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On differentiability of the Parisi formula.
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Abstract

It was proved by Michel Talagrand in [10] that the Parisi formula for the free energy in the Sherrington-
Kirkpatrick model is differentiable with respect to inverse temperature parameter. We present a simpler
proof of this result by using approximate solutions in the Parisi formula and give one example of appli-
cation of the differentiability to prove non self-averaging of the overlap outside of the replica symmetric
region.
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1.1 Introduction and main results.

Let us consider a p-spin Sherrington-Kirkpatrick Hamiltonian

HN,p(σ) =
1

N (p−1)/2

∑

1≤i1,...,ip≤N

gi1,...,ip
σi1 . . . σip

indexed by spin configurations σ ∈ ΣN = {−1, +1}N where (gi1,...,ip
) are i.i.d. standard Gaussian random

variables. A mixed p-spin Hamiltonian is defined as the sum

HN (σ) =
∑

p≥1

βp HN,p(σ) (1.1)

over a finite set of indices p ≥ 1. The covariance of HN can be easily computed

EHN (σ1)HN (σ2) = Nξ(R1,2), (1.2)

where

R1,2 =
1

N

∑

i≤N

σ1
i σ2

i and ξ(x) =
∑

p≥1

β2
pxp.

A quantity R1,2 is called the overlap of configurations σ1, σ2. To avoid the trivial case when all the spins
decouple we assume that βp 6= 0 for at least one p ≥ 2 so that ξ′′(x) > 0 for x > 0. Given an external field
parameter h ∈ R, the free energy is defined by

FN (β) =
1

N
E log

∑

σ

exp
(

HN (σ) + h
∑

i≤N

σi

)

. (1.3)

The problem of computing the thermodynamic limit of the free energy limN→∞ FN is one of the central
questions in the analysis of the SK model and the value of this limit was predicted by Giorgio Parisi in [5]

∗Department of Mathematics, Texas A&M University, email: panchenk@math.tamu.edu. This work is partially supported

by NSF grant.

1

http://arXiv.org/abs/0709.1514v2


as a part of his celebrated theory that goes far beyond the computation of the free energy. The prediction
of Parisi was confirmed with mathematical rigor by Michel Talagrand in [11] following a breakthrough of
Francesco Guerra in [2] where a replica symmetry breaking interpolation was introduced. Validity of the
Parisi formula provides a lot of information about the model and, in particular, about the distribution of the
overlap under the Gibbs measure corresponding to the Hamiltonian HN (σ). In the next section we will show
one important application of the Parisi formula which is based on its differentiability with respect to inverse
temperature parameters. Namely, we will prove a stronger version of the result of Pastur and Shcherbina in
[6] about the non self-averaging of the overlap at low temperature.

In the remainder of this section we present a simplified version of the argument of Talagrand in [10] and
prove the differentiability of the Parisi formula. Let us start by recalling the definition of the Parisi formula.
Let M be the set of cumulative distribution functions on [0, 1]. We will identify a c.d.f. m with a distribution
it defines and simply call m itself a distribution on [0, 1]. A distribution with at most k atoms is defined by

m(q) =
∑

0≤l≤k

mlI(ql ≤ q < ql+1) (1.4)

for some sequences
0 = m0 ≤ m1 ≤ . . . ≤ mk−1 ≤ mk = 1,

0 = q0 ≤ q1 ≤ . . . ≤ qk ≤ qk+1 = 1.

Consider independent Gaussian r.v. (zl)0≤l≤k such that Ez2
l = ξ′(ql+1) − ξ′(ql). Let

Xk = log ch
(

∑

0≤l≤k

zl + h
)

and recursively for 1 ≤ l ≤ k define

Xl−1 =
1

ml
log El exp mlXl (1.5)

where El denotes the expectation in (zp) for l ≤ p ≤ k. Define

P(m, β) = EX0 −
1

2

∑

1≤l≤k

ml(θ(ql+1) − θ(ql)). (1.6)

where θ(x) = xξ′(x)−ξ(x). On the set of discrete m ∈ M as in (1.4) the functional P(m, β) is Lipschitz in m
with respect to L1 norm (see [2], [10]). Therefore, it can be extended by continuity to a Lipschitz functional
on the entire space M. The Parisi formula is then defined by

P(β) = inf
m∈M

P(m, β). (1.7)

This infimum is obviously achieved by continuity and compactness. Any m ∈ M that achieves the infimum is
called a Parisi measure. It is conjectured ([4]) that P(m, β) is convex in m in which case the Parisi measure
would be unique.

By Hölder’s inequality, FN (β) is convex in β and, thus, its limit P(β) is also convex. Convexity implies
that P(β) is differentiable in each parameter βp almost everywhere and it was proved in [10] that P(β) is in
fact differentiable for all values of βp . The proof was based on a careful analysis of the functional P(m, β)
in the neighborhood of a Parisi measure and parts of the proof were rather technical due to the fact that a
Parisi measure is not necessarily discrete. We will prove a slightly weaker analogue of Theorem 1.2 in [10] but
we will bypass these difficulties by working with approximations of a Parisi measure by discrete measures of
the type (1.4). The main difference is that we express the derivative in (1.8) below in terms of some Parisi
measure instead of any Parisi measure as in [10].

