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SHRUB INVASION OF GRASSLAND: RECRUITMENT IS CONTINUOUS 

AND NOT REGULATED BY HERBACEOUS BIOMASS OR DENSITY 


Ilel-7arfmeizt of Rangeland Ecology and Management, Tesas A&M University, 

College Station, Texas 77843-2126 USA 


Abstract. Proliferation of woody plants in grasslands and savannas since the 1800s 
has been widely documented. In the southwestern United States, increased abundance of 
honey mesquite (Prosopis glandulosa var. glandulosa) has been attributed to heavy grazing 
by livestock. Here, we test the hypothesis that P. glandulosa invasion of grasslands requires, 
first, reductions in herbaceous biomass and density such as those that accompany livestock 
grazing and, second, episodes of high soil moisture availability. 

No combination of grass density (nonmanipulated or reduced 50%) or defoliation (none, 
moderate, heavy) significantly affected P. glandulosa seedling emergence within a watering 
regime (natural and supplemented) at our field site in semiarid southern Texas. Seedling 
emergence on plots receiving only natural rainfall was high (42%), despite the fact that 
precipitation was substantially below normal. Supplemental watering, to generate moisture 
levels approximating years of unusually high annual rainfall, increased emergence to 59%. 
Seedling survival after 2 yr was high (62-77%) and statistically comparable across the 
density, defoliation, and watering treatments. Net photosynthesis (A,) of 1-yr-old seedlings 
was enhanced by supplemental watering, but reductions in grass density or biomass had 
little effect on seedling A, or xylem water potential. Height, aboveground biomass, and 
leaf area were comparable among 1- and 2-yr-old seedings across all density, defoliation, 
and watering combinations. 

High seedling emergence and survival on unwatered plots, even during a "drought 
year," suggests that Prosopis recruitment is not contingent upon unusual or episodic rainfall. 
Reductions in biomass and density of herbaceous vegetation had no influence on seedling 
emergence, growth, or survival, suggesting that Prosopis invasion is minimally influenced 
by grass competition. Historic grazing at this site appears to have altered herbaceous com- 
position and reduced above- and belowground biomass production below the threshold level 
required for competitive exclusion of woody vegetation. Such data suggest that rates and 
patterns of seed dispersal may be the primary determinants of P. glandulosa encroachment 
on present-day landscapes in semiarid regions. Minimizing livestock dispersal of seed (in 
the case of leguminous shrubs) and maintenance of an effective fire regime (through pro- 
duction of fine fuels) may be crucial for sustaining herbaceous composition and production 
in grazed systems prone to invasion by unpalatable woody plants. 

Key ~ : o r d s :  Chloris cucullata: ronzpetitioiz of invasive ~ : o o d y  plants in gi-asslands; grazing; pho- 
tosynthesis; Prosopis glandulosa; savanna; seedling estahlislzmetzt; free-grass itzterarfions; woorl,. 
plant invasion; .q)lern wafer potential. 

processes involved in these vegetation changes. Cli- 

Trends toward increasing woody plant abundance in matic change and changes in historical atmospheric 

temperate and tropical grasslands and savannas in re- C 0 2  concentrations, fire regimes, rodent populations, 

cent history have been reported worldwide (Archer and livestock grazing have been suggested as driving 

1994, McPherson 1997). Although this phenomenon forces in this shift in vegetation (Archer et al. 1995, 

has been widely recognized (e.g., Grover and Musick Polley et al. 1996, Brown et al. 1997, Weltzin et al. 

1990) and has significant implications for livestock 1997). While all of these factors have interacted to 

production systems (Scifres 1980, Scifres et al. 1983), produce vegetation change, some studies (e.g., Madany 
wildlife habitat (Ben-Sharer 1992), and biogeochem- and West 1983) have clearly demonstrated that live- 
istry (Schlesinger et al. 1990), surprisingly little is stock grazing has been a primary factor. 
known of the rates, dynamics, patterns, or successional For woody plants with potentially long life-spans and 

low post-establishment mortality rates, seedling re-
Manuscript received 12 March 1998; revised 28 September cruitment is probably the most critical stage in the life 

1998: accepted 30  September 1998. history (Harper 1977). A variety of direct and indirect ' Present address: USDAINKCS. Jornada Experimental 
Range, '0. Box 30003, MSC 3JER. New lMexico State Uni- effects of livestock grazing may interact to promote 
versity. Las Cruces, New lMexico 88003-0003 USA woody plant seedling establishment in grass commu- 
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nities (Archer 1 9 9 5 ~ ) .  Reductions in the density and 
biomass of herbaceous vegetation have been shown to 
increase the probability of seedling success in old fields 
and forests (i.e., Goldberg and Werner 1983, Maguire 
and Forman 1983, McEvoy 1984, De Steven 1991a, 
b). Changes in species composition and reductions in 
herbaceous plant basal area, density, and above- and 
belowground biomass known to accompany chronic 
livestock grazing (Heitschmidt and Stuth 1991) might 
therefore create opportunities for tree and shrub seed- 
ling establishment in grasslands. Although it is widely 
assumed that these grazing-induced changes in com- 
munity structure and function will increase grassland 
susceptibility to woody plant encroachment, these po- 
tential controlling factors have not been adequately 
quantified. 

