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Vortex Plasma in a Superconducting Film with Magnetic Dots
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We consider a superconducting film, placed upon a magnetic dot array. Magnetic moments of
the dots are normal to the film and randomly oriented. We determine how the concentration of the
vortices in the film depends on the magnetic moment of a dot at low temperatures. The concentration
of the vortices, bound to the dots, is proportional to the density of the dots and depends on the
magnetization of a dot in a step-like way. The concentration of the unbound vortices oscillates about
a value, proportional to the magnetic moment of the dots. The period of the oscillations is equal to
the width of a step in the concentration of the bound vortices.

PACS numbers: 74.60.Ge, 74.25.Dw, 74.76.-w
Superconductivity of thin films was studied for a long time [1]. An important difference of the two-dimensional

superconductors from the three-dimensional ones is related with the topological defects. Vortices appear in thin films
of the superconductors which are of the first kind in the bulk [2]. They can appear spontaneously even in the absence
of the magnetic field. In specially prepared films with the size about the effective screening length, unbound vortices
appear above the Berezinskii-Kosterlitz-Thouless transition [3]- [5].
A recent surge of interest to this problem is associated with advances in preparation of magnetic nanostructures

interacting with the superconducting films [6]- [9]. Magnetic field from the magnetic nanostructures (dots) gives rise
to vortices and pins them. As a result, in a superconducting film placed upon an array of magnetic dots, a periodic
field dependence of the magnetoresistance and superconducting transition temperature was observed [7], [8].
Theoretically the problem of a superconducting film supplied by a periodic array of magnetic dots was studied

in Ref. [10]. It was shown that the properties of such a system depend on the orientation of the magnetization of
the dots, their mutual distances and the coercive field. In the case of strong coercive force, the reorientation of the
magnetic moments is a slow process. Hence, a random array of magnetic moments occurs at zero-field cooling below
the Curie temperature. If the easy magnetic axes are perpendicular to the film, each dot favors creation of a vortex
[10]. Thus, a random vortex structure appears in the superconductor. The vortices pinned by the dots induce a
random potential in the film. If the period of the dot array is small enough, the random potential may be sufficient
for creation of additional unpinned vortices. The resulting vortex plasma phase is expected to have a much larger
resistance, than the pinned vortex state [10].
In the present paper we consider a toy model of the vortex plasma state which reproduces the phenomena predicted

in [10], but leads also to new predictions of a rich phase diagram and elementary excitations. We study the dependence
of the concentration of the vortices on the magnetic moment of a dot. The concentration of the pinned vortices is
found to be proportional to the density of the dots. The concentration of the unbound vortices is less to the factor of
order a/λeff , where λeff is the effective screening length [1], a the lattice constant of the dots. Both concentrations
grow as the magnetic moment of a dot increases. The concentration of the pinned vortices depends on the magnetic
moment in a step-like way. The concentration of the unpinned vortices has linear and oscillating components.
We consider first a thin film of the size ∼ λeff = λ2/d, where λ is the London penetration length, d the thickness

of the film. Then we discuss what happens in a film, which is larger than the effective screening length λeff . We
argue that the behavior of the vortex plasma does not depend qualitatively on the size of the system.
The energy of the system of the vortices is composed of three components. These are the single vortex energies, the

energy of the vortex-vortex interaction and the coupling energy between the vortices and the dots. A single vortex
energy is [1]

Ei = ǫ0n
2
i ln

λeff

ξ
, (1)

ni being the vorticity, ξ the core size and ǫ0 = Φ2
0/16π

2λeff , where Φ0 is the magnetic flux quantum. The interaction
of a pair of vortices separated by a distance r decreases fast at r > λeff , while at r < λeff it depends on the distance
logarithmically [4]

Eij = 2ǫ0ninj ln
λeff

r
, (2)

where ni, nj are the vorticities. The interaction of a vortex and a dot is estimated in Ref. [10] as

Ed
i = ǫ0

Φd

Φ0

ni, (3)
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where Φd is the magnetic flux generated by the dot. The total Hamiltonian of the system reads

H =
∑

i

Ei +
∑

i>j

Eij +
∑

i

Ed
i . (4)

The vortex plasma appears when the distance between the dots a ≪ λeff [10]. Then the number of the dots in the
film of the size λeff is ND = (λeff /a)

2 ≫ 1. In this case the system, governed by the Hamiltonian (4), displays strong
collective effects. For simplification, we approximate the slow logarithmic dependence (2) at the scales a < r < λeff

with a constant. Then the model Hamiltonian mimicking the real Hamiltonian (4) has a form

H = −U
∑

i

σini +
∑

i

Ei + 2ǫ0
∑

i>j

ninj , (5)

where σi = ±1 describe two possible orientations of the magnetizations of the dots, U = ǫ0Φd/Φ0. This Hamiltonian
can be rewritten as

H = −U
∑

i

σini + ǫ
∑

n2
i + ǫ0

(

∑

i

ni

)2

, (6)

where ǫ = ǫ0 ln(a/ξ).
The minimum of the energy (6) corresponds to zero total vorticity Q =