Theorem 1 The derivative of the Parisi formula P(β) with respect to any βp exists and

∂P(β)

∂βp
= βp

(

1 −
∫

qpdmβ(q)
)

for all p ≥ 1 (1.8)

for some Parisi measure mβ.

2



To prove Theorem 1 we will first obtain a similar statement for discrete approximations of a Parisi
measure; this result corresponds to Proposition 3.2 in [10].

Lemma 1 Given k ≥ 1, suppose that m ∈ M achieves the minimum of P(m, β) over all distributions with
at most k atoms as in (1.4). Then

∂P
∂βp

(m, β) = βp

(

1 −
∫

qpdm(q)
)

.

Proof. Suppose that m has k′ atoms in (0, 1) for some k′ ≤ k. For simplicity of notations, let us assume
that k′ = k. Let us start by noting that EX0 depends on β only through ξ′(1) and ξ′(ql) for 1 ≤ l ≤ k. Let
us make the dependence on ξ′(1) explicit. Since

Xk−1 = log ch
(

∑

0≤l≤k−1

zl + h
)

+
1

2
(ξ′(1) − ξ′(qk))

we can continue recursive construction (1.5) to show that

EX0 =
1

2
ξ′(1) +

1

2
f(ξ′(q1), . . . , ξ

′(qk))

for some smooth function f(x1, . . . , xk) : R
k → R. Then, rearranging the terms in (1.6)

P(m, β) =
1

2
ξ(1) +

1

2
f(ξ′(q1), . . . , ξ

′(qk)) +
1

2

∑

1≤l≤k

(ml − ml−1)θ(ql). (1.9)

Since m achieves the minimum, for 1 ≤ l ≤ k

2
∂P
∂ql

=
∂f

∂xl
ξ′′(ql) + (ml − ml−1)qlξ

′′(ql) = 0

and since ξ′′(q) > 0 for q > 0 this implies that

∂f

∂xl
= −(ml − ml−1)ql. (1.10)

Since

ξ(q) =
∑

p≥1

β2
p qp, ξ′(q) =

∑

p≥1

p β2
p qp−1 and θ(q) =

∑

p≥1

(p − 1)β2
p qp,

using (1.9) and (1.10) we compute

∂P
∂βp

= βp +
∑

1≤l≤k

∂f

∂xl
p βp qp−1

l +
∑

1≤l≤k

(ml − ml−1)(p − 1)βp qp
l

= βp − βp

∑

1≤l≤k

(ml − ml−1)q
p
l = βp

(

1 −
∫

qpdm(q)
)

and this finishes the proof.

Proof of Theorem 1. First of all, let us fix all but one parameter in β and think of all the functions
that depend on β as functions of one variable β = βp. Let mk be a distribution from Lemma 1. By definition
of Parisi formula and Lipschitz property of P(m, β) we have P(mk, β) ↓ P(β) as k → ∞ or, in other words,

0 ≤ P(mk, β) − P(β) ≤ εk (1.11)
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for some sequence εk ↓ 0. To prove that a convex function P(β) is differentiable we need to show that its
subdifferential ∂P(β) contains a unique point. Let a ∈ ∂P(β). Then by convexity of P , (1.11) and the fact
that P(β′) ≤ P(mk, β′) for all β′,

a ≤ P(β + y) − P(β)

y
≤ P(mk, β + y) − P(mk, β) + εk

y

and

a ≥ P(β) − P(β − y)

y
≥ P(mk, β) − P(mk, β − y) − εk

y

for y > 0. It is a simple exercise to check that for any discrete m ∈ M the second derivative ∂2P(m, β)/∂β2

stays bounded if β stays bounded and the bound is uniform in m (see [11] or [10]). Therefore, using Taylor’s
expansion around y = 0 on the right hand side of the above inequalities gives

∂P
∂β

(mk, β) − Ly − εk

y
≤ a ≤ ∂P

∂β
(mk, β) + Ly +

εk

y
.

Taking y =
√

εk we obtain

a =
∂P
∂β

(mk, β) + O(
√

εk) = β
(

1 −
∫

qpdmk(q)
)

+ O(
√

εk)

by Lemma 1. Finally, taking a subsequence of (mk) that converges in L1 norm to some Parisi measure mβ

proves that

a = β
(

1 −
∫

qpdmβ(q)
)

.

This uniquely determines a and, thus, a = P ′(β).

1.2 Non self-averaging of the overlap.

In this section we make an assumption that all indices in (1.1) are even numbers with one possible exception
of p = 1, i.e. besides a trivial linear term we consider only even spin interaction terms. The reason for this
is because the validity of the Parisi formula was proved in [11] under certain conditions on the function ξ
which essentially correspond to the choice of only even spin interaction terms. Under this assumption, by
[11],

lim
N→∞

FN (β) = P(β)

and since both FN (β) and P(β) are convex functions and, by Theorem 1, P(β) is differentiable in βp, we
get

lim
N→∞

∂FN

∂βp
=

∂P
∂βp

= βp

(

1 −
∫

qpdmβ(q)
)

.

