CEPHEID VARIABLES IN THE MASER-HOST GALAXY NGC 4258

SAMANTHA L. HOFFMANN AND LUCAS M. MACRI

George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA; Imacri@tamu.edu

Received 2014 December 31; accepted 2015 March 16; published 2015 May 18

ABSTRACT

We present results of a ground-based survey for Cepheid variables in NGC 4258. This galaxy plays a key role in the Extragalactic Distance Scale due to its very precise and accurate distance determination via very long baseline interferometry observations of water masers. We imaged two fields within this galaxy using the Gemini North telescope and the Gemini Multi-Object Spectrograph, obtaining 16 epochs of data in the Sloan Digital Sky Survey *gri* bands over 4 yr. We carried out point-spread function photometry and detected 94 Cepheids with periods between 7 and 127 days, as well as an additional 215 variables which may be Cepheids or Population II pulsators. We used the Cepheid sample to test the absolute calibration of theoretical *gri* Period–Luminosity relations and found good agreement with the maser distance to this galaxy. The expected data products from the Large Synoptic Survey Telescope should enable Cepheid searches out to at least 10 Mpc.

Key words: distance scale - galaxies: individual (NGC 4258) - stars: variables: Cepheids

Supporting material: machine-readable and VO tables

1. INTRODUCTION

The classical Extragalactic Distance Scale plays a key role in the current era of "precision cosmology" by providing an estimate of the Hubble constant (H_0) free from assumptions about the contents of our universe. Hence, comparing the value of H_0 obtained via Cepheids and SNe Ia (e.g., Riess et al. 2011) with the one inferred from BAO and CMB observations (Planck Collaboration et al. 2014; Anderson et al. 2014) can provide a strong additional constraint on the properties of dark energy and other cosmological parameters (Weinberg et al. 2013; Dvorkin et al. 2014).

NGC 4258 is a critical anchor in the Cosmic Distance Ladder thanks to its very precise and accurate distance estimate based on very long baseline interferometry observations of water masers orbiting its central massive black hole (Miyoshi et al. 1995; Herrnstein et al. 1999; Argon et al. 2007; Humphreys et al. 2008), with a current value of $D = 7.6 \pm 3\%$ Mpc (Humphreys et al. 2013, equivalent to a distance modulus of $\mu_0 = 29.404 \pm 0.065$ mag). It was previously surveyed for Cepheids by Macri et al. (2006), who used the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) to discover 281 variables with periods between 4 and 45 days. Recently, Fausnaugh et al. (2014) used the Large Binocular Telescope to survey the entire disk of NGC 4258 for Cepheids and found 81 Cepheids with 13 < P < 90 days. They used the technique developed by Gerke et al. (2011), in which Cepheids are detected via difference-imaging of ground-based data and the photometric calibration is obtained from Hubble images.

Given the importance of NGC 4258 for the Extragalactic Distance Scale, we wished to increase its sample of Cepheids with an emphasis on long-period objects. Among the 117 NGC 4258 Cepheids used by Riess et al. (2011), only 24% have P > 30 days (11% for P > 40 days), whereas the samples in the 8 SNe Ia hosts used in that work contain 72 and 47% of the objects in the same period ranges. A better match in the period range spanned by calibrator and target galaxies helps to

decrease the impact of the systematic uncertainty associated with possible changes in the slope of the Cepheid Period– Luminosity (P–L) relation from galaxy to galaxy. An additional motivation for our study was to provide an empirical absolute calibration of the Cepheid P–L relations in the Sloan Digital Sky Survey (SDSS) *gri* filters, to supplement the semiempirical approach of Ngeow & Kanbur (2007) and the theoretical models of Di Criscienzo et al. (2013). The use of this filter set for Cepheid work will become more prevalent in the era of the Large Synoptic Survey Telescope (LSST).

The rest of this paper is organized as follows: Section 2 presents the details of the observations; Section 3 describes the data reduction, photometry and calibration; Section 4 discusses the fiducial Cepheid P–L relations in the SDSS filters; Section 5 details the procedures used to identify and classify Cepheid variables; Section 6 discusses our results; and Section 7 explores the use of LSST for extragalactic Cepheid work.

2. OBSERVATIONS

2.1. Gemini North

We conducted the Cepheid search using the Gemini North 8.1 m telescope and the Gemini Multi-Object Spectrograph (GMOS, Davies et al. 1997), under programs GN-2004A-Q-22 and GN-2007A-Q-14. GMOS has a 5.5×5.5 field of view (FOV) that is covered by three charged-coupled devices (CCDs) with a scale of 0."0727/pixel. There are two small (2."8) gaps between the CCDs and the corners of the outer chips are not illuminated.

NGC 4258 was imaged on 22 nights over 4 yr in order to ensure good phase coverage of the Cepheids. We targeted two fields within the galaxy located at different galactocentric distances, placed so they would fully contain the regions previously observed by Macri et al. (2006). The GMOS FOV is $\sim 3\times$ that of ACS, so this overlap enables the recovery of long-period Cepheids previously discovered with *HST* while still significantly extending the area of the disk that is

Figure 1. SDSS *r*-band mosaic $(36' \times 32')$ of NGC 4258 showing the footprints of the GMOS (octagonal, black and white), WIYN (square, blue) and Macri et al. (2006) *HST*/ACS (square, red) fields. The "inner" field is located north of the galaxy center, while the "outer" field is located south and east.

monitored for variables. We follow the naming convention adopted by Macri et al. (2006): the field located at a larger galactocentric distance is called "outer" and the one closer to the galaxy nucleus is called "inner." The GMOS fields were centered at $\alpha = 12^{h}19^{m}20^{\circ}$ 16, $\delta = +47^{\circ}12'33''_{3}$ and $\alpha = 12^{h}18^{m}48^{\circ}$ 21, $\delta = +47^{\circ}20'25''_{8}$ (J2000.0) for the "outer" and "inner" fields respectively. Figure 1 shows the location of the fields within the galaxy.

We typically obtained 2×600 s exposures at each epoch using the SDSS gri filters (Fukugita et al. 1996). The observations were obtained in queue mode by Gemini staff when the sky conditions were clear (although not necessarily photometric) and the seeing was below 0."7; 16 useful epochs were obtained for each field. The observation log is presented in Table 1.

2.2. WIYN

In order to perform a photometric calibration of the Gemini data (see Section 3.3), additional observations were obtained with the 3.5 m WIYN telescope at Kitt Peak National Observatory using the MiniMosaic camera. Its FOV of 9.6×9.6 is covered by 2 CCDs. The camera was used in 2×2 binned mode, which yields an effective scale of 0."28/ pixel. We observed ten fields covering NGC 4258 at three different epochs (one night per lunation for three consecutive months) using SDSS gri filters (Kitt Peak filter numbers k1017, k1018, k1019). The location of the fields is outlined in gray (blue in online edition) in Figure 1. An additional four fields covering M67 were observed to derive accurate color transformations. Exposure times of 30, 300 and 600 s (hereafter, "shallow," "medium" and "deep") were chosen to bridge the magnitude gap between SDSS and our Gemini photometry.

Table 1 Observation Log

Date	Images
2004 Feb 18	$g \times 2, r \times 2, i \times 2$ (I, O)
2004 Feb 20	$g \times 2$ (I, O); $r \times 2$, $i \times 2$ (I)
2004 Mar 29	$g \times 2$ (O)
2004 May 22	$g \times 2$ (I), $\times 3$ (O)
	$r \times 2, i \times 2$ (I, O)
2004 May 24	$g \times 2, r \times 2, i \times 2$ (I, O)
2004 Jul 08	$g \times 2, r \times 2, i \times 2$ (I)
2004 Jul 14	$r \times 1, i \times 2$ (O)
2005 Feb 10	$g \times 2, r \times 2, i \times 2$ (I, O)
2005 Mar 09	$g \times 2, r \times 2, i \times 2$ (I, O)
2005 Apr 09	$g \times 2, r \times 2, i \times 2$ (I, O)
2005 Apr 12	$g \times 2, r \times 2, i \times 2$ (I, O)
2005 May 04	$g \times 2, r \times 2, i \times 2$ (I, O)
2005 May 08	$g \times 2, r \times 2, i \times 2$ (I, O)
2007 Feb 22	$g \times 2, r \times 2, i \times 2$ (I, O)
2007 Apr 07	$r \times 2, i \times 1$ (O)
2007 Apr 12	$g \times 2, r \times 2, i \times 2$ (I, O)
2007 Apr 20	$g \times 2, r \times 2, i \times 2$ (O)
2008 Jan 06	$g \times 2, r \times 2, i \times 2$ (I)
2008 Jan 07	$g \times 2, r \times 2, i \times 2$ (O)
2008 Jan 10	$g \times 2, r \times 2, i \times 2$ (I)
2008 Jan 16	$g \times 3, r \times 2, i \times 2$ (O)
2008 Feb 16	$g \times 2, r \times 2, i \times 2$ (I)

Note. I: inner field; O: outer field.

3. DATA REDUCTION AND PHOTOMETRY

3.1. Gemini

We processed the raw images using the IRAF¹ gemini package. These routines perform overscan, bias and flat-field corrections that take into account the unique FOV of GMOS. Each CCDs was extracted to a separate FITS file, and the edges were trimmed by an additional 50 pixels.

Due to the crowded nature of the fields, we carried out pointspread function (PSF) photometry using the DAOPHOT and ALLSTAR programs (Stetson 1987, 1993) on each image. Through visual inspection of the images using IRAF, we derived a starting value for the PSF FWHM of 5 pixels with a local sky annulus extending from 15 to 20 pixels. The task FIND was used for an initial detection of objects above a 5σ while the PHOT task returned aperture photometry for these objects. Stars at or near the saturation limit and objects within 2-5'' were identified and temporarily removed from the photometry files to ensure they were not used in the calculation of the PSF model. Saturation trails were masked in a similar manner. The PICK task was used to select 100 stars from the cleaned aperture photometry list, which were visually examined to confirm that they were bright and isolated and to reject misidentified galaxies and stars with close companions. About 15-35 stars per chip remained after this examination, which were used by the PSF task to calculate a PSF model for each image. Finally, ALLSTAR was run to obtain preliminary PSF photometry for all sources.

We used DAOMATCH and DAOMASTER to calculate coordinate transformations between the images. We selected

¹ IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under cooperative agreement with the National Science Foundation.

		Photoinetric Ca	anoration Step	98					
Step	Reference	Target		Mag. Range		Ν	$\sigma \ (mmag)$		
			g	r	i	stars	g	r	i
WIYN/MiMo color term	SDSS-DR7 cat	M67	13-21	12-	-20	345	2	2	1
WIYN/MiMo zeropoint	SDSS-DR7 cat	N4258 "shallow"	14-20	13-19	14-19	79	4	6	9
WIYN/MiMo transfer	N4258 "shallow"	N4258 "deep"		16-21		70	20	21	30
Gem./GMOS-N color term	Adopted from Jørge	nsen (2009)					1	2	3
Gem./GMOS-N zeropoint	N4258 "deep"	GMOS inner/outer		21-24		101	38	33	32
Total							43	40	45

 Table 2

 Photometric Calibration Steps

Note. Systematic uncertainties associated with color terms are evaluated at the extreme ranges of Cepheid colors. All quoted values are averages over different CCDs; actual values were propagated for the Cepheid photometry.

Table 3

	Secondary Standards													
R.A.	Decl.		Magnitudes			$\sigma \ ({\rm mmag})$		Used in						
(deg, J	2000)	g	r	i	g	r	i							
184.39152	47.24800	16.764	16.256	16.141	3	6	6	SW						
184.39327	47.25668	20.676	19.296	18.628	6	7	7	SW						
184.39842	47.22298	19.955	19.497	19.290	10	18	18	SW						
184.42695	47.24926	19.917	18.898	18.552	4	4	4	SW						
184.43053	47.22627	19.986	19.540	19.388	5	9	9	SW						

Note. SW: used in SDSS-WIYN calibration; WG: used in WIYN-Gemini calibration.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms.)

7 or 8 images with the best seeing to create a master image in each band and chip. We performed photometry on each master frame as described above, but this time adopting a 3σ threshold. The total number of objects detected was $\sim 4 \times 10^4$, 6×10^4 and 7×10^4 in *gri* respectively. Lastly, ALLFRAME (Stetson 1994) was used to carry out fixed-position, simultaneous PSF photometry on all images.

3.2. WIYN

We applied an overscan, bias and flat-field correction on all images obtained at the WIYN telescope using the IRAF mscred package. We performed PSF photometry on all images using the DAOPHOT package as described in the previous section. We selected bright, isolated stars to create a PSF model for each image and ALLSTAR was run to obtain PSF photometry.

3.3. Photometric Calibration

Due to the significant difference in the magnitude range covered by the SDSS-DR7 photometric catalog (Abazajian et al. 2009) and our Gemini images, it was not possible to obtain a direct calibration of the latter based on the former. Bright stars in the Gemini images were undetected by SDSS, while most bright SDSS stars were saturated in the Gemini fields. We bridged this magnitude gap by observing the NGC 4258 fields with WIYN as described in Section 2.2 and generating a catalog of local standards.