Experimental studies of woody plant invasion of 
semiarid grasslands that focus on the critical seedling 
establishment phase are relatively few and have been 
primarily controlled environment studies. Such studies 
predict that reductions in grass competition (achieved 
via reductions in biomass associated with defoliation) 
will promote woody plant seedling establishment (van 
Auken and Bush 1987, 1988, 1989, Polley et al. 1994). 
Some field studies support this contention (Schultz et 
al. 1955, McPherson 1993, Bush and van Aukeu 1995), 
but others do not (Brown and Archer 1989, Schmidt 
and Stubbendieck 1993, O'Connor 1 9 9 5 ~ ) .  Here, we 
investigated the extent to which changes in herbaceous 
density and biomass influence woody plant seedling 
establishment in grasslands under field conditions. 

Climatic variability and the unpredictable occur-
rence of extreme climatic events may interact with 
grazing to effect rapid shifts in plant recruitment and 
mortality and change the balance between grasses and 
woody plants (e.g., Wiegand et  al. 1995). Periods of 
elevated rainfall may trigger episodes of seed produc- 
tion and seedling establishment of woody plants in 
grasslands (McPherson and Wright 1990, Turner 1990, 
Harrington 1991, Carter 1994), while drought may pro- 
mote grass die-off (O'Connor 1993), but have little 
effect on tree or shrub persistence (Carter 1964, Neil- 
son and Wullstein 1985). It is not clear how rainfall 
variability might constrain, accentuate, or mitigate 
grazing influences on woody plant emergence and es- 
tablishment in grasslands. 

In southwestern North America, many temperate, 
subtropical, and desert grasslands and savannas present 
at the time of Anglo-European settlement are now 
shrublands or woodlands dominated by the tree legume, 
honey mesquite (Prosopis glandulosa var. glandulosa 
Torr.) (Archer 1989, 1994). The encroachment of P. 
glandulosa into grasslands and savannas has had sig- 
nificant socioeconomic and environmental impacts on 
these lands that have been predominantly used for live- 
stock grazing (Fisher 1950, Simpson 1977). An un-
derstanding of processes regulating P.  glandulosa seed- 
ling recruitment is, therefore, a critical first step in 

developing management strategies to mitigate shrub 
encroachment. In this study we examined simulated 
grazing X soil moisture X grass competition interac- 
tions on P. glandulosa seedling emergence and short- 
term survival. We hypothesized that under conditions 
of high soil moisture, competition with grasses would 
be minimal and P. glandulosa would successfully ger- 
minate and establish regardless of herbaceous biomass 
and density. This would be the anticipated scenario if 
seedling establishment were "episodic" and confined 
to years when rainfall is unusually high. We hypoth- 
esized that, conversely, under conditions of low soil 
moisture ("normal" or below normal rainfall) com-
petition with grasses would be intense and P. glan- 
d ~ ~ l o s a  and establishment occurgermination would 
only with a reduction in grass biomass or density, such 
as that which typically accompanies chronic livestock 
grazing. To test these hypotheses, we conducted a fac- 
torial field experiment, whereby seeds of P. glandulosa 
were planted into plots maintained at two graminoid 
densities (nonmanipulated and reduced 50%), receiving 
one of three levels of defoliation (none, moderate, and 
heavy) and one of two watering regimes (natural and 
supplemented). 

MATERIALSA N D  METI-IODS 

Study site 

Research was conducted on the Texas Agricultural 
Experiment Station, La Copita Research Area, in Jim 
Wells County, 15 km SW of Alice, Texas (27"40' N, 
9S012' W; elevation 80 m) in the eastern Rio Grande 
Plains of the Tamaulipan Biotic Province. Contempo- 
rary vegetation of the region has been described by 
Davis and Spicer (1965). Uplands at the study site, 
which have been grazed by cattle since the late 1800s, 
are savanna parklands consisting of discrete clusters of 
woody plants organized beneath Prosopis glandulosa 
(plant nomenclature follows Correll and Johnston 
1979). Inter-cluster spaces were dominated by peren- 
nial grasses, primarily Chloris cucullata. See Archer 
(1995b) for details on plant community structure and 
successional patterns. Soils on the study site were fine 
sandy loams (Runge series) on 1-3% slopes (USDA 
1979). Climate is subtropical, with warm winters and 
hot summers. Mean annual temperature is 22.4"C, with 
a growing season of 289 d. Mean annual precipitation 
(720 mm) is highly variable (cv = 35%). When tropical 
depressions and hurricanes in the Gulf of Mexico 
spawn inland storms, annual rainfall may exceed 2600 
mm. Available weather records for Alice, Texas, in- 
dicate there have been five such years between 1912 
and 1997 (1919 [3312 mm], 1935, 1941, 1942, and 
1971). 

