/3z, the ε and γ̃ limits can be taken directly to give

L

β
=

2

π
δ

∫ ∞

1

y−2dy
√

y4 − 1
=

2√
π

Γ[34 ]

Γ[14 ]
δ. (B.26)

The regularized action can be written as

βŜ

T
√

λ
=

∫ 1/ε

(γ̃/δ)1/3

γ̃−1(z4 + γ̃2) dz
√

(z4 − 1)(z4 − (γ̃/δ)4/3)
−

∫ 1/ε

1

dz

γ̃

√

z4 + γ̃2

z4 − 1
. (B.27)

To evaluate this expression as γ̃ → ∞ (after ε → 0), split the ranges of integration into

z < γ̃1/2 and z > γ̃1/2. After the pieces of the integrals for z > γ̃1/2 which are divergent

at ε → 0 are canceled, the remainder is easily seen to vanish in the γ̃ → ∞ limit. The

integrals for z < γ̃1/2 are evaluated to give

βŜ

T
√

λ
= − Γ[14 ]

2

4
√

2π
+

Γ[34 ]
2

√
2π

δ (B.28)

in the γ̃ → ∞ limit. Eliminating δ between (B.26) and (B.28) gives

βŜ

T
√

λ
= − Γ[14 ]

2

4
√

2π
+

π

2

L

β
= −1.31 +

π

2

L

β
. (B.29)
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The long string solution.

For the long strings with v > 1, recall that α < 1 and the turning point is at the horizon,

so that
L

β
=

2αγ̃

π

∫ ∞

1

dz
√

(z4 − 1)(z4 + γ̃2(1 − α2))
, (B.30)

where we have already taken the ε → 0 limit since the integral is convergent. L is kept

small and finite as γ̃ → ∞ if α is kept small and fixed. Then the above integral can be

evaluated by splitting the range of integration into z4 > γ̃2(1 − α2) and z4 < γ̃2(1 − α2).

The upper range is easily seen to give a vanishing contribution in the γ̃ → ∞ limit, while

the lower range gives

L

β
= lim

γ̃→∞

2α

π

∫ γ1/2

1

dz(1 + z4γ̃−2(1 − α2)−1)−1/2

√
1 − α2

√
z4 − 1

=
1

2
√

π

Γ[14 ]

Γ[34 ]

α√
1 − α2

. (B.31)

Similarly evaluating the integral for the action gives

βŜlong

T
√

λ
=

√
π

4

Γ[14 ]

Γ[34 ]

(

1√
1 − α2

− 1

)

. (B.32)

Eliminating α between (B.31) and (B.32) and expanding in powers of L gives

βŜlong

T
√

λ
=

π3/2

2

Γ[34 ]

Γ[14 ]

L2

β2
+ O(L4) = 0.941

L2

β2
+ O(L4). (B.33)

Note that this calculation gives the same result as that of the (a)1 (down) string in the (b)

limit, and the long string in the (c) limit.

Acknowledgments

We would like to thank Daniel Cabrera, Mariano Chernicoff, Paul Esposito, Joshua Friess,
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