All steps in our photometric calibration procedure are listed in Table 2. We describe the term being solved for, the source and target photometric catalogs, magnitude range of the stars being used, number of objects used in the final fit, and the systematic uncertainty to be propagated into our final

	Table 4		
Photom	etric Completeness	Limits	
000 G 1		500	

Field	80%	6 Completer	ness	50% Completeness							
	g	r	i	g	r	i					
Inner	24.7	25.0	24.2	25.9	25.5	24.9					
Outer	25.2	25.1	24.5	26.1	25.7	25.3					

Cepheid magnitudes. In the case of color terms, we evaluated the uncertainty at the extremes of the color range spanned by Cepheids (± 0.5 mag relative to the pivot color used in our solutions). In all cases we used PSF photometry and parameters were determined through an iterative sigma clipping procedure. We visually inspected all objects being used in any step that tied two different telescopes/cameras to remove galaxies and blends. Some comments on the individual steps follow.

We found small but well-detected color terms for the transformation of WIYN MiniMosaic magnitudes into the SDSS system; using g-r as the target color, the values were $-0.038, -0.032, -0.037 \pm 0.003$ for gri, respectively. These were derived using high signal-to-noise ratio (S/N) observations of M67 and were fixed for the subsequent step (determination of zeropoints for the "shallow" NGC 4258 fields). Table 3 lists the magnitudes of these secondary standards, which may be useful to future observers. Due to the limited color range of the stars in common between WIYN and Gemini, and their noisier photometry (median $\sigma = 0.045$ mag), we adopted the color terms for GMOS-N derived by Jørgensen (2009) and only solved for the zeropoints. We listed the mean uncertainties for this step in the Table, but propagated the actual values in our calculations. In summary, we estimate systematic zeropoint uncertainties of ~45 mmag for our Cepheid magnitudes.

Figure 2. Fiducial Cepheid P–L relations in the SDSS *gri* bands (top to bottom). Filled symbols denote LMC Cepheids, transformed from VI to *gri* using the procedure described in Section 4, while dots represent theoretical Cepheid magnitudes from Di Criscienzo et al. (2013). The solid line represents the best fit to the LMC data while the dashed lines indicate the $\pm 2\sigma$ width of the relations.

Table 5Cepheid Selection Steps

Step	Number
$L_r \ge 0.75$	4419
$N_r, N_i > 75\%$	4143
$A_i \ge 0.1 \text{ mag}$	2530
Non-aliased P	959
"ABC" grades	408
Pass visual insp.	309

We carried out artificial star tests to characterize the completeness and crowding biases in the Gemini photometry. We divided the color-magnitude diagram into four quadrants and randomly selected 30 stars from each one to ensure that a broad range of stars were simulated. We added these 120 stars to the master frame with the DAOPHOT task ADDSTAR. We repeated this procedure 20 times to increase the statistical significance of our simulations. We performed photometry and matched the detected objects with the input artificial star lists, adopting a critical matching radius of 1.1 pix (equivalent to 3σ). Table 4 lists the magnitudes at which we expect to detect 50 and 80% of the sources. We found no statistically significant photometric bias due to crowding at the magnitudes equivalent to 30% completeness levels. Given the maser distance to NGC 4258 and the fiducial P–L relations discussed in Section 4,

Figure 3. Amplitude ratios derived from the best-fit Cepheid template light curves for all variables with $L_r \ge 0.75$. Dashed lines indicate the various regions used to grade variables (A, B, C or F) based on the amplitude ratios spanned by LMC Cepheids. Filled symbols denote objects listed in Table 6; open symbols represent objects listed in Table 7, and small dots represent variables rejected at any step of the selection process.

Figure 4. Correlation of P–L residuals for all objects listed in Tables 6 and 7, relative to the best-fit P–L relations for objects with "A"-grade amplitude ratios and 15 < P < 100 days. Filled symbols denote Cepheids with "A" grade in amplitude ratios and PL residuals while open symbols denote Cepheids with "B" grade in at least one category. Starred symbols represent objects listed in Table 7. Red symbols are used for objects with only *r* and *i* photometry.

Table 6NGC 4258 Cepheids

ID	R.A.	Decl.	Р	Mean Magnitudes				Light curve Ampl.			Qual.		Cross		
	(J20	00)		r	i	g	σ_r	σ_i	σ_{g}	r	i	g	Fl	ag	ID
	(de	g)	(days)		(mag)			(mmag)			(mmag)		А	R	
C001	184.84502	47.24399	6.975	24.642	24.481	25.335	10	14	13	185	106	219	В	В	
C002	184.62722	47.33035	6.980	25.259	25.181	25.828	17	25	26	229	181	380	А	А	
C003	184.86600	47.24885	7.192	25.607	25.501	26.079	22	40	26	214	175	335	А	А	
C004	184.71477	47.38594	7.212	25.330	25.164	25.755	23	28	31	332	245	486	А	А	
C005	184.87254	47.23393	7.441	25.115	25.009	25.752	13	23	19	237	202	389	А	А	
C006	184.86076	47.16932	8.022	25.326	25.176		17	27		295	234		А	А	
C007	184.61502	47.35720	8.075	25.321	25.307	25.589	22	35	28	344	222	557	А	А	
C008	184.69374	47.34410	8.076	25.100	24.628		22	20		196	141		A	A	MI118600
C009	184.82037	47.16744	8.285	25.114	24.975	25.415	14	22	20	190	132	385	В	A	
C010	184.83517	47.21822	8.327	25.614	24.731		20	21		334	217	 200	A	В	
C011	184.85062	47.19240	8.333	25.142	25.252	25.409	1/	33	22	230	183	398	A	A	MO011990
C012 C012	184.87982	47.18283	8.520	25.227	24.338		19	14	 26	274	125	202	A D	Б	 MO005206
C013	184.80028	47.17903	0.J00 8 588	23.093	24.745	25.005	14	16	20 16	2/8	123	392	Б Л	A	M0003300
C014	184 84962	47.19300	8.500	25 202	24.504	25.150	12	17	10	240	162	544	R	B	
C016	184 64165	47 32391	8 610	23.202	24.500	25 263	12	17	16	259	198	 274	B	A	
C017	184.62840	47.38239	8.861	24.683	24.396	25.269	11	14	17	244	151	420	B	A	
C018	184.70121	47.39193	9.102	25.058	24.504		16	14		242	179		Ā	В	
C019	184.85887	47.20052	9.135	24.777	24.278		12	14		208	129		В	В	MO009786
C020	184.61926	47.34332	9.205	25.368	25.239	25.809	19	29	27	239	192	368	А	А	
C021	184.83388	47.20322	9.282	25.364	24.860	26.055	21	23	56	272	244	511	А	А	MO025226
C022	184.79720	47.24684	9.319	24.980	24.547	25.778	14	15	23	166	117	323	А	А	
C023	184.84171	47.23315	9.353	25.402	24.791		18	19		171	163		В	В	
C024	184.82768	47.24281	9.376	24.842	24.662	25.513	12	17	17	373	316	533	А	А	
C025	184.63615	47.35587	9.546	25.172	24.755		17	19		216	154		А	А	
C026	184.79710	47.20031	9.633	24.628	24.355	24.902	12	16	14	279	204	325	В	А	
C027	184.64081	47.40509	9.833	25.214	25.105	25.782	21	27	33	366	228	563	В	А	
C028	184.80280	47.17722	9.907	25.259	24.834		19	24		188	173		А	А	
C029	184.79607	47.20068	9.929	24.388	24.379		11	16		148	135		A	A	
C030	184.82851	47.23561	10.210	25.518	24.998		21	22		321	306		В	A	
C031	184.70499	47.33163	10.724	24.578	24.537	24.823	13	19	16	278	229	299	В	A	MI091209
C032	184.83676	47.17423	10.950	24.952	24.753		12	17		264	204		A	A	MO014709
C033	184.74105	47.30098	11.055	24.704	25.999	 25.460	12	12	 10	255	170	 276	A	Б	
C034	184.62136	47.32207	11.062	24.041	24.474	25.409	12	12 25	20	335	308	516	A	A	•••
C036	184 69243	47 35635	12 006	24.990	23.004	25.464	24	23	20 55	285	170	481	R	Δ	MI126353
C037	184 65205	47.37317	12.589	25.475	24.988	23.910	27	27	55	386	263	101	A	A	
C038	184.84975	47.16279	13.020	24.853	24.586	25.156	12	15	16	359	324	571	A	A	
C039	184.74147	47.36389	13.091	25.106	24.682	25.682	20	19	30	307	240	437	A	Α	
C040	184.65503	47.39910	13.490	24.230	24.022		08	09		265	180		А	А	
C041	184.78815	47.23692	13.715	25.114	24.835		17	23		290	242		А	А	
C042	184.85266	47.17209	13.896	24.592	24.384	24.800	10	15	12	293	263	483	А	А	
C043	184.61859	47.35511	14.008	24.476	24.484	24.929	10	15	12	348	299	430	А	А	
C044	184.69910	47.35472	15.112	24.230	24.191	24.579	09	13	12	416	338	453	В	А	MI117710
C045	184.65344	47.32998	15.585	24.496	24.462	25.248	09	14	17	351	263	526	А	А	MI144134
C046	184.83560	47.17372	15.801	24.409	24.196	24.783	07	11	12	296	259	499	А	А	MO015276
C047	184.66770	47.33579	15.931	24.620	24.234	25.514	13	14	30	472	282	920	В	А	MI138294
C048	184.70912	47.32398	16.778	24.471	24.066	25.508	15	13	50	387	287	776	В	A	MI075254
C049	184.83369	47.24899	16.790	24.148	23.830	24.850	06	08	09	301	233	441	A	A	
C050	184.83134	47.16879	16.975	24.112	23.935	24.342	05	08	08	345	228	4/3	A	A	F56
C051	184.70419	47.37639	17.560	24.469	24.522	25.079	10	17	15	423	302	453	В	A	 MI101210
C052	104.0982/	47.33901	1/.30/	24.404	24.292	23.187	10	14	20 12	589 152	2/1	545 711	A	A	WII121312
C054	184.05105	47 36516	18 533	24.203	23.904 24 407	24.709 25.147	12	18	12	433 443	325	635	A A	Δ	
C055	184 85487	47 19178	19 219	24.475	27.427	23.147	06	07	17	333	214	544	Δ	Δ	
C056	184 80025	47,20615	21.265	24.573	24.280	25.473	12	15	34	450	401	852	A	A	••••
C057	184.69022	47.33243	21.919	24.377	24.244		12	13		398	332		A	A	MI116159
C058	184.78761	47.17361	22.093	24.002	23.780	24.368	05	07	09	330	293	494	A	A	F48
C059	184.69841	47.33317	22.651	23.475	23.096	24.322	06	06	11	356	207	691	В	В	MI104131,F40
C060	184.68451	47.39373	23.803	23.945	23.819	24.750	05	07	11	397	315	678	А	А	•••
C061	184.70107	47.33777	24.417	23.441	23.742	24.270	10	16	18	330	300	552	А	В	MI103070

Table 6	
(Continued)	

						(Continue	ed)								
ID	R.A.	Decl.	Р		Me	an Magnitud	des			Ligl	nt curve A	mpl.	Qual.		Cross
	(J20	000)		r	i	g	σ_r	σ_i	σ_{o}	r	i	g	F	lag	ID
	(de	eg)	(days)		(mag)		,	(mmag)	8		(mmag)		А	R	
C062	184.85942	47.24532	24.599	24.145	23.851	24.812	09	10	23	434	289	868	В	А	F35
C063	184.68946	47.32550	25.585	24.512	23.889		11	08		403	274		А	А	
C064	184.69884	47.35583	25.790	23.654	23.386	23.885	06	07	06	323	298	639	А	А	MI118782,F14
C065	184.78604	47.23080	27.196	24.365	23.834		17	18		330	316		В	А	
C066	184.79041	47.18555	29.487	23.507	23.236	23.832	05	07	07	432	316	700	А	А	•••
C067	184.70006	47.40289	31.053	23.377	23.266	24.045	03	05	06	402	300	655	А	А	F22
C068	184.80029	47.20732	31.192	23.970	23.621	24.640	06	07	11	436	343	653	А	А	F07
C069	184.62033	47.33033	32.250	23.747	23.606	24.534	05	06	09	455	359	693	А	А	F44
C070	184.85760	47.22968	32.302	23.945	23.511	24.875	05	06	08	378	257	552	А	А	F04
C071	184.85500	47.16898	32.784	23.744	23.375	24.190	05	06	07	438	315	693	А	А	MO005713
C072	184.85625	47.16104	33.148	23.811	23.484	24.327	03	05	07	307	259	428	А	А	F51
C073	184.73065	47.31969	33.662	22.848	22.698	23.478	05	06	08	305	268	430	А	А	MI008723
C074	184.87186	47.22579	33.943	23.503	23.181	24.270	03	04	06	455	353	727	А	А	F17
C075	184.61339	47.35845	34.991	22.928	22.853	23.386	02	03	03	369	302	432	В	А	
C076	184.71275	47.35470	36.981	23.630	23.879	24.460	06	12	13	457	382	631	А	В	MI095995,F31
C077	184.72058	47.39204	38.684	22.947	22.920	23.594	02	03	04	426	319	674	А	Α	F09
C078	184.79111	47.18379	38.760	23.211	22.873	23.725	02	02	06	469	329	762	А	А	•••
C079	184.73595	47.39787	39.108	23.189	23.085	23.998	02	03	05	392	303	680	А	А	F23
C080	184.73083	47.33796	40.951	22.865	22.802	23.523	05	06	07	374	309	450	В	А	MI032759
C081	184.70659	47.32061	44.551	23.005	22.950	23.522	03	04	06	352	304	457	А	А	MI077610
C082	184.84634	47.24652	45.562	23.027	22.690	23.834	02	03	03	296	212	461	А	А	F18
C083	184.71928	47.34868	47.104	23.363	23.068		06	06		300	255		А	А	F64
C084	184.72884	47.37802	51.629	23.662	23.380	24.485	04	06	07	214	137	331	А	А	F24
C085	184.71481	47.30915	51.896	23.282	23.081	23.842	07	07	08	258	183	402	А	А	
C086	184.70316	47.31416	57.338	22.661	22.096		03	02		270	218		А	А	•••
C087	184.85777	47.16559	58.984	22.372	21.732	23.656	02	02	04	144	109	149	В	В	
C088	184.72849	47.31558	78.078	22.560	22.048		06	07		179	116		А	А	
C089	184.84549	47.21271	83.258	22.616	22.257	23.478	02	02	03	155	144	242	В	А	•••
C090	184.84308	47.17088	100.297	22.208	21.485	23.661	01	01	04	145	104	203	А	В	
C091	184.69186	47.38691	105.750	21.667	21.429	22.146	01	01	01	236	173	321	А	А	
C092	184.85767	47.16682	109.365	21.753	21.424	22.347	01	01	02	196	157	291	А	А	
C093	184.81371	47.19359	115.654	22.497	21.902		02	02		172	129		А	А	•••
C094	184.73400	47.32057	127.408	22.732	21.881		05	02		145	113		А	В	