Field experiments 

In May 1984 livestock were excluded from a 60 X 

60 m area. Seventy-two 2 X 1 m plots were perma- 
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nently marked within this exclosure. One-half of the 
plots (hereafter referred to as "watered" plots) re-
ceived supplemental water applied every other week 
(- 10 cm each application) from April through October 
1984 and 1985 via low pressure irrigation. Our goal 
was to elevate moisture to levels approximating the 
highest annual rainfall years in the weather records for 
this area (2600-3312 mm). The other half of the plots 
(hereafter referred to as "unwatered") received only 
natural rainfall. Approximately 10 m separated the wa- 
tered and unwatered plots. Watered plots were located 
downslope from unwatered plots to eliminate the pos- 
sibility of run-on. Herbaceous density and defoliation 
treatments were randomly assigned to plots within wa- 
tering treatments. 

Density was altered in half of the plots in each wa- 
tering treatment by placing a gridded 2 X 1 m frame 
over each plot and killing 50% of the plants in each 
0.25-m2 block with a nonselective, foliar-active her- 
bicide (glyphosate [N-(phoshonomethyl) glycine]). 
Plant density was estimated 30 d later using the gridded 
plot frame to map individual plants, and herbicide was 
reapplied as necessary. Post-treatment bare ground 
cover percentages averaged 51 i- 6% in the control 
plots vs. 75 5 7% in the reduced density plots. The 
relative composition of species in density-altered plots 
remained similar to that of the normal-density plots. 

Three levels of defoliation (none, moderate [20 cm 
stubble height], and heavy [5 cm stubble height]) were 
imposed by clipping monthly throughout the experi- 
ment. All clipped biomass was removed from plots. 
Thus, we imposed a 12-treatment factorial design (three 
levels of defoliation, two levels of herbaceous density, 
two levels of watering). Each of the 12 treatments was 
replicated six times (total = 72 plots). 

P. glandulosa emergence, establishrnent and growth 

Prior to the initiation of the experiment, no P. glan-
dulosa plants were inside the exclosure. In early July 
1984, 30 seeds were planted at a depth of 2 cm in each 
2 X 1 m plot. Laboratory viability trials conducted at 
25°C on a random subsample (N = 1000 seeds) of the 
seed lot indicated that 96% were germinable. Seedling 
emergence was determined 2 wk after planting. Seed- 
ling survivorship was noted in October 1984 and again 
in April and August of 1985. A second cohort of seeds 
(laboratory germlnability = 95%) was planted in late 
June 1985, and their growth and survival monitored 
for the remainder of that field season. These planting 
dates roughly coincide with periods of P. glandulosa 
seed production at this field site. 

Seedling performance was estimated for seedlings in 
four of the 12 treatment combinations: unwatered-nor- 
ma1 density-no defoliation (UNN = control), unwa- 
tered-low density-heavy defoliation (ULH), watered- 
normal density-no defoliation (WNN), and watered- 
low density-heavy defoliation (WLH). For each of 
these treatments, net photosynthesis (A,,) and xylem 

water potential (?) of seedlings were quantified on six 
dates during 1985. Diurnal measurements of gas ex- 
change (at 0900, 1200, and 1600) on clear days in May, 
June, July, and August were made on upperllower leaf 
surfaces with a portable photosynthesis system (LI- 
6000, LI-COR, Inc., Lincoln, Nebraska, USA) and a 
0.25-L cuvette. At least three P. glandulosa seedlings 
per treatment were followed through each day. 

Xylem water potential was determined with a pres- 
sure chamber (Scholander et al. 1965). Seedlings were 
placed in plastic bags containing moistened filter paper 
after excising to minimize water loss during pressure 
chamber readings. Seedling ? was not checked during 
June 1985 to ensure that an adequate number of seed- 
lings would be available for measurements during the 
more stressful period of the growing season. Individual 
P. glandulosa seedlings destructively harvested for ? 
measurements were used to determine aboveground 
biomass, height, and leaf area. 

Soil water content in plots (15 and 30 cm and at 30 
cm increments to 1.5 m depth) was estimated (neutron 
scattering method, van Bavel 1958) in each of the four 
treatments where plant performance measurements 
were made (UNN, ULH, WNN, and WLH). Neutron 
access tubes were read monthly. Soil temperature was 
estimated on the same plots at 5 and 20 cm depths, 
using thermocouples (N = 4). Aboveground herba-
ceous biomass was estimated by clipping 0.25-m2 plots 
(N = 10) in June 1984 and June 1985 at peak standing 
crop. 

Analysis of variance (ANOVA) of arcsine trans-
formed data (Snedecor and Cochran 1980) was used to 
test for differences in seedling emergence and survival 
among the 12 treatments. We used a split-plot ANOVA 
model with water (two levels) as the main treatment, 
and grass density (two levels) and grass defoliation 
(three levels) as subplot treatments. Statistical differ- 
ences in A,, ( P  % 0.05) among the four treatments 
(UNN, ULH, WNN, WLH) were tested with repeated 
measures analysis of variance (Keppel 1982). Differ- 
ences in mean ?,standing crop biomass, and soil mois- 
ture (by depth) among these treatments were tested with 
standard ANOVA. 