∑

i ni. Indeed, if ∆Q vortices are removed,
so that the vorticity become Q′ = Q −∆Q, the last term in (6) would decrease by the value proportional to Q∆Q.
At the same time, the maximal possible energy loss due to the first two terms of the Hamiltonian is proportional
to ∆Q. Hence, decreasing the total vorticity is favorable unless Q ∼ 1. In the system with the number of vortices
∼ (λeff/a)

2 ≫ 1 this is practically zero. Thus, the “neutrality” condition must be satisfied:

∑

i

ni = 0. (7)

Our aim is to find the ground state of the Hamiltonian (6) with the constraint (7). The ground state depends on
the parameter κ = U/ǫ. The discussion below is limited by the case κ ≪ λeff/a.
Let us assume that there are N “positive” dots favoring creating positive vortices, and N + K “negative” dots

which favor negative vortices. Obviously, N ≈ λ2
eff/(2a

2) and K ∼ λeff/a are random. Note that in the ground
state all the unbound vortices have the same sign and the unit vorticity. Below we assume that the unbound vortices
are positive. As seen below, this assumption is equivalent to the condition K > 0. The case of the negative vorticity
is completely analogous.
Let us consider an arbitrary dot with occupancy n. The neutrality condition (7) allows to change the occupancy

by ±1 and simultaneously create an unbound vortex or antivortex. In the ground state these excitations can not
decrease the energy. This gives a restriction on the possible values of the occupancy. The energies of the excitations
are

∆E = ǫ[1 + (n± 1)2 − (n± 1)κ]− ǫ[n2 − nκ] = ǫ[2± (2n− κ)] ≥ 0. (8)

Hence, 2n− 2 ≤ κ ≤ 2n+ 2. Thus, at κ = 2(q + δ), where q is integer, 0 < δ < 1, the only possible values of n are q
and q + 1. At κ = 2q an additional possible occupancy is q − 1.
Let us show that a non-zero number of unbound vortices appears when κ is equal to an even integer only. Indeed,

for the system in the ground state, the energy must not decrease when an unbound vortex is placed onto a dot, or
when an unbound vortex and a bound antivortex are removed. The consideration, similar to the derivation of Eq.
(8), leads to a condition

2mmin ≥ κ ≥ 2nmax, (9)

where mmin and nmax are the minimal occupancy of the positive dots and the maximal occupancy of the negative
ones respectively. Eq. (9) is compatible with (7) only if the inequalities in (9) are actually equalities. Indeed, the
number of the positive vortices V + ≥ Nmmin and the negative vortex number V − ≤ (N +K)nmax. Since K ≪ N , it
follows from the neutrality condition V + = V − that mmin = nmax. Hence, κ = 2k where k is an integer. Note that
Eq. (9) does not contradict Eq. (7) if K ≥ 0 only. We assume below that this is the case.
Let us consider the case of κ = 2(q + δ), 0 < δ < 1. At these values of κ unbound vortices are absent. Let the

number of the positive dots with occupancy q be S. The numbers of the negative dots with occupancies q and q + 1
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are then determined by the neutrality condition. The energy as a function of S is E(S) = constant+ 2Sǫ[κ− 2q− 1].
Depending on κ, the minimum of the energy E(S) corresponds to S = 0 or S = N . At κ = 2q + 1 the ground state
is degenerate.
Now we study the case of κ = 2q. We denote the numbers of the positive dots with occupancies q − 1 and q + 1 as

A+ and B+ respectively, the numbers of the negative dots with occupancies q−1 and q+1 as A− and B− respectively.
The number of the unbound vortices is determined by the neutrality. The energy dependence on A±, B± is given by
the expression E = constant + 2ǫ[A+ + B−]. Thus, in the ground state A+ = B− = 0. At the same time the energy
does not depend on A− and B+.
Now we are in position to describe all the ground states. Below we consider the case when the number of the

negative dots (N +K) is larger than the number of the positive dots N . The opposite case is analogous.
1) At κ < 1 the vortices are absent.
2) At κ = 2n − 1 the ground state is degenerate. All the dots can be divided into 4 groups with occupancies n

positive, (n− 1) positive, (n− 1) negative and n negative vortices on each dot, respectively. The numbers of dots in
these groups are N − S, S, nK + S and N − (n− 1)K − S, respectively, where S is any integer satisfying inequality
S ≤ N − (n− 1)K.
3) At 2n− 1 < κ < 2n, n vortices are bound with each positive dot and with N − (n− 1)K negative dots. Each of

the other nK negative dots is occupied by (n− 1) vortices.
4) At κ = 2n the ground state is degenerate. There are 4 groups of dots with occupancies (n − 1) negative, n

negative, (n + 1) positive and n positive vortices on each dot. The groups contain S, N +K − S, nK − S − P and
N + S + P − nK dots, respectively, where integer P and S satisfy inequality S + P ≤ nK. Besides, there are P
unbound vortices.
5) At 2n < κ < (2n + 1) each negative dot is occupied by n vortices. nK positive dots are occupied by (n + 1)

vortices and the other N − nK positive dots are occupied by n vortices.
Thus, the concentration cb of the bound vortices obeys a step-like low

cb =

[

κ+ 1

2

]

1

a2
+O

(

1

λeffa

)

, (10)

where the square brackets denote the integer part. The unbound vortices exist only at κ = 2n, and their concentration
cu satisfies a relation

cu ∼ n|K|
λ2
eff

(11)

where |K| is the absolute value of the difference between the numbers of the positive and negative dots. The disorder
average of |K| is 2λeff/(

√
πa).