Note. The uncertainties in mean magnitude reflect only the statistical component; please refer to Table 2 for systematic uncertainties. Quality flags: A, amplitude ratios; R, P-L residuals. Cross-IDs: F—Fausnaugh et al. (2014), M—Macri et al. (2006).

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms.)

we expect our Cepheid sample to be severely incomplete below P = 10 and 15 days for the outer and inner fields, respectively.

Before discussing the identification of Cepheid variables in our data, we will address the issue of fiducial Cepheid P–L relations in the SDSS filters since these are used in our candidate selection process.

4. FIDUCIAL CEPHEID P–L RELATIONS IN SDSS FILTERS

Despite its introduction nearly two decades ago, the SDSS filter set has rarely been used for Cepheid photometry. The two most notable uses are the massive surveys of M33 (Hartman et al. 2006) and M31 (Kodric et al. 2013, 2015) using the MMT and the Pan-STARRS telescopes, respectively. Unfortunately, despite concerted efforts over the past decade (Ribas et al. 2005; Bonanos et al. 2006; Vilardell et al. 2010) neither galaxy has a distance estimate as robust as that for the LMC by Pietrzyński et al. (2013): $D = 49.97 \pm 2\%$ kpc (equivalent to $\mu_0 = 18.493 \pm 0.048$ mag). Furthermore, given the apparent LMC-like metallicity prevalent throughout most of the disk of

NGC 4258 (Bresolin 2011), this Milky Way satellite should provide the most appropriate sample of Cepheids from which to obtain a fiducial P–L relation for our analysis.

Motivated by the above, and in a manner similar to previous work by Ngeow & Kanbur (2007), we generated semiempirical Cepheid P-L relations in the SDSS gri filters based on VI photometry for >750 LMC variables with 2.5 <P < 100 days compiled by Macri et al. (2015). This data set consists mainly of photometry from the Optical Gravitational Lensing Experiment (OGLE; Soszynski et al. 2008; Ulaczyk et al. 2013) supplemented by literature measurements for additional long-period objects (Martin et al. 1979; Freedman et al. 1985; Barnes et al. 1999; Tanvir & Boyle 1999; Sebo et al. 2002; Ngeow & Kanbur 2006). We derived photometric transformations appropriate for Cepheids using synthetic magnitudes for stars with $\log g \leq 1$ based on the Castelli & Kurucz (2003) models, kindly provided by F. Castelli.² We fit cubic-order polynomials to stars with V-I < 1.5 and obtained transformations with rms < 0.01 mag. Using the previously

² http://www.ser.oats.inaf.it/castelli/colors.html

Table 7NGC 4258 Variables

ID	R.A.	Decl.	Р		Me	an Magnitud	des			Ligh	t curve	Ampl.	Oı	ual.	Cross
	(J20	000)		r	i	g	σ_r	σ_i	σ_{e}	r	i	g	F	lag	ID
	(de	g)	(days)		(mag)	0	- 1	(mmag)	0		(mmag)	Α	R	
V001	184.61588	47.35870	7.208	25.526	25.490		27	45		275	277		С	A	
V002	184.73772	47.34910	7.482	24.928	24.617		18	20		211	107		Č	A	
V003	184.63512	47.36143	7.643	24.945	25.105	25.426	15	27	19	277	197	268	C	А	
V004	184.71381	47.35652	7.862	24.740	24,493	25.215	17	20	28	315	161	478	C	А	MI095711
V005	184.64999	47.32576	8.956	24.552	24.394	25.200	09	12	14	259	138	315	Č	A	MI144791
V006	184.83194	47.24321	10.278	25.060	24.311		13	12		241	135		C	В	
V007	184,79041	47.20185	11.212	24.609	24.553	24.756	12	18	13	287	209	283	C	А	
V008	184.70895	47.33271	11.472	24.912	24.323	25.481	18	15	32	403	208	645	С	В	MI084547
V009	184,78964	47.23041	11.827	25.212	24.913		18	25		279	295		C	А	
V010	184.82361	47.16617	12.068	26.026	25.050		37	22		476	293		В	С	
V011	184.68954	47.33534	12.493	25.094	24.704	25.815	19	20	37	339	180	396	С	A	
V012	184.64534	47.33925	12.517	25.719	25.497	26.868	30	41	83	391	365	800	В	С	
V013	184.87843	47.16182	12.716	25.721	24.951		23	20		270	266		В	С	
V014	184.82854	47.23107	13.132	25.910	24,989		45	28		437	331		А	С	
V015	184.85751	47.20291	14.208	25.670	24.833		26	22		361	297		А	C	
V016	184.69113	47.34583	14.379	23.985	23.590	24.761	07	08	16	355	183	673	C	В	MI122858
V017	184,73586	47.35723	15.055	24.122	23.846	24.601	08	11	12	360	191	481	Ċ	А	MI043585
V018	184.63998	47.39553	15.526	25.553	25.201	26.565	30	30	83	486	285	407	Č	C	
V019	184,75009	47.36823	16.992	25.465	24.954		30	27		656	373		В	C	
V020	184.74911	47.37642	18.072	25.621	25.234		27	27		380	214		Č	Č	
V021	184 64842	47.37423	19.681	25,290	24 873		23	26		424	291		Ă	Č	
V022	184 65116	47 34100	19.827	25.645	24 705		32	18		675	485		A	Č	
V023	184 69412	47,39306	19.849	25.705	24.903		35	22		555	411		A	Č	
V024	184 69690	47 31952	19.897	25.705	24 529		25	18		304	271		A	C	
V025	184 72200	47 37108	19 923	24 996	24 569	26 305	19	19	62	468	314	1059	C	C	
V026	184 69537	47 34772	21.008	25 261	24 561	20.000	30	22		421	384	1007	A	Č	
V027	184,73750	47.36486	21.229	25.334	24.619		27	22		387	294		A	C	
V028	184 68947	47 33310	21.229	25.290	25.167	25 765	29	37	38	426	288	688	A	C	MI117637
V029	184 65191	47 33193	21.200	25.290	24 944	20.700	37	23	50	533	321	000	B	C	
V030	184.72806	47.39740	21.820	25.725	25.179		33	23		466	331		A	C	
V031	184 69263	47 37821	22.316	25.725	24 552		23	17		365	300		Δ	C	
V032	184 67262	47 34022	22.510	25.511	24.332		28	13		618	383		B	C	
V033	184 87793	47 23467	22.8 18	25.525	24.613		29	16		536	395		A	C	
V034	184 81133	47 17447	23 229	25.451	24.618		22	17		469	323		Δ	C	
V035	184 67284	47 38055	23 541	25.026	24 556		17	17		470	319		A	C	
V036	184 68389	47 33776	24 043	25.020	24 207		23	13		658	621		B	C	
V037	184 74284	47 38165	24.165	25.851	25 260		37	28		433	311		A	C	
V038	184 85094	47 23927	24 460	26.078	24 922		43	28		399	373		B	Č	
V039	184.63644	47.37076	24.610	25.239	24.866		20	20		380	352		A	C	
V040	184 67960	47 36776	25 304	25 140	24 349		21	14		576	305		C	Č	
V041	184 68857	47 35267	25 439	25 4 19	24 484		38	21		492	478		B	Č	
V042	184 80403	47 25509	25.457	25.41)	24.404		19	13		482	290		B	C	
V043	184 73220	47 38623	25.620	25.510	24.969		32	23		482	479		B	C	
V044	184 86981	47 16333	25.863	25.621	24 769		26	18		597	442		A	C	
V045	184 65614	47 37715	25,990	25 321	24.76		20	17		438	353		A	č	
V046	184 66753	47,35943	26 103	25.521	24.961		31	26		493	399		A	č	
V047	184 78963	47.22095	26.125	25.225	24.276		25	14		593	376		R	č	
V048	184 79379	47 24938	26.218	25.336	24 755		25	22		813	625		A	č	
V049	184 68507	47.34696	26.414	25 419	24.367		33	17		534	339		R	č	
V050	184 66936	47 40280	26.460	25.419	24.907		30	22		504	365		Δ	c	
V051	184 62876	47 33155	26 544	25.540	25 437		33	43		394	388		B	č	•••
V052	184 71328	47 39986	26.947	25.830	22.437		34	20		350	237		Δ	č	
V053	184,82440	47.22630	27.004	25.558	25.058	26,594	43	41	 83	469	464	503	B	č	
V054	184 89491	47 23735	27.030	25.874	25.658	26 340	37	65	42	414	315	589	A	č	
V055	184 68645	47 36620	27.050	25.074	23.030	20.340	25	20	74	674	400	507	B	č	•••
V056	184 80307	47 20862	27.205	25.207	25 217	 26 / 83	<u></u> /1	33	83	450	284	 486	R	Č	
V057	184 883/8	47 10002	27. 4 00 27.871	25.920	23.217	20.403 26.660	-+1 24	21	83	-+59 55/	204 451	-+00 500	с С	Ċ	
V058	18/ 73781	47 37002	27.074	25.751	24.032	26.009	24 26	20	<u>4</u> 2	124	285	301	c	C	
V050	18/ 6//10	47 35728	27.900	25.545	27.241	20.404	20	20	74	3/0	205	571	Δ	C	
V060	184 77662	47.33730	20.300	25.094	25.200		27	20		603	315		C A	Ċ	•••
V061	18/ 87186	47 22157	28.510	25.507	2-7.009		31	20		102	202		R	C	
V067	18/ 63050	47 35272	20.713	25.515	20.210		31	17		-+23 5/19	252		Δ	C C	
v 002	104.00909	+1.33213	20./19	25.052	24.394	•••	54	1/		540	555	•••	А	C	

Table 7(Continued)