Aboveground herbaceous biomass was comparable 
for all plots when the experiment was initiated in June 
1984 (Table 1). Supplemental watering subsequently 
increased aboveground herbaceous biomass relative to 
nonsupplemented (unwatered) control plots. However, 
density reduction and clipping combinations offset wa- 
tering effects, such that there were no differences on 
any date between WLH plots and UNN plots. Standing 
crop biomass on the ULH plots was significantly less 
than all other treatments. Standing crop on WNN plots 
was significantly greater than all others during 1985. 
P. glandulosa seedlings were thus exposed to herba- 
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TABLE 1. Standing crop biomass (g/m2) on watering. her- 
baceous density, and clipping treatments in summer 1984 
at the start of the experiment and in 1985. 

Standing crop biomass (g/m2) 

Treatment 1984 1985 

ULH 262" (1 8) 185" (13) 
UNN 278" (20) 292h (21) 
WLH 255" (21) 263h (19) 
WNN 245" (21) 453' (25) 

Notes: Values are means of six. 2 X 1 m plots (1 SF. in 
parentheses). Treatments are: unwatered. low density, heavy 
defol~ation (ULH): unwatered. normal density. no defoliation 
(UNN): watered. low density. heavy defoliation (WLH): and 
watered, normal density. no defoliation (WNN). N = 10 plots 
per treatment. Means within a column followed by different 
letters were statistically different (P < 0.05). 

ceous aboveground biomass ranging from 185 to 453 
g/m2. 

Annual rainfall for 1984 (506 mm) was well below 
the long-term average (720 mm); rainfall in 1985 (760 
mm) was slightly above normal. Rainfall during the 
months preceding the 1984 P.  gland~tlosaplanting was 
well below normal (35% of long-term mean for Jan- 
uary-June), whereas monthly rainfall for the months 
preceding the 1985 planting was well above normal 
(Fig. 1). 

Supplemental watering increased soil moisture con- 
tent relative to unwatered controls, and date X water 
treatment interactions were significant ( P  5 0.05, Fig. 
2). Neither plant density nor level of defoliation sig- 
nificantly influenced soil moisture, so data in Fig. 2 

were pooled across these treatments. At the time of 
planting (July 1984), soil water content at 15 cm was 
significantly greater in the watered plots (37%) than in 
the unwatered plots (20%). 

Analysis of variance indicated no significant differ- 
ences in soil temperatures within a watering treatment. 
Soil temperature data were therefore pooled across de- 
foliation-density treatments. Soil temperature date X 

watering treatment interactions were significant at each 
depth ( P  < 0.05). Soil temperature at 5 cm was sig- 
nificantly ( P  < 0.05) reduced on watered plots in 1984 
and after 2 July, 1985 (Fig. 3). At the time of planting, 
soil temperatures at 5 cm were significantly ( P  < 0.05) 
greater on unwatered plots compared to watered plots. 
Temperatures at 20 cm followed a similar pattern, al- 
though the magnitude of the differences was less. Peak 
soil temperatures in the upper 5 cm typically exceeded 
3 5 4 0 ° C  each year during the period of P. glandulosa 
seed germination. 

Prosopis seedling emergence and establishment 

P. gland~tlosaseedling emergence in unwatered plots 
(42% and 44% in 1984 and 1985, respectively) was 
significantly ( P  < 0.01) less than that which occurred 
in plots receiving supplemental water (59% and 6296, 
Table 2). However, watering did not significantly en- 
hance first-year survival of seedlings emerging in 1984 
( P  = 0.06) or 1985 ( P  = 0.09) nor second year sur- 
vivorship of the 1984 cohort ( P  = 0.08). Density and 
level of defoliation of herbaceous vegetation affected 
neither emergence ( P  = 0.15 and 0.24, respectively) 

Month 
FIG. 1. Monthly precipitation (mm) at Alice, Texas, for 1984 (shaded bars), 1985 (open bars), and the 30-yr average 

(solitl line). 



October 1999 WOODY PLANT INVASION OF GRASSLAND 

29 July 21 August 20 September 
01 01 01 

1985 3 May 22 May 11 June 
0 0 O 1  

20'01 "340 40 

1 6 0 J 1 6 0 160' 
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

2 July 16 July 6 August 
01 01 01 

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 

Soil moisture (%) 

FIG. 2. Soil moisture (percentage) in 1984 and 1985 on plots receiving only natural rainfall ("unwatered") and on plots 
receiving supplemental watering ("watered"). For a given depthidate, soil moisture differences between watered and un- 
watered plots were significant (P 5 0.05), except where noted as NS.  