By Gaussian integration by parts one can easily see that,

∂FN

∂βp
= βp

(

1 − E
〈

Rp
1,2

〉

)

where 〈·〉 is the Gibbs average with respect to the Hamiltonian HN (σ) and, therefore, for any p ≥ 1 such
that βp > 0 we get

lim
N→∞

E〈Rp
1,2〉 =

∫

qpdmβ(q). (1.12)

Thus, from Theorem 1 one obtains information about moments of the overlap, in particular, about the exis-
tence of their thermodynamic limit. (This result is not new, it appears in [9] and [10].) If Hamiltonian HN (σ)
contains all even p-spin interaction terms then (1.12) holds for all even p ≥ 2 and, thus, the distribution of
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|R1,2| is approximated by the Parisi measure mβ. It is predicted by the Parisi theory that this is also true
when only a finite number of even p-spin interaction terms are present; however, this is an open problem.
(1.12) provides information only about the moments of the overlap corresponding to the terms present in
the Hamiltonian.

We will now use this information to give two examples of non self-averaging of the overlap. To put these
examples in perspective, let us first recall several well-known results about the classical 2-spin SK model,
HN = βHN,2, without external field, h = 0. Let us recall that inverse temperature parameter β is said to
belong to replica symmetric region if the infimum in the Parisi formula (1.7) is achieved on Dirac measure
δ0 concentrated at zero. In this simplest case the Parisi formula P(β) is called a replica symmetric solution.
It was proved by Aizenman, Lebowitz and Ruelle in [1] that replica symmetric solution holds for β2 ≤ 2 and
it was proved by Toninelli in [12] that it does not hold for β2 > 2 (the result in [12] is more general, it also
covers the case with external field). In other words, the set of β2 ≤ 2 is the replica symmetric region. Note
that the reason we have β2 ≤ 2 instead of a more familiar β2 ≤ 1 is because for simplicity we defined the
Hamiltonian HN,2 as the sum over all indices i1 and i2 rather than i1 < i2. A well-known result of Pastur
and Shcherbina in [6] states that if

lim
N→∞

E(〈R1,2〉 − E〈R1,2〉)2 = 0 (1.13)

then replica symmetric solution holds. Therefore, for β2 > 2 (1.13) can not hold and this implies that
lim supN→∞ E〈R2

1,2〉 > 0. Differentiability of the Parisi formula implies that the limit limN→∞ E〈R2
1,2〉 in

(1.12) exists and, consequently, the result of Pastur and Shcherbina can be used to deduce that this limit is
strictly positive when β2 > 2. However, one can give a more direct proof of a more general result without
invoking [6].

Example 1 (h = 0, β1 = 0). This case is similar to the classical SK model without external field, only
now p-spin interactions for even p > 2 are also allowed. A replica symmetric region is again defined as the
set of parameters β such that the infimum in (1.7) is achieved on Dirac measure δ0 concentrated at zero, but
the description of this region is slightly more complicated (see Theorem 2.11.16 in [8]). Using the continuity
of the functional m → P(m, β) with respect to the L1 norm (see [2], [10]), outside of the replica symmetric
region any Parisi measure mβ must satisfy mβ({q > 0}) > 0. Therefore, by (1.12), for any even p ≥ 2 such
that βp > 0 we have

lim
N→∞

E〈Rp
1,2〉 > 0. (1.14)

Since by symmetry, 〈R1,2〉 = 0, this proves non self-averaging of the overlap outside of the replica symmetric
region.

Example 2 (h 6= 0, βp1
, βp2

6= 0 for some p1 < p2). A similar argument can be used in the presence
of external field if at least two different even p-spin interaction terms are present. In this case, due to the
absence of symmetry, a replica symmetric region is defined as the set of parameters β such that the infimum
in (1.7) is achieved on Dirac measure δx concentrated at any point x ∈ [0, 1] rather than zero. Again, by
continuity of m → P(m, β), on the complement of the replica symmetric region any Parisi measure mβ must
satisfy

∫

|q − x|dmβ(q) ≥ ε

for all x ∈ [0, 1] and some ε > 0. This means that mβ is not concentrated near any one point x ∈ [0, 1] and,
therefore,

(

∫

qp1dmβ(q)
)1/p1

≤
(

∫

qp2dmβ(q)
)1/p2

− δ

for some δ > 0. By (1.12), for large enough N,

(

E〈Rp1

1,2〉
)1/p1 ≤

(

E〈Rp2

1,2〉
)1/p2 − δ

2

which means that the Gibbs measure can not concentrate near one point and, therefore,

E
〈

(R1,2 − E〈R1,2〉)2
〉

≥ δ′ > 0. (1.15)
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Even though these examples strengthen and generalize the result of Pastur and Shcherbina in [6],
unfortunately, the argument used above does not apply to the most interesting case of the classical 2-spin
model with external field, β2 6= 0, h 6= 0, and it is not clear how to prove (1.15) in that case.

Acknowledgments. The author would like to thank the referees for many helpful comments and
suggestions that lead to the improvement of the paper.
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