Dir. P		RΔ	R A Decl P		Me	Mean Magnitudes				Light curve Ampl.		mpl	Qual.		Cross	
(heg) (hags) (hags) <th(hags)< th=""> <th(hags)< th=""> (hags)<th>Ш</th><th>K.A. (120</th><th>00)</th><th>1</th><th>r</th><th>i</th><th></th><th>1C5 (7</th><th><i>G</i>.</th><th>σ_{a}</th><th>r r</th><th>ii cuive A</th><th>трі. ø</th><th>F</th><th>lao</th><th>ID</th></th(hags)<></th(hags)<>	Ш	K.A. (120	00)	1	r	i		1C5 (7	<i>G</i> .	σ_{a}	r r	ii cuive A	трі. ø	F	lao	ID
VNG3 IS.8.1842 42.2014 28.26.15 24.415 27.08 15 19 19 29 4.50 200 61.9 A C V055 84.67148 47.30677 29.489 23.30 10 2.7 83 36 61.9 A C V056 84.73848 47.30677 29.415 2.010 2.27 416 221 C C V057 84.84584 47.3257 20.462 2.5015 2.67.7 77 44 48 282 6.24 B C V070 84.845847 47.32157 20.462 2.572 2.441 1.0 383 3.33 A C		(de	eg)	(days)		(mag)	0	o_r	(mmag)	~ 8		(mmag)	0	A	R	
Vine Bis 48:090 47:3987 28:293 24:398 25:708 15 19 29 148 24.3 0.0 A. C Vis6 18:47:398 473:3087 29:475 24:477 23 416 251 A. C Vis6 18:47:398 473:407 29:475 24:43 24 27 36 46 380 226 A. C Vis8 18:42:962 47:35422 30:642 25:252 24:53 32 321 A. C VI70 18:42:993 47:1672 31:435 24:294 28 17 320 23:5 A. C VI71 18:42:994 47:1572 31:435 24:297 28 17 320 23:5 A. C	V063	18/ 813/5	47 20218	28 756	25.415	24 453		23	15		30/	280		B	C	
Vines BitAG7148 AT 25807 29.4967 25.100 24.697 24 27 287 250 A C V667 184.3968 47.3547 29.814 25.445 25.048 22 24 960 267 A C V667 184.39688 47.23477 23.441 227 64.64 300 228 62.4 B C V668 184.30202 47.3225 30.462 25.257 23.451 134 18 257 A C WO0054411 V071 184.8421 47.25731 31.042 23.535 24.53 18 16 358 28.3 A C WO0054414 A C WO0054414 A C WO0054414	V003 V064	184 68690	47.39297	28.730	23.413	24.455	25.708	15	19	 29	348	243	 619	A	C	
Vie6 184.7298 47.4377 29.676 24.935 20.941 23.84 23.94	V065	184.67148	47.35087	29.489	25.110	24.697		24	27		387	356		A	Č	
Vino? Bital.88668 47.2347 29.844 25.845 25.015 26.77 27 34 64 380 267 A C VI609 Bita.75833 47.38627 304.46 25.92 24.513 27 13 527 27 34 18 28 644 28 41 28 41 28 300 C C C C C C C C C C C C C C C C Bita.353 G S<	V066	184.72989	47.36077	29.676	24.935	24.057		23	23		416	221		С	С	
VINSB Biskag002 41.23567 30.356 25.413 25.07 27 24 64 630 228 6.24 0.7 0.7 VIV0 BiskAg026 47.3242 30.446 2.5572 24.313 34 18 392 333 A C VIV0 BiskAg026 47.3724 31.63 2.540 2.3257 28 41 283 A C C VIV1 BiskAg040 47.2251 31.018 2.404 2.453 1.4 16 420 57.6 B C VIV7 BiskAg040 47.3528 32.429 2.541 2.4967 28 11 564 2.22 A C VIV7 BiskAg0407 47.32483 33.983 2.561 2.4967 291 561 2.61	V067	184.83688	47.24517	29.814	25.845	25.048		32	24		396	267		А	С	
Vies Ist.7358 47.38627 30.442 25.295 24.654 324 354 364 365 A C V107 Ist.72580 47.3722 31.153 25.550 24.263 28 302 333 A C V107 Ist.843421 47.2231 31.163 25.469 25.257 28 22 A C V107 Ist.468743 47.33280 32.422 25.005 24.394 28 31 526 483 A C V107 Ist.46374 47.3820 32.547 24.497 24 303 266 24 353 34 A C V107 Ist.46374 47.3793 33.152 52.666 24.977	V068	184.80092	47.23567	30.356	25.413	25.015	26.277	27	34	64	380	228	624	В	С	
VITO IBA(629C 47.37245 30.642 25.572 24.513 34 18 527 429 A C VIT2 184.5595 47.16732 31.635 25.560 22.571 28 41 288 306 C C C VIT2 184.546639 47.32715 32.022 25.416 24.841 28 27 439 B C VIT0 184.66324 47.38346 32.830 25.572 24.487 28 27 439 B C NT 184.6334 A C NT 184.6334 A C NT 184.6349 A C NT 184.6343 NT NT	V069	184.73583	47.38627	30.446	25.295	24.654		22	15		394	366		В	С	
W071 IsH2/2589 47,3742 31,635 25,408 27 13 302 333 A C V073 IsH23421 47,22531 31,045 25,469 25,257 28 41 28 306 A C V075 IsH4,68745 47,35240 32,202 25,010 24,304 28 31 421 975 B C V077 IsH,481525 47,37843 32,567 24,487 24,480 24 526 483 A C V070 IsH,42106 47,37843 33,105 25,667 24,960 21 560 44 K C C C C K K K K <td< td=""><td>V070</td><td>184.62962</td><td>47.37225</td><td>30.642</td><td>25.572</td><td>24.513</td><td></td><td>34</td><td>18</td><td></td><td>527</td><td>429</td><td></td><td>А</td><td>С</td><td></td></td<>	V070	184.62962	47.37225	30.642	25.572	24.513		34	18		527	429		А	С	
VID72 884.85495 47.16732 31.685 25.469 25.257 28 41 288 30.6 C C C C C A C A C A C A C A C A C A C A C A C A C C A C C C A C A C C C C C C C C C C C C	V071	184.72589	47.37442	31.153	25.350	24.268		27	13		392	333		А	С	
V073 184.84.21 41.225.31 31.918 24.994 41.803 14 10 35.2 28.4 V075 184.66745 47.33520 32.423 25.005 24.4304 18 17 421 395 B C V077 184.62745 47.33540 32.500 25.431 24.957 28 31 52.6 48.3 A C V077 184.62106 47.37893 32.837 25.665 24.960 31 24 506 25.05 24.960 31 24 507 25.5 C C V081 184.6079 47.20128 31.444 25.662 24.900 31 24 507 25.5 C C V081 184.6043 43.9078 34.444 25.622 24.907 24 24	V072	184.85495	47.16732	31.635	25.469	25.257		28	41		288	306		C	C	MO005461
V074 194,10439 41,221 32,213 32,2243 23,205 24,341 23 19 300 411 A C V076 184,65246 47,38546 32,2830 25,478 24,9800 28 27 449 27.6 A C V076 184,45254 47,32524 47,32524 47,32524 C C V077 184,45174 47,17822 32,647 25,467 24,447 24 57.3 38 A C V080 184,4519 47,23904 33,863 25,662 24,962 72 22 56.2 50.0 24,4967 24 21 56.3 50.0 24,4977 24 21 56.3 50.0 C V08.3 184,48644 47,305.9	V073	184.83421	47.22531	31.918	24.994	24.563		14	16		335	283		A	C	•••
V0175 184.68/43 41.3220 25.003 24.394 18 17 41.1 39 B C V0176 184.6125 47.2325 32.580 25.531 24.957 28 31 520 48.3 A C V0170 184.62106 47.37893 32.857 25.666 24.960 31 24 380 266 A C V0181 184.85071 47.13484 33.05 25.605 24.960 31 24 360 A C V018 184.651 47.37163 31.44 25.621 24.917 21 363 04 A C V018 184.6494 47.37167 35.344 27.10 24.767 17 650 343	V0/4	184.64639	47.32715	32.022	25.416	24.841		25	19		500	411		A	C	•••
0107 194.05.40 1.0.8040 1.0.47.9 2.4.780 1 2.6 1.0 <th1.0< th=""> <th1.0< th=""> 1.0</th1.0<></th1.0<>	V075	184.08/45	47.35280	32.423	25.005	24.394		18	17		421	393 276		Б	C	
NUM Num <td>V070</td> <td>184.03240</td> <td>47.36340</td> <td>32.500</td> <td>25.470</td> <td>24.960</td> <td></td> <td>20</td> <td>27</td> <td></td> <td>449 526</td> <td>483</td> <td></td> <td>Б Л</td> <td>C</td> <td>•••</td>	V070	184.03240	47.36340	32.500	25.470	24.960		20	27		449 526	483		Б Л	C	•••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V077	184 83374	47.23233	32.590	25.551	24.937		20	17	•••	564	292		C A	C	
V180 184.8817 47.18497 33.005 25.005 24.966 n. 77 24 n. 575 34 n. A C n. V181 184.80579 47.38644 34.983 25.52 24.917 n. 24 21 n. 306 304 A C n. V182 184.80579 47.31684 34.444 25.522 24.927 n. 31 17 n. 400 277 C C n. N. N. C n. N. N. N. N. C n. N. N. N. C n.	V079	184 62106	47.37893	32.837	25.656	24.960		31	24		380	266		A	C	
Vinsi 184.65927 47.32568 33.933 25.621 24.912 99 21 536 245 C C V082 184.80679 47.20128 34.145 25.542 24.862 27 20 403 310 C C V084 184.8636 47.71576 35.174 25.502 24.257 31 17 405 343 C C V086 184.66160 47.39078 35.709 25.712 24.746 37 17 640 24 A C V088 184.66160 47.39078 35.709 25.719 24.746 37 100 A C Vi090 184.6963 47.31319 36.048 25.433 24.732 25 11 477 472	V080	184.89517	47.18497	33.105	25.605	24.966		27	24		575	384		A	č	
VNR2 184.72793 47.38604 34.048 25.542 24.977 24 211 33.6 0 C C V088 184.86369 47.2396 34.444 25.706 24.869 27 20 490 277 C C V088 184.663749 47.37157 35.174 25.719 24.726 31 17 400 2302 A C V088 184.66160 47.30795 35.545 25.770 24.746 71 3 666 343 C V088 184.66494 47.37697 35.849 25.049 24.4232 17 3 466 A C V091 184.61984 47.37281 36.332 25.433 24.734 23 21 514	V081	184.65927	47.32368	33.983	25.621	24.912		29	21		507	255		С	С	
V083 184.80679 47.20128 34.145 25.760 24.862 27 20 490 277 C C V084 184.68365 47.37157 53.174 25.700 24.827 31 17 490 27 A C V085 184.63494 47.37167 35.174 25.710 24.746 37 22 660 434 A C V088 184.66104 47.37078 35.709 25.770 24.746 37 13 406 243 A C V098 184.6669 47.31131 36.508 25.432 24.724 26 21 363 C V099 184.6663 47.31139 36.508 25.432 24.724 25 11 540 </td <td>V082</td> <td>184.72793</td> <td>47.38604</td> <td>34.048</td> <td>25.542</td> <td>24.977</td> <td></td> <td>24</td> <td>21</td> <td></td> <td>336</td> <td>304</td> <td></td> <td>А</td> <td>С</td> <td></td>	V082	184.72793	47.38604	34.048	25.542	24.977		24	21		336	304		А	С	
V084 184.85439 47.2396 34.444 25.00 24.869 27 20 400 277 C C V085 184.63749 47.40559 35.394 25.719 24.726 37 17 640 424 A C V086 184.64194 47.37695 35.541 25.284 24.662 24 20 640 424 A C V088 184.64194 47.3867 35.849 25.047 24.417 20 71 A C V090 184.61984 47.37281 36.433 25.433 24.4782 25 21 546 444 A C V090 184.61984 47.37281 36.60 25.837 24.487 39 46 411 348 <td>V083</td> <td>184.80679</td> <td>47.20128</td> <td>34.145</td> <td>25.624</td> <td>24.862</td> <td></td> <td>27</td> <td>22</td> <td></td> <td>293</td> <td>310</td> <td></td> <td>С</td> <td>С</td> <td></td>	V083	184.80679	47.20128	34.145	25.624	24.862		27	22		293	310		С	С	
V085 184.68365 47.37157 35.174 25.02 24.527 31 17 65 50 A C V086 184.64160 47.37059 35.341 25.284 24.662 24 20 656 343 C V088 184.64164 47.38067 35.471 25.284 24.476 71 656 343 C V090 184.64494 47.38067 35.484 25.493 24.417 20 17 300 A C V091 184.68663 47.33139 36.508 25.433 24.734 25 21 546 444 A C V091 184.6863 47.16805 38.094 25.813 24.848 40 23 413 348 <td>V084</td> <td>184.85439</td> <td>47.23996</td> <td>34.444</td> <td>25.706</td> <td>24.869</td> <td></td> <td>27</td> <td>20</td> <td></td> <td>490</td> <td>277</td> <td></td> <td>С</td> <td>С</td> <td></td>	V084	184.85439	47.23996	34.444	25.706	24.869		27	20		490	277		С	С	
V086 184.63749 47.40559 35.394 25.719 24.726 37 22 562 560 B C V087 184.64194 47.37078 35.709 25.770 24.746 24 20 640 284 A C V088 184.66160 47.39078 35.709 25.770 24.746 371 7 640 284 A C V090 184.61984 47.31913 36.643 25.433 24.732 25 21 546 444 A C V091 184.61984 47.3181 36.735 25.83 24.845 23 21 546 444 A C V091 184.61984 47.31818 36.094 25.543 24.845 23	V085	184.68365	47.37157	35.174	25.502	24.527		31	17		405	302		А	С	
V087 184.64494 47.37695 35.451 25.284 24.662 24 20 640 424 A C V088 184.66160 47.39078 35.709 25.770 24.746 71 650 343 A C V090 184.64094 47.38047 35.849 25.049 24.232 17 360 284 A C V090 184.68069 47.39113 36.508 25.433 24.732 26 22 472 B C V091 184.68663 47.16805 38.04 25.583 24.844 25 411 38 A C V095 184.70254 47.3777 38.11 25.464 20 18 463 B C	V086	184.63749	47.40559	35.394	25.719	24.726		37	22		562	560		В	С	
V088 184.66160 47.39078 35.709 25.770 24.746 37 17 656 343 C C V099 184.46444 47.38647 35.849 25.049 24.232 17 13 606 284 A C V091 184.68063 47.3313 36.6308 25.437 24.605 22 14 397 267 A C V092 184.61984 47.3313 36.508 25.433 24.782 25 21 474 444 A C V094 184.3186 47.16805 38.041 25.843 24.848 43 25 411 348 A C V095 184.70255 47.37877 38.316 25.887 25.487 33 24 446 434 B C V095 184.6184 47	V087	184.64494	47.37695	35.451	25.284	24.662		24	20		640	424		А	С	•••