nor survival (P = 0.28 and 0.1 1, respectively, for first- watered seedlings (85 vs. 82%), whereas among un- 
year survival; P = 0.65 and 0.71, respectively, for sec- watered seedlings, experimental reductions in grass 
ond-year survival) of seedlings within a watering re- density had a slight positive effect (75 vs. 8 2 8 ,  Table 
gime, even though differences in aboveground biomass 2). 
among those treatments were significant (Table 1). In- Seasonal and diurnal patterns of net photosynthesis 
teraction terms were nonsignificant, with one excep- (A,) and xylem water potential (T) of I-yr-old seed- 
tion: water X density for second-year seedling survival. lings generally reflected seasonal variation in soil mois- 
In this instance, herbaceous density reductions had a ture (Tables 3 and 4). There were no statistical differ- 
slight negative effect on second-year survival among ences across watering treatments during May, when soil 



2390 JOEL R. BROWN AND STEVE ARCHER Ecology, Vol. 80, No. 7 

Depth = 5 cm 

40 --

ô  
-

35--
- + - - - . .-*-- -.. 

- + - - * - - - - - - *  

L 


+Unwatered - -*- Watered / 

Depth = 20 cm 

"" , 

29 Jul 21 Aug 20 Sep 3 May 22 May 11 Jun 2 Jul 16 Jul 6Aug 

1984 1985 

FIG. 3. Mean soil temperature ("C, N = 4) at 5- and 2 0 - c ~ n  depths on plots receiving only natural rainfall ("unwatered") 
and on plots receiving supplemental watering ("watered"). 

TABLE2. Emergence (percentage) of two P. glandulosa seedling cohorts (1984 and 1985) and survival (percentage) of the 
1984 cohort through 1985 in plots manipulated with respect to soil moisture and the density and level of defoliation of 
herbaceous plants. 

Treatment 

Watered? 

Normal density-1 
No defoliation 
Moderate defoliation 
Heavy defoliation 

Reduced densityf 
No defoliation 
Moderate defoliation 
Heavy defoliation 

Unwatered-1 

Normal density? 
No defoliation 
Moderate defoliation 
Heavy defoliation 

Reduced density+ 
No defoliation 
Moderate defoliation 
Heavy defoliation 

Significance 

Emergence (56) 

1984 cohort 1985 cohort 

59 62 

59 63 
5ga 60" 
56" 6Sa 
62" 63" 

60 62 
5ga 62" 
62a 60" 
59" 63" 

42 44 

42 46 
43 46" 
39" 43" 
45" 48" 

4 1 43 
42h 44h 
42h 42h 
3Sh 43" 

P < 0.01 P < 0.01 

Survival (70) 

1st year 

1984 cohort 1985 cohort 

80 72 

8 2 74 
82 75 
80 70 
85 77 

77 69 
7 8 70 
7 3 62 
79 7 6 

7 6 66 

74 67 

72 63 

70 63 

80 7 5 


77 65 
75 67 
7 8 66 
7 8 62 

P < 0.06 P < 0.09 

2nd year 

1984 cohort 

84 

85 

8 6 

8 8 

82 


82 

8 8 

80 

7 8 


7 8 

7 5 

7 8 

75 

7 5 


82 

8 0 

7 8 

88 


P < 0.08 

Notes: For percentage emergence, means within a column followed by different letters were statistically different ( P  < 
0.05). There were no significant differences among means within columns for percentage survival. Significance levels for 
within-cohort full-model ANOVAs are shown at the bottom of each column. 

-t Pooled means. 
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TABLE3. Net photosynthesis (as moles of quanta. pmo1.m-'.s-I) of P. glandulosu seedlings on six dates in 1985. Seedlings 
were growing on plots that varied with respect to watering regime, herbaceous plant density, and level of herbaceous 
defoliation (abbreviations as in Table 1). 

Time of day 
Date (1985) 


and treatment 3 May 22 May I I June 2 July 16 July 6 August 


0900 

ULH 
UNN 
WLH 
WNN 

1200 
ULH 
UNN 
WLH 
WNN 

1600 
ULH 
UNN 
WLH 
WNN 

Notes: Values are means (i1 SE) of a minimum of four plants. Within a column, means for a given date-and-timecombination 
followed by the same letter were not significantly different at P 5 0.05; there were no significant differences among means 
at any time of day on 6 August. ANOVA indicated treatment X time-of-day interactions were significant (P 5 0.05) at every 
date; treatment main effects were significant on all but the August date. 

moisture levels (Fig. 2) were comparable. However, as 
water in the soil above 90 cm began to decline through 
June and July in the unwatered treatments, differences 
in physiological parameters became significant. Seed- 
lings with supplemental water typically maintained 
higher levels of A, (Table 3) and higher ?/ (Table 4), 
relative to those not receiving supplemental water. 
Within a watering treatment, density and defoliation of 
herbaceous vegetation had virtually no influence on A, 
or W.By 6 August seedlings on both watered and un- 
watered plots had begun to shed leaves, even though 
soil moisture in the watered treatments remained quite 
high compared to the unwatered plots (Fig. 2). By 20 
August, seedlings on both watered and unwatered plots 
had shed all leaves. ?/ did not differ among treatments 
until July (Table 4). Predawn ?/ was similar among 
seedlings regardless of treatment, except on 2 July and 
16 July, when soil moisture was at the lowest level in 
unwatered plots. 