The fact, that the concentration of the unbound vortices is proportional to 1/(λeffa), can be understood in the
framework of the approach [10]. It was argued in Ref. [10] that the bound vortices induce a random potential with
the characteristic variation ǫ0λeff/a. This leads to creation of unbound vortices screening the random potential. The
concentration at which appearance of new vortices becomes unfavorable is cu ∼ 1/(λeffa).
The model (5) is oversimplified in two respects. First, within the model the potential created by the vortices is

completely screened. It is natural that in the ground state the potential is screened at the scales r > a, larger than
the intervortex distance. However, the potential can not be screened at the scales r ≤ a. This unscreened potential
provides an additional contribution to the Hamiltonian (5) leading to dependence of the vortex energy on the position.
This contribution lifts the degeneracy of the ground state at even κ and fixes the number of the unbound vortices. It
also makes the creation of the unbound vortices favorable at non-integer values of κ. This is a consequence of the fact
that the low-lying states are almost degenerate at κ ≈ 2n, and the distances between the low-lying levels may turn
out to be less than the value of the unscreened potential variation. Still the maxima of the unbound vortex density
correspond to the integer even values of κ. Another effect of the incomplete screening is the lifting of the ground
state degeneracy at κ = 2n+ 1. In this case the total number of the bound vortices is determined by the unscreened
potential. This potential smears the concentration steps at the odd integer values of κ.
The second simplification consists in the choice of the energy of a vortex upon a dot in the form E = Ei + Ed

i ,
where Ei and Ed

i are given by Eqs. (1,3). This value of E provides only an upper boundary for the energy of a vortex
pinned by a dot. Since the energies of the bound vortices are lower than it is assumed in Eq. (5), the creation of the
unbound vortices is less favorable. As a consequence their concentration in a more realistic model is lower than (11).
We expect that the behavior of a large film is qualitatively the same as the behavior of the film of the size λeff .

The interaction of the vortices at the distance r > λeff can be calculated with the method of Ref. [2]. The main
contribution originates from the interaction of the magnetic fields, induced by the vortices. It depends on the distance
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as V ∼ 1/r. Due to the screening, the blocks of the size λeff are to be considered not as free charges, but as dipoles.
Their potential obeys 1/r2 law. Since the orientation of the dipoles is random, the interaction of the distant blocks is
irrelevant. Thus, to cut-off the intervortex interaction at some scale R ∼ λeff is a reasonable approximation. Then
a qualitatively correct picture is given by the following model. The system is divided into blocks of the size R. The
interaction of the vortices from the different blocks is neglected. Inside a block the Hamiltonian (4) is valid. The
main features of this model are the same as in the film of the size λeff .
Besides the ground states, we have determined the spectrum of elementary excitations. In particular, the energy

cost of an unbound vortex is ǫ0|κ − 2[(κ + 1)/2]|, where [...] denotes the integer part. Our approach is similar to
the idea of Efros and Shklovskii [11,12]. They found a soft Coulomb gap in the doped semiconductor. In our case a
slower dependence of the interaction on the distance leads to a gap of the finite width. Within the toy-model the gap
disappears at the even integer κ. Although this result is most probably an artifact of the model, we expect that the
gap is minimal at the even values of κ. An interesting question concerns the role of the collective excitations. For the
problem of Coulomb blockade it was recently discussed in Ref. [13].
The superconducting film includes regions of the size ∼ λeff with correlated positive or negative values of the

random potential. The behavior of the vortices near the borders of the regions is relevant for the transport properties.
In particular, an important process for the resistivity is the transport of the free vortices between the regions with
the same sign of the random potential through the points of intersection of the borders. Another important process
is the transport along the borders, since the borders constitute a percolating equipotential cluster. The resistivity
depends on the temperature, potential barriers and concentration of the unbound vortices. It increases as the number
of the unbound vortices grows. At low temperatures a complicated energy landscape may lead to the glassy dynamical
behavior.
In conclusion, we obtain that both, the concentrations of the bound and unbound vortices, increase as the magneti-

zation of a dot increases. The concentration of the bound vortices depends on the magnetization in a step-like way and
is proportional to the density of the dots. The concentration of the unbound vortices is proportional to 1/(λeffa). Its
dependence on the magnetic moment of a dot can be represented as oscillations about a value, proportional to the dot
magnetization. The period of the oscillations is the same as the width of a step of the bound vortices concentration.
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