V089 184.04494 47.38647 35.849 25.049 24.417 20 17 300 A C V090 184.68696 47.39113 36.433 25.437 24.605 22 14 397 267 A C V091 184.68663 47.31281 36.735 25.433 24.782 26 22 342 363 C C V093 184.61984 47.37281 36.735 25.433 24.784 25 411 348 A C V094 184.81386 471.6805 38.061 25.817 25.487 39 46 433 466 B C V095 184.7522 47.3093 39.948 25.114 24.564 20 18 446 32 502 366 B C V100 <td>V088</td> <td>184.66160</td> <td>47.39078</td> <td>35.709</td> <td>25.770</td> <td>24.746</td> <td></td> <td>37</td> <td>17</td> <td></td> <td>656</td> <td>343</td> <td></td> <td>C</td> <td>C</td> <td>•••</td>	V088	184.66160	47.39078	35.709	25.770	24.746		37	17		656	343		C	C	•••
V909 184.0110 47.35960 36.192 23.0/3 24.417 20 17 371 300 A C V0191 184.68663 47.3139 36.508 25.433 24.782 26 22 342 363 C C V093 184.68663 47.3139 36.508 25.433 24.742 25 21 546 444 A C V093 184.70255 47.37877 38.311 25.883 24.964 43 25 411 348 A C V096 184.86148 47.21674 38.681 26.018 24.848 40 23 426 440 C C V098 184.81614 47.21674 38.081 25.502 24.635 33 24 433 52.3 491	V089	184.64494	47.38647	35.849	25.049	24.232		17	13		406	284		A	С	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V090	184.70110	47.35960	36.192	25.074	24.417		20	17		3/1	300		A	C	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V091 V002	184.08909	47.39113	36.508	25.457	24.005		22	14		397	207		A C	C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V092	184.08003	47.33139	36.735	25.435	24.782		20	22		342 477	303 472		B	C	•••
184.7025 47.37877 38.311 25.853 24.964 43 25 411 348 A C V095 184.68149 47.39181 38.560 25.817 25.487 39 46 493 466 B C V096 184.68149 47.23680 38.681 26.018 24.848 400 23 446 434 B C V097 184.66124 47.21674 38.810 25.520 24.635 30 24 446 434 B C V100 184.66158 47.37246 40.684 25.328 24.431 26 18 502 306 B C V101 184.66320 47.40309 41.746 25.201 24.434 18 12 339 254 A C V103 184.6	V093	184 81386	47.16805	38 094	25 583	24.734		23	21		546	444		A	C	
V096 184.68149 47.39181 38.560 25.817 25.487 39 46 493 466 B C V097 184.86378 47.23680 38.681 26.018 24.848 40 23 426 440 C C V098 184.67522 47.36093 39.948 25.114 24.564 20 18 446 434 B C V100 184.61544 47.32947 40.331 25.954 25.266 444 32 502 306 B C V101 184.66815 47.3715 40.812 25.766 24.434 18 585 474 A C V102 184.67051 47.37054 41.820 24.801 26.008 17 14 42 450 305 416 C C V104 184.6	V095	184.70255	47.37877	38.311	25.853	24.964		43	25		411	348		A	Č	
V097 184.86378 47.23680 38.681 26.018 24.848 40 23 426 440 C C V098 184.81641 47.21674 38.810 25.520 24.635 32 4 446 434 B C V109 184.67522 47.36093 39.948 25.114 24.564 20 18 502 306 B C V101 184.66415 47.37246 40.684 25.328 24.431 18 12 339 254 A C V102 184.66820 47.40309 41.746 25.201 24.434 18 12 339 254 A C V104 184.68365 47.37054 41.820 24.890 24.010 12 17 361 211 B C V105	V096	184.68149	47.39181	38.560	25.817	25.487		39	46		493	466		В	Ċ	
V098 184.81641 47.21674 38.810 25.520 24.635 33 24 446 434 B C V099 184.67522 47.36093 39.948 25.114 24.564 20 18 502 306 B C V100 184.61584 47.32947 40.311 25.524 22.956 44 32 502 306 B C V101 184.66415 47.3715 40.812 25.766 24.544 18 12 339 254 A C V103 184.66820 47.40309 41.746 25.201 24.434 18 12 339 254 A C VI04 184.68269 47.3068 42.461 25.288 24.716 22 13 370 236 B C V107 <td>V097</td> <td>184.86378</td> <td>47.23680</td> <td>38.681</td> <td>26.018</td> <td>24.848</td> <td></td> <td>40</td> <td>23</td> <td></td> <td>426</td> <td>440</td> <td></td> <td>С</td> <td>С</td> <td></td>	V097	184.86378	47.23680	38.681	26.018	24.848		40	23		426	440		С	С	
V099 184.67522 47.36093 39.948 25.114 24.564 20 18 523 491 B C V100 184.61584 47.32947 40.331 25.954 25.9266 44 32 502 306 B C V101 184.66415 47.33715 40.6812 25.328 24.431 26 18 410 226 A C V102 184.668365 47.37054 41.820 24.890 24.301 26.008 17 14 42 450 305 416 C C V105 184.68365 47.37054 41.262 25.288 24.716 22 13 361 211 B C V106 184.68549 47.40226 43.272 24.232 24.435 22 13 370 236 B C	V098	184.81641	47.21674	38.810	25.520	24.635		33	24		446	434		В	С	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V099	184.67522	47.36093	39.948	25.114	24.564		20	18		523	491		В	С	•••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V100	184.61584	47.32947	40.331	25.954	25.296		44	32		502	306		В	С	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V101	184.66415	47.37246	40.684	25.328	24.431		26	18		410	226		С	С	•••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V102	184.67718	47.33715	40.812	25.766	24.544		39	18		585	474		A	C	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V103	184.66820	47.40309	41.746	25.201	24.434		18	12		339	254		A	C	•••
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	V104 V105	184.68365	47.37054	41.820	24.890	24.301	26.008	17	14	42	450	305	416	C	C	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V105	184.75051	47.57008	42.401	23.200	24.710		12	20		314	529 211		R R	C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V100	184.08349	47.40220	43.270	24.777	24.001		22	17		370	211		B	C	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V107	184 62269	47.33659	43.945	25.288	24.373		19	12		325	264		A	C	•••
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	V109	184.80774	47.24590	44.142	25.066	24.519		16	17		469	411		A	C	
V111 184.74081 47.34787 44.511 24.502 23.424 19 09 400 204 C C V112 184.64447 47.40064 44.907 25.433 24.815 23 19 335 328 B C V113 184.82291 47.18021 44.922 25.835 25.303 33 33 490 381 A C V114 184.70123 47.38385 46.016 25.200 24.624 18 17 241 223 A C V115 184.83519 47.25141 48.035 25.315 24.378 19 12 395 207 C C V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C <	V110	184.70373	47.31695	44.145	24.422	24.212		15	17		355	317		A	Ċ	
V112 184.64447 47.40064 44.907 25.433 24.815 23 19 335 328 B C V113 184.82291 47.18021 44.922 25.835 25.303 33 33 490 381 A C V114 184.70123 47.38385 46.016 25.200 24.624 18 17 241 223 A C V115 184.83519 47.25141 48.035 25.315 24.378 19 12 395 207 C C V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C <	V111	184.74081	47.34787	44.511	24.502	23.424		19	09		400	204		С	С	
V113 184.82291 47.18021 44.922 25.835 25.303 33 33 490 381 A C V114 184.70123 47.38385 46.016 25.200 24.624 18 17 241 223 A C V115 184.83519 47.25141 48.035 25.315 24.378 19 12 395 207 C C V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C V118 184.88217 47.22714 51.012 25.980 25.063 33 23 517 279 C C <t< td=""><td>V112</td><td>184.64447</td><td>47.40064</td><td>44.907</td><td>25.433</td><td>24.815</td><td></td><td>23</td><td>19</td><td></td><td>335</td><td>328</td><td></td><td>В</td><td>С</td><td></td></t<>	V112	184.64447	47.40064	44.907	25.433	24.815		23	19		335	328		В	С	
V114 184.70123 47.38385 46.016 25.200 24.624 18 17 241 223 A C V115 184.83519 47.25141 48.035 25.315 24.378 19 12 395 207 C C V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C V118 184.88217 47.22714 51.012 25.980 25.063 33 23 517 279 C C V119 184.81825 47.22616 51.099 25.545 24.481 25 15 353 270 A C <t< td=""><td>V113</td><td>184.82291</td><td>47.18021</td><td>44.922</td><td>25.835</td><td>25.303</td><td></td><td>33</td><td>33</td><td></td><td>490</td><td>381</td><td></td><td>А</td><td>С</td><td></td></t<>	V113	184.82291	47.18021	44.922	25.835	25.303		33	33		490	381		А	С	
V115 184.83519 47.25141 48.035 25.315 24.378 19 12 395 207 C C V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C V118 184.88217 47.22714 51.012 25.980 25.063 33 23 517 279 C C V119 184.81825 47.22616 51.099 25.545 24.481 25 15 353 270 A C V120 184.64674 47.35896 51.911 25.112 24.334 17 13 248 258 C C <	V114	184.70123	47.38385	46.016	25.200	24.624		18	17		241	223		А	С	
V116 184.64465 47.39151 50.888 25.247 24.699 20 17 368 306 A C V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C V118 184.88217 47.22714 51.012 25.980 25.063 33 23 517 279 C C V119 184.81825 47.22616 51.099 25.545 24.481 25 15 353 270 A C V120 184.64674 47.35896 51.911 25.112 24.334 17 13 248 258 C C V121 184.71109 47.35273 52.319 24.096 23.005 09 05 328 164 C C <	V115	184.83519	47.25141	48.035	25.315	24.378		19	12		395	207		С	С	
V117 184.72504 47.37707 50.929 25.309 24.638 22 17 389 306 A C V118 184.8217 47.22714 51.012 25.980 25.063 33 23 517 279 C C V119 184.81825 47.22616 51.099 25.545 24.481 25 15 353 270 A C V120 184.64674 47.35896 51.911 25.112 24.334 17 13 248 258 C C V121 184.71109 47.35273 52.319 24.096 23.005 09 05 328 164 C C V122 184.62032 47.34943 52.367 24.265 24.232 24.827 07 10 10 249 182 375 A C <	V116	184.64465	47.39151	50.888	25.247	24.699		20	17		368	306		Α	C	
v118 184.8821/ 4/.22/14 51.012 25.980 25.063 33 23 517 279 C C V119 184.81825 47.22616 51.099 25.545 24.481 25 15 353 270 A C V120 184.64674 47.35896 51.911 25.112 24.334 17 13 248 258 C C V121 184.71109 47.35273 52.319 24.096 23.005 09 05 328 164 C C V122 184.62032 47.34943 52.367 24.265 24.232 24.827 07 10 10 249 182 375 A C V123 184.66360 47.38593 52.458 24.904 24.302 26.090 17 15 44 351 176 316 C	V117	184.72504	47.37707	50.929	25.309	24.638		22	17		389	306		A	C	
v119 184.81825 47.22010 51.099 25.345 24.481 25 15 353 270 A C V120 184.64674 47.35896 51.911 25.112 24.334 17 13 248 258 C C V121 184.71109 47.35273 52.319 24.096 23.005 09 05 328 164 C C V122 184.62032 47.34943 52.367 24.265 24.232 24.827 07 10 10 249 182 375 A C V123 184.66360 47.38593 52.458 24.904 24.302 26.090 17 15 44 351 176 316 C C V124 184.83891 47.20099 52.533 24.262 23.504 25.049 12 10 21 275 184 320 B C	V118	184.88217	47.22714	51.012	25.980	25.063		33	23		517	279		C	С	
V120 184.04074 47.35890 51.911 25.112 24.554 17 15 248 258 C C V121 184.71109 47.35273 52.319 24.096 23.005 09 05 328 164 C C V122 184.62032 47.34943 52.367 24.265 24.232 24.827 07 10 10 249 182 375 A C V123 184.66360 47.38593 52.458 24.904 24.302 26.090 17 15 44 351 176 316 C V124 184.83891 47.20099 52.533 24.262 23.504 25.049 12 10 21 275 184 320 B C	V119 V120	184.81825	47.22616	51.099	25.545	24.481		25	15		555 249	270		A	C	•••
V121 104,7109 47.35275 52.519 24.090 25.003 09 05 528 104 C C V122 184.62032 47.34943 52.367 24.265 24.232 24.827 07 10 10 249 182 375 A C V123 184.66360 47.38593 52.458 24.904 24.302 26.090 17 15 44 351 176 316 C C V124 184.83891 47.20099 52.533 24.262 23.504 25.049 12 10 21 275 184 320 B C	V120 V121	104.040/4	41.33890	51.911 52.210	23.112	24.334		1/	15		248	238 164		C	C	•••
V122 101.0202 10.0775 52.507 24.203 24.027 07 10 10 249 102 57.5 A C V123 184.66360 47.38593 52.458 24.904 24.302 26.090 17 15 44 351 176 316 C C V124 184.83891 47.20099 52.533 24.262 23.504 25.049 12 10 21 275 184 320 B C	v 121 V122	184 62032	47.33273	52.319	24.090 24.265	23.003 24.232	 24 827	09	10	 10	528 240	182	 375	Δ	C	
V124 184.83891 47.20099 52.533 24.262 23.504 25.049 12 10 21 275 184 320 B C	V123	184 66360	47,38593	52.458	24.904	24.302	26.090	17	15	44	351	176	316	С С	C	•••
	V124	184.83891	47.20099	52.533	24.262	23.504	25.049	12	10	21	275	184	320	B	Č	