Seedling height near the end of the first growing 
season was statistically comparable between treatments 
(pooled mean + SE for 1984 cohort = 3.6 + 0.3 cm; 
1985 cohort = 3.9 + 0.4 cm). Aboveground biomass 
of the 1984 P. gland~tlosacohort increased 38% be- 
tween May and August 1985 (Table 5). However, 
height, leaf area, and aboveground biomass of these 
seedlings were not significantly different among treat- 
ments. 

The intensity of grass-woody plant interactions 
should be mediated by resource availability (Scholes 

and Archer 1997). However, our field experiments in- 
dicated that reductions in grass biomass, achieved by 
defoliation and density reduction, had minimal influ- 
ence on P. glaizd~tlosa emergence, aboveground 
growth, or survival. In addition, high rates of emer-
gence on unwatered plots occurred even during months 
and years of substantially below-normal rainfall. Re- 
sults therefore suggest that emergence and establish- 
ment of P. glaizdulosa can potentially occur in most 
years on this site, regardless of resource availability 
and livestock grazing pressure on grasses. This exper- 
imental evidence is consistent with results of P. glaiz-
dulosa establishment trials in more mesic areas of cen- 
tral Texas, where we observed high rates of emergence 
(43-60%) and survival (74-97%) in experimental 
treatments spanning a similar range of aboveground 
biomass levels (Brown and Archer 1989). 

Seedliizg establishment was izot eplsodic 

Discussions of vegetation change in drylands often 
emphasize event-driven or episodic processes (see Wat- 
son et al. 1996). The coefficient of variation of pre- 
cipitation in the subtropical savannas of southern Texas 
(35%) is among the highest reported for semiarid 
regions of the world (Le Houerou and Norwine 1988). 
Although mean annual rainfall at our study site is 760 
mm, tropical depressions and hurricanes in the Gulf of 
Mexico have generated annual rainfalls as high as 3300 
mm. State Climatologist records for Alice, Texas, in- 
dicate there have been five years since 1912 when an- 
nual rainfall has exceeded 2600 mm (1 919, 1935, 1941, 
1942, 1971). We therefore hypothesized that establish- 
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TABLE4. Xylem water potential (MPa) of P.glundltlosn seedlings on six dates in 1985.Seedlings occurred on plots varying 
in their watering regime, herbaceous plant density, and level of defoliation (abbreviations as in Table 1). 

Date (1985)
Time of day 


and treatment 3 May 22 May 2 July 16 July 6 August 


0600 
ULH -0.5 (0.1) -0.5 (0.1) -1.3q0.2) -1.8" (0.4) -0.3" (0.0) 
UNN -0.5 (0.1) -0.5 (0.1) -1.3"0.3) -1.4" (0.2) -0.3a (0.1) 
WLH -0.5 (0.0) -0.5 (0.1) ~ 0 . 3 ~  ~ 0 . 3 ~  -0.3" (0.1) (0.0) (0.1) 

WNN -0.5 (0.1) -0.5 (0.0) -0.3" (0.1) (0.0)
~ 0 . 2 ~  -0.3q0.0) 


0900 
ULH - 1.8 (0.2) - 1.3 (0.2) -4.0a (0.5) -5.0"0.6) -1.0. (0.2) 
UNN - 1.7 (0.3) -1.4 (0.3) -4.5" (0.4) -4.1"0.5) -2.1h (0.3) 
WLH -1.6 (0.3) -1.2 (0.2) -1.4" (0.2) - l.Sh (0.4) - 1.3"0.3) 
WNN -1.5 (0.2) -1.3 (0.1) (0.1) 1.7" (0.3) -~ 1 . 4 ~  1.2"0.2) 

1200 
ULH -2.3 (0.3) -1.8 (0.3) -4.3.' (0.4) -4.9q0.5) - 1.6"0.4) 
UNN -2.4 (0.4) 1.9 (0.4) -4.6" (0.5) -4.1,' (0.5) -2.6" (0.4) -

WLH -1.9 (0.4) -2.1 (0.4) -2.8h (0.3) -2.7" (0.4) -1.5" (0.3) 

WNN -1.8 (0.3) 1.9 (0.3) (0.4) -2.3" (0.3) - (0.3)
- ~ 2 . 3 ~  1.6,' 

1600 
ULH -2.1 (0.3) 1.6 (0.3) -4.2" (0.4) -4.7" (0.4) -2.2" (0.5) -

-UNN -2.0 (0.3) 1.6 (0.4) -4.3"0.3) -4.1" (0.5) -2.9" (0.7) 
WLH -1.8 (0.2) -2.0 (0.4) 2.4" (0.3) 2.5" (0.3) - 1 .4h (0.5) 
WNN - -1.9 (0.3) ~ 2 . 4 ~  2.4" (0.2) - 1.3" (0.3) 1.7(0.4) (0.1) 