Table 7(Continued)

ID R.A. Decl.		P Mean Magnitudes					Light curve Ampl.				Qual.		Cross		
	(J20	000)		r	i	g	σ_r	σ_i	σ_{g}	r	i	g	F	ag	ID
	(de	eg)	(days)		(mag)			(mmag)			(mmag)		А	R	
V125	184.68855	47.34049	52.755	24.561	23,996		12	11		318	235		A	С	
V126	184.82556	47.19948	53.460	25.424	24.285		22	13		301	215		А	C	
V127	184.86745	47.22917	55.180	25.278	24.449		17	14		226	152		А	С	
V128	184.69830	47.36268	55.865	25.140	24.366		27	17		306	213		Α	С	
V129	184.67491	47.40297	56.694	24.691	24.115		11	09		189	175		А	С	
V130	184.87714	47.21610	57.464	25.414	24.782		20	19		297	271		Α	С	
V131	184.65292	47.38004	58.623	25.592	24.807		30	20		309	185		В	С	
V132	184.70101	47.32054	59.136	24.425	23.261		13	06		186	124		Α	С	•••
V133	184.80930	47.20495	59.640	24.919	24.399		15	14		321	197		В	C	
V134	184.65126	47.39195	59.895	25.515	24.875		25	19		319	265		A	C	
V135	184.63419	47.38253	60.243	25.304	24.379	26.284	23	14	61	305	202	256	C	C	•••
V130	184.82038	47.24200	02.283 62.515	24.870	24.238		12	11		209	158		A	C	
V137	184.02708	47.37817	62.068	25.159	24.718		19	19		290	202		A	C	
V130	184.04722	47.33090	63 200	25.090	24.190		20	10		322	100		R	C	
V140	184 70583	47.34950	63 316	23.243	24.483	•••	12	15		150	139	•••	A	C	
V141	184 64357	47 40007	64,506	25.323	24.630	26,535	20	15	62	271	230	263	C	C	
V142	184.83250	47.23988	65.440	25.818	24.753	2010000	30	18		355	203	-00	B	č	
V143	184.86067	47.23750	65.990	25.091	24.653	25.915	13	16	22	180	139	253	А	С	
V144	184.79779	47.22414	66.078	24.286	23.923	24.908	08	11	13	201	183	287	А	С	
V145	184.80391	47.20254	67.656	24.283	24.069	24.995	08	12	14	188	171	217	В	С	
V146	184.85565	47.22339	68.615	23.609	22.538	25.088	03	02	12	225	142	200	С	С	
V147	184.87787	47.20903	69.116	24.513	24.129		10	12		141	111		А	С	
V148	184.83575	47.21942	70.386	25.432	24.841		27	23		279	192		А	С	
V149	184.66441	47.35379	71.945	24.941	24.683		16	20		302	209		А	С	
V150	184.70332	47.32773	74.032	24.618	24.171	25.285	13	12	22	195	144	326	А	С	MI091129
V151	184.80777	47.25814	74.776	24.770	24.316	25.516	11	14	17	208	182	342	Α	С	
V152	184.77460	47.18651	74.875	25.404	24.840	26.510	19	18	83	382	302	320	C	С	
V153	184.61720	47.36103	77.405	24.536	24.104	25.721	10	11	23	105	108	161	C	C	
V154	184.67953	47.32811	11.785	25.349	24.598		22	17		200	201		C D	C	•••
V 155	184.66908	47.35049	84.354	25.223	24.508		23	17		296	1/9		В	C	
V150	184.04239	47.33000	86 804	24.004	24.169	26.295	12	12	43	225	121	101	A C	C	•••
V157	184 64136	47.23714	88 826	25.495	24.421	20.445	18	12	55	170	138	191	Δ	C	
V159	184.82123	47.23845	89 470	25.096	24.370		16	15		205	123		B	C	
V160	184.67403	47.36641	92.326	24.907	24.149		15	12		286	179		B	č	
V161	184.84747	47.22444	92.704	25.256	24.148		17	10		190	106		С	С	
V162	184.83473	47.25617	92.821	22.957	22.064	24.506	02	02	07	185	129	315	А	С	
V163	184.85008	47.21184	93.248	25.938	25.123		35	27		269	196		А	С	
V164	184.86081	47.21518	93.353	24.921	24.552		12	15		238	182		А	С	
V165	184.80736	47.17226	94.460	25.054	24.602		12	14		161	125		Α	С	
V166	184.84497	47.25024	94.662	25.834	24.942		27	21		234	169		Α	С	
V167	184.73820	47.38466	95.210	25.692	24.693		28	17		381	204		С	С	•••
V168	184.83627	47.22005	95.212	23.407	23.045	24.215	03	04	06	183	159	359	A	C	MO028606
V169	184.67161	47.33118	95.241	25.162	24.866		18	22		203	209		Ċ	C	
V171	184.73251	47.32790	95.324	23.944	23.701		12	12		150	121		A	C	
V1/1 V172	184.82220	47.18/01	93.623	22.800	21.899	24.302	20	20	07	128	211	112	Р	C	
V172	184.61790	47.22009	95.895	25.590	24.151	 24 975	50 07	20		570 150	108	 265		C	
V174	184 86279	47.30113	95.932	24.170	23.037	24.075	18	10	11	256	165	205	Δ	C	
V175	184 80141	47 25284	97 793	25.780	24.550		28	15		331	200		B	C	
V176	184.61964	47.37447	98.284	25.091	24.332		17	13		174	184		C	č	
V177	184.61723	47.33751	100.502	24.281	23.889	25.213	07	07	13	170	173	206	č	č	
V178	184.70874	47.39122	101.217	23.945	23.396	25.968	07	07	36	167	131	191	В	C	
V179	184.70857	47.34545	101.461	25.025	24.600		22	20		234	156		А	С	
V180	184.67085	47.36091	104.565	25.768	24.886		36	23		377	302		А	С	
V181	184.66515	47.36625	105.016	25.286	24.699		22	19		203	200		В	С	
V182	184.69290	47.39526	105.526	24.807	24.327		13	12		218	146		А	С	
V183	184.84706	47.17998	105.594	25.575	24.795		21	17		220	221		С	С	
V184	184.83070	47.20387	106.526	23.449	22.320		04	02		183	125		А	С	
V185	184.65627	47.36112	106.700	24.507	23.550		11	07		143	106		А	С	
V186	184.65965	47.34709	109.364	25.402	24.805		23	21		258	190		Α	С	

Table 7(Continued)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ag ID R C ···· C ···· C ···· C ···· C ···· C ···· C ···· C ···· C ···· C ····
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	R C C C C C C C C C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C C C C C C C
V188 184.70262 47.35945 110.489 24.584 23.590 18 09 112 102 A V189 184.77916 47.20367 111.573 25.539 24.686 28 19 441 325 A V190 184.73289 47.38322 111.590 25.056 23.664 26.547 19 07 81 260 167 285 B V191 184.71700 47.37902 111.750 24.231 23.922 25.239 09 11 21 130 106 174 A V192 184.68226 47.33691 111.814 24.723 23.680 17 11 220 115 C V193 184.82829 47.19758 113.580 25.193 24.484 17 15 289 234 B V194 184.83603 47.16718 113.615 25.079 24.652 14 16	C C C C C C
V189 184.77916 47.20367 111.573 25.539 24.686 28 19 441 325 A V190 184.73289 47.38322 111.590 25.056 23.664 26.547 19 07 81 260 167 285 B V191 184.71700 47.37902 111.750 24.231 23.922 25.239 09 11 21 130 106 174 A V192 184.68226 47.33691 111.814 24.723 23.680 17 11 220 115 C V193 184.82829 47.19758 113.580 25.193 24.484 17 15 289 234 A V194 184.83603 47.16718 113.615 25.079 24.652 14 16 185 108 B V195 184.62598 47.35175 113.819 23.650 22.539 07 03	C C C C C
V190184.7328947.38322111.59025.05623.66426.547190781260167285BV191184.7170047.37902111.75024.23123.92225.239091121130106174AV192184.6822647.33691111.81424.72323.6801711220115CV193184.8282947.19758113.58025.19324.4841715289234AV194184.8360347.16718113.61525.07924.6521416185108BV195184.6259847.35208113.66025.49524.5962417419254BV196184.7177047.35175113.81923.65022.5390703174109BV197184.8452147.16626114.10625.43824.4712116289277BV198184.7279847.36155115.72625.51624.5462917392334AV199184.8106847.24450118.64525.22624.6371771227200AV200184.7035547.39479119.05025.56024.674	C C C C
V191184.7170047.37902111.75024.23123.92225.239091121130106174AV192184.6822647.33691111.81424.72323.6801711220115CV193184.8282947.19758113.58025.19324.4841715289234AV194184.8360347.16718113.61525.07924.6521416185108BV195184.6259847.35208113.66025.49524.5962417419254BV196184.7177047.35175113.81923.65022.5390703174109BV197184.8452147.16626114.10625.43824.4712116289277BV198184.7279847.36155115.72625.51624.5462917392334AV199184.8106847.24450118.64525.22624.6371771.1227200AV200184.7035547.39479119.05025.56024.6742516207154AV201184.8443547.17062120.16024.544<	C C C
V192 184.68226 47.33691 111.814 24.723 23.680 17 11 220 115 C V193 184.82829 47.19758 113.580 25.193 24.484 17 15 289 234 A V194 184.83603 47.16718 113.615 25.079 24.652 14 16 185 108 B V195 184.62598 47.35208 113.660 25.495 24.596 24 17 419 254 B V196 184.71770 47.35175 113.819 23.650 22.539 07 03 174 109 B V197 184.84521 47.16626 114.106 25.438 24.471 21 16 289 277 B V198 184.72798 47.36155 115.726 25.516 24.546 29 17 <td>C C</td>	C C
V193 184.82829 47.19758 113.580 25.193 24.484 17 15 289 234 A V194 184.83603 47.16718 113.615 25.079 24.652 14 16 185 108 B V195 184.62598 47.35208 113.660 25.495 24.596 24 17 419 254 B V196 184.71770 47.35175 113.819 23.650 22.539 07 03 174 109 B V197 184.84521 47.16626 114.106 25.438 24.471 21 16 289 277 B V197 184.84521 47.36155 115.726 25.516 24.546 29 17 392 334 A V199 184.81068 47.24450 118.645 25.226 24.637 17 17 <td>C</td>	C
V194184.8360347.16718113.61525.07924.6521416185108BV195184.6259847.35208113.66025.49524.5962417419254BV196184.7177047.35175113.81923.65022.5390703174109BV197184.8452147.16626114.10625.43824.4712116289277BV198184.7279847.36155115.72625.51624.5462917392334AV199184.8106847.24450118.64525.22624.6371717227200AV200184.7035547.39479119.05025.56024.6742516207154AV201184.8443547.17062120.16024.54423.48425.963070528284144285CV202184.7135647.32236120.35622.88422.70623.529050607271200386AV203184.8928447.18734120.71925.72124.9992823377298AV204184.8255647.24960121.07925.546<	a
V195 184.62598 47.35208 113.660 25.495 24.596 24 17 419 254 B V196 184.71770 47.35175 113.819 23.650 22.539 07 03 174 109 B V197 184.84521 47.16626 114.106 25.438 24.471 21 16 289 277 B V198 184.72798 47.36155 115.726 25.516 24.546 29 17 392 334 A V199 184.81068 47.24450 118.645 25.226 24.637 17 17 227 200 A V200 184.70355 47.39479 119.050 25.560 24.674 25 16 207 154 A V201 184.84435 47.17062 120.160 24.574 23.484 25.963 07 05 28<	С
V196 184.71770 47.35175 113.819 23.650 22.539 07 03 174 109 B V197 184.84521 47.16626 114.106 25.438 24.471 21 16 289 277 B V198 184.72798 47.36155 115.726 25.516 24.546 29 17 392 334 A V199 184.81068 47.24450 118.645 25.226 24.637 17 17 227 200 A V200 184.70355 47.39479 119.050 25.560 24.674 25 16 207 154 A V201 184.84435 47.17062 120.160 24.544 23.484 25.963 07 05 28 284 144 285 C V202 184.71356 47.32236 120.356 22.884 22.706 23.529 05 06 0	С …
V197 184.84521 47.16626 114.106 25.438 24.471 21 16 289 277 B V198 184.72798 47.36155 115.726 25.516 24.546 29 17 392 334 A V199 184.81068 47.24450 118.645 25.226 24.637 17 17 227 200 A V200 184.70355 47.39479 119.050 25.560 24.674 25 16 207 154 A V200 184.70355 47.17062 120.160 24.544 23.484 25.963 07 05 28 284 144 285 C V201 184.84435 47.17062 120.356 22.884 22.706 23.529 05 06 07 271 200 386 A V203 184.89284 47.18734 120.719 25.721 24.999 28 23 .	C
V198 184.72798 47.36155 115.726 25.516 24.546 29 17 392 334 A V199 184.81068 47.24450 118.645 25.226 24.637 17 17 227 200 A V200 184.70355 47.39479 119.050 25.560 24.674 25 16 207 154 A V201 184.84435 47.17062 120.160 24.544 23.484 25.963 07 05 28 284 144 285 C V202 184.71356 47.32236 120.356 22.884 22.706 23.529 05 06 07 271 200 386 A V203 184.89284 47.18734 120.719 25.721 24.999 28 23 377 298 A V204 184.82556 47.24960 121.079 25.546 24.720 26.672 22 17 <td< td=""><td>С …</td></td<>	С …
V199184.8106847.24450118.64525.22624.6371717227200AV200184.7035547.39479119.05025.56024.6742516207154AV201184.8443547.17062120.16024.54423.48425.963070528284144285CV202184.7135647.32236120.35622.88422.70623.529050607271200386AV203184.8928447.18734120.71925.72124.9992823377298AV204184.8255647.24960121.07925.54624.72026.672221758372384400C	С …
V200184.7035547.39479119.05025.56024.6742516207154AV201184.8443547.17062120.16024.54423.48425.963070528284144285CV202184.7135647.32236120.35622.88422.70623.529050607271200386AV203184.8928447.18734120.71925.72124.9992823377298AV204184.8255647.24960121.07925.54624.72026.672221758372384400C	С …
V201 184.84435 47.17062 120.160 24.544 23.484 25.963 07 05 28 284 144 285 C V202 184.71356 47.32236 120.356 22.884 22.706 23.529 05 06 07 271 200 386 A V203 184.89284 47.18734 120.719 25.721 24.999 28 23 377 298 A V204 184.82556 47.24960 121.079 25.546 24.720 26.672 22 17 58 372 384 400 C	С …
V202 184.71356 47.32236 120.356 22.884 22.706 23.529 05 06 07 271 200 386 A V203 184.89284 47.18734 120.719 25.721 24.999 28 23 377 298 A V204 184.82556 47.24960 121.079 25.546 24.720 26.672 22 17 58 372 384 400 C	С …
V203 184.89284 47.18734 120.719 25.721 24.999 28 23 377 298 A V204 184.82556 47.24960 121.079 25.546 24.720 26.672 22 17 58 372 384 400 C	C MI062769,F55
V204 184.82556 47.24960 121.079 25.546 24.720 26.672 22 17 58 372 384 400 C	С …
	С …
V205 184.86218 47.16662 121.893 25.711 24.762 23 17 242 123 C	С …
V206 184.73367 47.35972 121.982 24.555 24.104 12 12 178 156 A	C
V207 184.81612 47.19847 124.233 25.028 24.128 15 10 196 165 A	С …
V208 184.70520 47.37148 127.054 25.059 24.133 18 12 242 192 A	С …
V209 184.86861 47.23246 127.056 25.300 24.118 16 09 245 138 C	С …
V210 184.82518 47.24349 127.181 25.636 24.690 25 17 258 181 A	С …
V211 184.82652 47.20412 128.765 25.314 24.525 19 15 236 206 A	С …
V212 184.81662 47.19888 130.653 25.178 23.951 18 10 302 307 C	С …
V213 184.83199 47.22706 135.601 25.500 24.805 23 21 271 148 C	С …
V214 184.61379 47.33673 138.177 22.252 21.447 23.895 01 01 04 205 108 171 C	С …
V215 184.72481 47.32247 156.980 23.823 22.794 10 05 264 175 A	C

Note. The uncertainties in mean magnitude reflect only the statistical component; please refer to Table 2 for systematic uncertainties. Quality flags: A, amplitude ratios; R, P-L residuals.

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms.)

discussed distance modulus for the LMC, this procedure yielded the following P–L relations in the SDSS *gri* filters:

r

$$g = -3.657(50) - 2.560(34)(\log P - 1) \quad \sigma = 0.261 \quad (1)$$

$$= -4.148(49) - 2.845(23)(\log P - 1) \quad \sigma = 0.177 \quad (2)$$

$$i = -4.275(48) - 2.952(19)(\log P - 1)$$
 $\sigma = 0.148$ (3)

where the zeropoint uncertainties include the term associated with the distance modulus. We then calculated an independent set of P–L relations based on the theoretical Cepheid magnitudes in SDSS filters computed by Di Criscienzo et al. (2013). We restricted the data set to 2.5 < P < 40 days due to the incomplete filling of the instability strip beyond the upper period limit, which arises as a consequence of the upper mass limit considered in the models. We obtained:

$$g = -3.738(07) - 2.615(18)(\log P - 1) \quad \sigma = 0.214 \quad (4)$$

$$r = -4.241(05) - 2.882(13)(\log P - 1) \quad \sigma = 0.161 \quad (5)$$

$$i = -4.402(04) - 2.987(12)(\log P - 1)$$
 $\sigma = 0.139$ (6)

which are in excellent agreement in terms of the slopes with the previous set of relations; both sets are shown in Figure 2. We used each set of PLs to derive relations between the residuals of

a given Cepheid in two bands, which we will use in our candidate selection process below. We found:

$$\Delta r = 0.752 \ \Delta g \ \sigma = \ 0.028 \tag{7}$$

$$\Delta i = 0.650 \ \Delta g \ \sigma = \ 0.038 \tag{8}$$

$$\Delta i = 0.864 \ \Delta r \quad \sigma = \ 0.015 \tag{9}$$

where the dispersions were calculated using the LMC data. We also calculated the 1σ -equivalent ranges spanned by the variables along the color–color relations, which were 0.27, 0.25 and 0.21 mag, respectively.

5. IDENTIFICATION OF CEPHEID VARIABLES

We used the TRIAL program (kindly provided by P. Stetson) to identify variable objects by calculating the modified Welch-Stetson variability index *L* (Stetson 1996) in the *r*-band data, setting $L_r = 0.75$ as the variability threshold and only considering objects with valid photometry in $\geq 75\%$ of the *r* and *i* images. There were 4143 objects that met these criteria; of these, 54% also had valid *g* photometry. We only expected a small fraction of the variables to be Cepheids, with the majority likely being irregular or semi-periodic pulsators in the red giant branch (RGB) or asymptotic giant branch (AGB).

Figure 5. *r*-band images of the Gemini outer (top) and inner (bottom) fields in NGC 4258. The locations of Cepheids (listed in Table 6) and variables (listed in Table 7) are indicated by circles and squares, respectively. The images are 5.'5 on a side.

We selected Cepheid candidates following the steps outlined below; the number of objects rejected at each stage are summarized in Table 5.

a. We ran the Cepheid template-fitting program developed by Yoachim et al. (2009) on the (g)ri light curves, using 100 initial trial periods spanning 7–124 days (spaced every 0.0125 dex in log *P*). The lower limit was set by our sparse observational sampling and estimated completeness limit (described in Section 3.3) while the upper limit was set to search for ultra-long period Cepheids. We selected the best-fit period corresponding to the lowest value of χ^2 returned by the template-fitting program. We derived flux-weighted mean magnitudes by numerical integration of the best-fit template light curves, and calculated the light curve semi-amplitudes as half of the difference between the faintest and brightest points in the template. The uncertainties in both of these parameters were estimated by evaluating χ^2 over a grid of values while keeping the period fixed to the best-fit value.

- b. We discarded objects with *i*-band semi-amplitudes below 0.1 mag to remove blended objects and low-amplitude semi-regular variables. We generated histograms of the best-fit periods for the remaining variables to identify any possible aliasing due to the sparse nature of our observations. Using a bin size of $\Delta \log P = 10^{-3}$, we found that ~70% of the bins were empty and ~25% of the bins had only one variable. We flagged any bin with more than 4 variables as a possibly aliased period and reran the previous step excluding those periods from consideration. We identified any remaining aliased periods after the second iteration and removed those objects from further consideration.
- c. We carried out the template-fitting procedure described in (a) on the BVI and VI light curves of all fundamentalmode LMC Cepheids from OGLE-II (Udalski et al. 1999) and OGLE-III (Soszynski et al. 2008; Ulaczyk et al. 2013), respectively, except that we kept the periods fixed to the published values. We transformed the resulting best-fit templates into the gri system using the previously mentioned models by Castelli & Kurucz (2003) and calculated the light curve amplitude ratios exhibited by Cepheids in these bands. We found $A_g/A_r = 1.610 \pm 0.062$ and $A_i/A_r = 0.781 \pm 0.024$. We then classified the remaining variables in NGC 4258 according to their amplitude ratios; objects within 6σ of the LMC values were given a grade of "A," those at $6-9\sigma$ "B," those at $9-12\sigma$ "C," and the rest "F." Variables without valid g photometry were classified solely based on their *i*-to-r amplitude ratio. Figure 3 shows the result of this step.
- d. We selected variables with a grade of "A" from the preceding step, gri photometry and 15 < P < 100 days as our reference subsets (to avoid incompleteness bias at the short end and possible nonlinearities at the long end) and fit the P-L relations listed in Equations (4)-(6). We calculated the residuals of all variables in all bands relative to the best-fit relations and fit them using the relations listed in Equations (7)–(9). We flagged (with a grade of "C") and removed from further fitting any object with a residual in any band exceeding 1 mag in absolute value, as these are likely either badly blended Cepheids (on the bright side) or heavily reddened Cepheids/Pop II variables (on the faint side). We flagged (with a grade of "B") and removed from further fitting any objects lying beyond 6σ of the dispersions determined in Equations (7)–(9) and with residuals greater than 2.5σ based on the observed dispersion for NGC 4258 Cepheids. We only flagged and removed one object per band on each iteration and continued until convergence. Figure 4 shows the result of this step.

Figure 6. Individual finding charts for the Cepheids and variables discovered in this work, listed in Tables 6 and 7. Each panel is 14."2 on a side.

Hoffmann & Macri

Figure 6. (Continued.)

Figure 6. (Continued.)

Figure 6. (Continued.)

Figure 6. (Continued.)

Figure 6. (Continued.)

Figure 6. (Continued.)

e. Finally, we inspected the master images at the location of each variable to ensure that all candidates were well-resolved and isolated point sources, located at least 0."5 away from chip edges.

The final Cepheid sample contains 94 objects (listed in Table 6) that received a grade of "A" or "B" in steps (c) and (d). Variables with a grade of "C" in either step are listed in Table 7; these 215 objects are probably blends, highly reddened Cepheids, or Population II pulsators. The locations of both sets of objects within the Gemini fields are shown in Figure 5, while individual finding charts can be found in Figure 6. Representative light curves are plotted in Figure 7 and all light curve data is presented in Table 8.

6. RESULTS

We calculated the Cepheid detection efficiency and robustness of the derived periods by comparing our sample with that of Macri et al. (2006) over the areas in common (see Figure 1). There are 246 Cepheids from that study with 4 < P < 45days located within our fields. As expected from the artificial star tests described in Section 3.3, our ability to detect significant variability ($L_r \ge 0.75$) was very low (9%) for Cepheids with P < 7 days increasing to 42 and 56% for 7 < P < 15 days and P > 15 days, respectively. Focusing on the last group, 53% of the detected variables were ultimately rejected because of aliased periods or very low pulsation amplitudes (rejection criterion "b" in Section 5), 41% were classified as Cepheids, and 6% classified as "variables" (highly reddened/blended Cepheids or Pop. II pulsators). The periods we derived for the objects classified as Cepheids were very robust, with $\langle \Delta \log P \rangle = -0.005 \pm 0.010$ relative to their *HST*-based values. We also compared our results with those of Fausnaugh et al. (2014). We detected significant variability for 79% of their Cepheids located within our fields and classified 74% of these as Cepheids, 4% as lower-quality variables, and rejected the remaining 22%. A comparison of the periods for Cepheids in common again revealed excellent agreement for all but one object, with $\langle \Delta \log P \rangle = -0.0007 \pm 0.0001$. After taking into account objects present in the two aforementioned studies, our survey contributes an additional 57 Cepheids and 205 variables.

We present the P-L relations for Cepheids and variables in our sample in Figure 8. The Cepheid relations become incomplete at $P \sim 15$ days, as expected from the artificial star tests and the detection efficiency discussed above. We fit the P-L relations listed in Equations (4)-(6) to the 40 Cepheids in Table 6 with gri data and 15 < P < 100 days and obtained apparent distance moduli of $\mu_g = 29.29 \pm 0.06(r) \pm 0.04(s)$, $\mu_r = 29.24 \pm 0.05(r) \pm 0.04(s)$ and $\mu_i = 29.24 \pm 0.05(r) \pm 0.$ 0.05(s) mag (where r and s are used to denote random and systematic uncertainties, respectively). We adopted the extinction law of Fitzpatrick (1999) with $R_V = 3.1$ and solved for the best-fit values of true distance modulus and reddening. Given the rather large uncertainties in the individual distance moduli and the short wavelength baseline provided by the filters we used, there is a large covariance between these two parameters. Nevertheless, we find $\mu_0 = 29.18 \pm 0.23$ mag and $E(B - V) = 0.03 \pm 0.08$ mag, which are consistent at the 1σ

Figure 7. Representative Cepheid light curves. Filled symbols represent the Gemini photometry while the solid lines are the best-fit templates from Yoachim et al. (2009). Offsets were added to the *gi* magnitudes and templates for clarity.