Notes: Values are means (21 SE) of a minimum of three plants. Within a column, means for a given date-and-time combination 
followed by the same letter are not significantly different (P5 0.05;there were no significant differences among means at 
any time of day on 3 May or 22 May). ANOVA indicated significant treatment X time-of-day interactions on each date; 
treatment main effects were significant in July and August. 

ment of woody plants such as P. gla~zdulosa might be with unusually high rainfall. Even so, "continuous" 
confined to such years. However, in our study, rates of recruitment of shrubs in relatively arid systems may 
P. glandulosa emergence on unwatered (natural rainfall be more important than the dogma of "event-driven" 
only) plots were high (38-48%), even during months or episodic recruitment would suggest (Watson et al. 
and years of substantially below-normal rainfall. This 1997). Management and modeling of grass and woody 
is, perhaps, not surprising, given that P. glandulosa is plant interactions in dryland systems should therefore 
well-adapted to hot desert regions where mean annual be cognizant of the need to balance appropriately the 
rainfall is much lower than that in the central- and effects of infrequent, unpredictable events, as measured 
southern-Texas portion of its geographic range. In our at decadal time scales, and the effects of more contin- 
study, increasing soil moisture enhanced recruitment uous processes, as measured in time scales of years 
by increasing seedling emergence rather than seedling (Watson et al. 1996). Given the potentially differential 
survival. Supplemental watering increased emergence effects of increases in atmospheric CO, concentration 
by 18%, perhaps by ameliorating soil temperatures. The (e.g., Polley et al. 1994, 1996) and changes in rainfall 
optimum temperature for P. glandulosa germination is seasonality (Brown et al. 1997) on growth of woody 
25-30°C (Haas et al. 1973) and soil temperatures in plants and grasses, the reconstruction and extrapolation 
excess of 35°C reduce emergence by retarding imbi- of woody plant seedling establishment dynamics must 
bition (Scifres and Brock 1969). Temperatures at 5 cm be made cautiously. 
on watered plots were <32"C, whereas temperatures 
on unwatered plots exceeded 38°C after sowing. Herbaceous plants had little effect on Prosopis 

The size and age-class distribution of P. glandulosa recruitment 

on this site shows no indication of episodic establish- P. glandulosa successfully emerged and established 
ment or mortality (Archer 1989, Boutton et al. 1998) across a broad range (185-453 g/m2) of aboveground 
and confirms our experimental assessment that P. glan- herbaceous biomass levels achieved by clipping and by 
dulosa recruitment could have been relatively contin- reducing plant density. The fact that P. glandulosa 
uous over the last 100 yr in this bioregion. This con- seedling gas exchange, water relations, height growth, 
trasts with observations from more arid systems, where and survival were minimally influenced by herbaceous 
establishment of Prosopis (Turner 1990; R. E. Miller manipulation may reflect the ability of P. glandulosa 
and L. F. Huenneke, unpublislzed manuscript) and other quickly to elongate tap roots and access soil moisture 
woody plants (Harrington 1991, O'Connor 1995a, b, beyond the zone effectively exploited by grasses 
Wiegand et al. 1995) may occur rarely and during years (Brown and Archer 1990). Although seedlings on wa- 
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T A B L ~  Mean (+ 1 sh) height (cm). aboveground biomass 5.  
(mg), and leaf area ( c m 3  of Prosopis seedlings emerging 
in July 1984. 

Height Biomass Leaf area 
Year Month (cm) ( m r )  (cm') 

1984 September 3.6 ? 0.3 . . . .. . 
1985 May 4.2 t 0.7 90.8 ? 5.7 2.4 -t 0.2 

August 5.4 t 1.1 125.5 + 7.8 1.1 ? 0.4 

Notes: There were no significant differences ( P  > 0.05) 
among density. defoliation, or watering treatments, so data 
were pooled. Seedlings were not destructively harvested in 
1984. Height values represent all seedlings ( N  > 400); bio- 
mass and leaf area values taken from plants harvested for gas 
exchange and water relations data (N = 50). 

tered plots had higher A,  and ?, this did not translate 
into increased aboveground height, leaf area, or bio- 
mass. This may indicate that allocation to root growth 
is a priority in P. glandulosa seedlings over a wide 
range of resource availabilities. Competition between 
grasses and P. glandulosa seedlings is primarily be- 
lowground (van Auken and Bush 1997), so preferential 
allocation to root development would enable resource 
partitioning and coexistence of P. glandulosa seedlings 
with grasses early in their life cycle, minimize com- 
petitive exclusion, and give seedlings access to deeper, 
more stable supplies of soil moisture. Similar mecha- 
nisms appear to enable successful recruitment of Pinus 
radiata (Sands and Sandian-Nambier 1984) and of oaks 
(Quercus spp.) in semiarid savanna (McPherson 1993, 
Weltzin and McPherson 1997) and tallgrass prairie 
(Bragg et al. 1993).Conversely, the inability of woody 
plant seedlings to extend roots below the depth of grass 
roots before soil drying can place significant con-
straints on establishment (Gordon et al. 1989, Williams 
and Hobbs 1989). 

The effects of herbaceous vegetation on woody plant 
recruitment are variable, and multiple mechanisms can 
operate in complex ways to influence emergence and 
establishment (Burton and Bazzaz 1991, De Steven 
1991a, b ) .  While grasses may reduce emergence, 
growth, and survival of woody seedlings (Gordon et 
al. 1989, Martinez and Fuentes 1993, McPherson 
1993), including P. glandulosa (Bush and van Auken 
1989, 1995, van Auken and Bush 1989, 1997, Polley 
et al. 1994),the competitive reduction may not be large, 
and high mortality or complete exclusion may seldom 
occur. For example, Schmidt and Stubbendieck (1993) 
found that although survival of evergreen tree (Junip-
erus virginiana) seedlings was highest in grazed pas- 
tures (57%), survival of seedlings in pastures that had 
not been grazed for >50 yr was still 40%. In South 
African grasslands, Acacia karroo seedings were ca- 
pable of establishing and surviving within dense grass 
swards (O'Connor 1 9 9 5 ~ ) .In Argentinean grasslands, 
survival and growth of P. caldenia seedlings on sites 
protected from grazing exceeded that of seedlings on 
sites subjected to long-term heavy grazing (Distel et 

al. 1996). In the Post Oak Savanna of central Texas, 
Prosopis seedling emergence was low (6-8%), but not 
nil, on plots protected from grazing for 40 yr (Brown 
and Archer 1989), and only moderate defoliation of 
grasses was required to produce an eight-fold increase 
in emergence. Subsequent survival of all seedlings ex- 
ceeded 80%, implying that thresholds for biotic reg- 
ulation of Prosopis emergence and establishment 
(Archer 1989, 1995a) are exceeded at low levels of 
herbaceous disturbance. 

Traditional rangeland management practices are 
predicated on the notion that "proper grazing" can 
minimize woody plant invasion problems. The implicit 
assumption is that adjusting stocking rates to maintain 
grass composition, cover, and biomass will minimize 
tree and shrub encroachment. The results from nu-
merous grass-shrub seedling competition container ex- 
periments cited earlier substantiate this assumption. 
However, data from this field competition experiment 
and others (e.g., Brown and Archer 1989, Goerner 
1993, Schmidt and Stubbendieck 1993, O'Connor 
1995a, Weltzin et al. 1997, Brown and Carter 1998) 
suggest grazing management strategies to mitigate in- 
vasion by unpalatable woody plants should not focus 
on grass-shrub seedling interference, but instead on 
minimizing seed dispersal (in the case of leguminous 
shrubs where livestock may be primary vectors) and 
on maintaining an effective fire regime. 

In summary, the results of our field experiments con- 
cur with field observations that indicate woody plant 
encroachment into grasslands can be high, regardless 
of grazing pressure or herbaceous composition and bio- 
mass (Brown 1950, Paulsen 1950, Humphrey and 
Mehrhoff 1958, Smith and Schmutz 1975, Bragg and 
Hulbert 1976, Meyer and Bovey 1982, Hennessy et al. 
1983, Towne and Owensby 1984, Smeins and Merrill 
1988).Grass utilization by grazing animals may not be 
a prerequisite for woody plant encroachment, except 
as described below. 

Why Izas Prosopis abundance increased in recent 
Izistory ? 

Given the relative ease of establishment and the high 
survival rates of woody plants such as P. glandulosa 
in grassland and savanna systems, why has their abun- 
dance increased only recently? The spread of P. glan- 
dulosa into Holocene grasslands may have been limited 
by a lack of effective dispersal agents, a constraint 
overcome by the introduction of horses, cattle, and 
sheep into North America (Brown and Archer 1987). 
Alternatively, P. glandulosa, which is capable of veg- 
etative regeneration within 2 wk of germination (Sci- 
fres and Hahn 1971), tolerant of repeated top removal 
during its first growing season (Weltzin et al. 1998), 
and tolerant of hot fires by its second and third year 
of growth (Wright et al. 1976), may have always been 
present in southwestern grassland landscapes as a 
"seedling bank," but its dominance suppressed by pe- 
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riodic fire. Reductions in fire frequency and intensity 
resulting from reductions in fine fuel mass and conti- 
nuity associated with heavy, continuous livestock graz- 
ing (Baisan and Swetnam 1990, Savage and Swetnam 
1990, Covington and Moore 1994) would then have 
allowed established, but suppressed, woody plants such 
as P. glandulosa to increase in stature, express domi- 
nance over the surrounding herbaceous vegetation, and 
attain seed-bearing size. In the absence of fire, P. glan-
dulosa's expansion into mesic and semiarid grassland 
with a history of livestock grazing may be regulated 
more by rates and patterns of seed dispersal and the 
presence or absence of "seedling predators" (Weltzin 
et al. 1997) than by abiotic conditions or herbaceous 
competition. 
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