Table 8Light Curve Data

ID	MJD	Filter	Mag	σ	Phase
C001	3053.9805	g	25.424	57	306
C001	3053.9905	g	25.365	54	307
C001	3054.0099	r	24.642	50	310
C001	3054.0185	r	24.638	60	311
C001	3054.0272	i	24.403	84	313
C001	3054.0358	i	24.506	74	314

(This table is available in its entirety in machine-readable and Virtual Observatory (VO) forms.)

level with the maser-based distance modulus of $\mu_0 = 29.404 \pm 0.065 \text{ mag}$ (Humphreys et al. 2013) and the foreground Galactic reddening toward NGC 4258 of E(B - V) = 0.014 mag (Schlafly & Finkbeiner 2011). Given the very shallow abundance gradient in NGC 4258 (Bresolin 2011), the Cepheids in our sample lie in areas of the disk that span a narrow range of LMC-like metallicities ($\langle [O/H] \rangle = 8.34 \pm 0.07 \text{ dex}$). We are therefore unable to provide any constraints on the "metallicity effect" at these wavelengths (for a recent study of this issue, see Fausnaugh et al. 2014).

Figure 8 also shows the expected P–L relations for Population II Cepheids in r and i, which match fairly well

Figure 8. Period–Luminosity relations in *gri* (top to bottom) for Cepheids and other variables in NGC 4258. Filled symbols denote Cepheids with "A" grade in amplitude ratios and PL residuals while open symbols denote Cepheids with "B" grade in at least one category. Red symbols are used for Cepheids with only *r* and *i* photometry. Small dots represent objects listed in Table 7. The uncertainties in mean magnitude and period are comparable to the size of the points. The slopes of the Cepheid P–L relations (solid lines) were fixed to the values derived from the theoretical Cepheid magnitudes of Di Criscienzo et al. (2013) as described in Section 4; the dashed lines indicate the $\pm 2\sigma$ dispersion of the fits. The dotted lines in the *r* and *i* panels represent the Pop II P–L relations of Kodric et al. (2013) shifted to the distance modulus of NGC 4258 as described in Section 6.

the distribution of periods and magnitudes of the variables listed in Table 7. The slopes of those relations were fixed to the values derived by (Kodric et al. 2013, Table 3, entries labeled "PLC," which stands for clipped P–L relation) and the zeropoints were obtained by shifting the best-fit mean magnitudes of our observed P–L relations for "classical" (i.e., Population I) Cepheids at P = 80 days by +1.91 mag. This average offset was derived by calculating the magnitude difference between the Kodric et al. (2013) "PLC" relations for classical ("FM") and Population II ("T2") Cepheids in *r* and *i*

for periods ranging from 30 to 100 days, which exhibited a dispersion of only 0.02 mag.

Color-magnitude diagrams of the Cepheids and other variables are plotted in Figure 9. The semi-empirical P–L relations of Section 4 were used to illustrate the approximate location and intrinsic width of the zero-extinction instability strip. There is some evidence for differential extinction among Cepheids with P > 80 days, which is commonly seen in other galaxies since these are the youngest Cepheids and therefore are closest to their natal regions. The variables listed in Table 7 are mostly located in the AGB/RGB region of the diagram, as expected given their likely nature (Population II pulsator or highly reddened classical Cepheid).

7. PROSPECTS FOR LSST

Our results have demonstrated the feasibility of discovering Cepheids and other long-period variables with 8 m class telescopes out to significantly larger distances than before $(D \sim 4.5 \text{ Mpc} \text{ for M83}, \text{Thim et al. 2003})$. Furthermore, the work carried out by Gerke et al. (2011) and Fausnaugh et al. (2014) have highlighted the efficacy of difference imaging techniques for these surveys, as originally demonstrated by Bonanos & Stanek (2003).

The LSST, slated to start operations by the end of the decade, will deliver images of most of the southern sky with angular resolution and depth (5σ limiting magnitude) comparable to the data collected as part of our survey (LSST average values: 0."73, $g \sim 24.9$, $r \sim 24.6$, $i \sim 24.0$; our survey: <0."7, $g \sim 26.5$, $r \sim 26.4$, $i \sim 25.8$), but with a vastly superior temporal sampling (LSST: ~32 epochs in g and ~73 in r and i; our survey: ~16 per band). Based on the calculations described below, we expect that LSST will enable efficient searches for Cepheids and long-period variables in a considerable number of galaxies out to at least $D \sim 10$ Mpc. At this distance, the typical LSST single-image depth in r will be comparable to the mean magnitude of a classical Cepheid with $P \sim 25$ days or a Pop II variable with $P \sim 100$ days.

We used the Extragalactic Distance Database (EDD, Tully et al. 2009) and the Cosmicflows-2 catalog of distances (Tully et al. 2013) to identify spiral or dwarf galaxies that would be suitable for Cepheid searches with LSST based on the following criteria: (i) D < 10 Mpc; (ii) $-63^{\circ} < \delta < 0^{\circ}$ and $|b| \ge 10^{\circ}$ (the approximate boundaries of the "wide-fastdeep" survey mode); (iii) $i \leq 78^{\circ}$ for spirals (i.e., no more inclined than M31). There are 77 galaxies that meet this criteria, which are listed in Table 9. We include all dwarf galaxies regardless of their recent star formation history because Population II pulsators should be detectable (with a period limit $\sim 4 \times$ larger than Population I Cepheids for a given apparent magnitude limit). We also included NGC 5128 despite its "early type" classification because it has been shown to host Population I Cepheids (Ferrarese et al. 2007) as well as a significant population of LPVs (Rejkuba 2004).

We used the following procedure to calculate the approximate minimum period (P_{min}) down to which we would expect complete coverage of the P–L relations of each of the galaxies listed in Table 9 in at least one of the *gri* bands. We queried the latest realization of the baseline LSST operations over a tenyear period (ops1.1140) and retrieved the Julian Date, seeing, and 5σ limiting magnitude of the simulated *gri* observations, discarding those with image quality worse than 1". We grouped together observations in a given band obtained on the same

Figure 9. Color-magnitude diagrams of stars in NGC 4258, using g-r (left) and r-i (right). Filled symbols denote Cepheids with "A" grade in amplitude ratios and PL residuals while open symbols denote Cepheids with "B" grade in at least one category. Starred symbols represent objects listed in Table 7. Red symbols denote objects with only r and i photometry. The center of the instability strip is marked with a solid line, while the dotted lines represent its 2σ width. Extinction vectors for $A_r = 0.2$ mag are shown in each panel.

night into an "epoch" with the mean Julian Date and the deepest magnitude limit of an individual image (note that this is a conservative limit, since in a real analysis one would combine all images from a given night to increase the depth of the epoch). The resulting number of epochs per band, average seeing and typical 5σ limiting magnitudes are those quoted above. Next, we used the EDD distance modulus and value of Galactic extinction for the given galaxy, along with Equations (4)-(6), to calculate the faintest apparent magnitude for a Cepheid of a given period, assumed to lie $+2\sigma$ below the mean relation. We combined this information to calculate the shortest Cepheid period that would have complete P-L coverage for each epoch of observation in each band. Once this process was completed, we determined the largest phase gap that would be present in the light curve of a Cepheid of a given period, given the epochs when such a variable could have been detected (above the 5σ magnitude limit). We carried out this calculation for 10³ trial periods equally spaced in logarithmic space for 4 < P < 100 days. Figure 10 shows the result of this simulation for two of the galaxies, with effective r-band distance moduli of 26.5 and 28.6 mag, as well as the phase coverage delivered by our observations of NGC 4258. Figure 11 plots the relation between P_{\min} and apparent distance modulus in r for all galaxies listed in the aforementioned table.

We found that for galaxies located at $D \lesssim 4.4$ Mpc, the expected LSST cadence and magnitude depth will deliver excellent light curve coverage for all periods of interest. The largest phase gap will typically be 0.058 ± 0.01 or $\sim 4 \times$ better than our Gemini observations of NGC 4258, thanks to the significantly larger number of epochs to be obtained. The limiting magnitudes of LSST will result in a increasingly larger value of $P_{\rm min}$ as a function of distance for farther objects, as seen in Figure 11. Note that this is again a conservative estimate since we were able to determine reliable periods for variables in NGC 4258 despite a typical maximum phase gap of 0.2; setting this as the limit for P–L completeness reduces log $P_{\rm min}$ by ~0.07 dex, to $P \sim 25$ days at $D \sim 10$ Mpc.

 Table 9

 Galaxies Suitable for Cepheid Searches with LSST

PGC	R.A.	Decl.	μ_0	<i>C</i> ?	T?	Morph.	i	Common
	(J20	000)				Туре		Name
	(hms)	(dms)	(mag)				(deg)	
143	00:01:58.2	-15:27:39	24.92 ± 0.05	1	1	10		WLM
621	00:08:13.5	-34:34:43	27.53 ± 0.10		1	10		ESO349-031
701	00:09:56.3	-24:57:50	29.42 ± 0.09		1	5	79	N24
930	00:14:03.9	-23:10:56	29.11 ± 0.10		1	8	43	NGC45
1014	00:14:53.6	-39:11:48	26.49 ± 0.06	1	1	9	74	N55
2142	00:35:46.6	-25:22:27	29.84 ± 0.20			9	39	I1558
2578	00:43:03.6	-22:14:51	28.46 ± 0.10		1	10		DDO226
2758	00:47:08.6	-20:45:38	27.73 ± 0.06	1	1	7	73	N247
2789	00:47:33.1	-25:17:18	27.76 ± 0.08		1	5	76	N253
2881	00:49:21.1	-18:04:31	27.71 ± 0.08		1	9	45	ESO540-030
2902	00:49:49.7	-21:00:47	27.65 ± 0.08		1	10		DDO6
2933	00:50:24.6	-19:54:23	27.78 ± 0.08		1	10		ESO540-032
3238	00:54:53.5	-37:41:04	26.48 ± 0.06	1	1	7	48	N300
5896	01:35:05.1	-41:26:12	27.73 ± 0.09		1	9	72	N625
6430	01:45:03.9	-43:35:55	28.30 ± 0.10		1	10		ESO245-005
6830	01:51:06.3	-44:26:41	23.13 ± 0.06		1	10		Phoenix
11211	02:58:04.1	-49:22:56	28.90 ± 0.10		1	8	66	ESO199-007
11812	03:09:38.3	-41:01:55	29.97 ± 0.20			9	60	ES300-014
12460	03:20:07.0	-52:11:09	28.59 ± 0.09		1	9	73	N1311
13163	03:33:12.6	-50:24:51	29.10 ± 0.09		1	9	78	I1959
13368	03:37:28.3	-24:30:05	29.90 ± 0.20			6	54	N1385
13794	03:45:54.9	-36:21:25	29.67 ± 0.20			7	71	N1437B
14475	04:06:48.9	-21:10:41	29.59 ± 0.20			8	62	N1518
14897	04:20:00.4	-54:56:16	29.10 ± 0.20			4	46	N1566
16120	04:49:55.6	-31:57:56	29.93 ± 0.20			10		N1679
16389	04:56:58.7	-42:48:02	29.21 ± 0.10		1	8	41	ESO252-001
16517	04:59:58.1	-26:01:30	29.92 ± 0.20			7	60	N1744
16779	05:07:42.3	-37:30:47	29.79 ± 0.20			1	46	N1808
17302	05:27:05.8	-20:40:40	29.13 ± 0.10		1	4	48	ESO553-046
18431	06:07:19.8	-34:12:16	29.92 ± 0.10		1	10		AM0605-341
18731	06:15:54.3	-57:43:32	28.92 ± 0.10		1	10		ESO121-020
19041	06:26:17.5	-26:15:57	29.00 ± 0.10		1	10		ESO489-056
19337	06:37:57.1	-26:00:01	29.01 ± 0.10		1	10		ESO490-017
26259	09:17:52.9	-22:21:17	29.71 ± 0.20			5	44	N2835
29128	10:03:06.9	-26:09:34	25.69 ± 0.06	1	1	9	78	N3109
29194	10:04:04.0	-27:19:55	25.64 ± 0.08			10		Antlia
29653	10:11:00.8	-04:41:34	25.69 ± 0.06	1		10		SextansA
490287	10:57:30.0	-48:11:02	28.69 ± 0.10			10		ESO215-009
34554	11:18:16.5	-32:48:50	29.14 ± 0.06	1	1	7	60	N3621
36014	11:37:53.2	-39:13:14	28.89 ± 0.10			10		ESO320-014
37369	11:54:43.2	-33:33:32	28.68 ± 0.10			10		ESO379-007
39032	12:13:49.7	-38:13:52	27.58 ± 0.08	•••		10		ESO321-014
42936	12:44:42.5	-35:57:60	28.68 ± 0.10	•••		10		ESO381-018
43048	12:46:00.4	-33:50:17	28.69 ± 0.10	•••		10		ESO381-020
43978	12:54:53.6	-28:20:27	28.88 ± 0.10	•••		10		ES0443-009
45104	13:03:33.2	-46:35:13	27.49 ± 0.10	•••		10		ESO269-037
45279	13:05:27.3	-49:28:05	27.85 ± 0.08	•••		6	//	N4945
45/1/	13:10:32.9	-40:59:31	27.87 ± 0.10		~	10		ESU209-058
40005	15:21:47.1	-43:05:43	27.99 ± 0.10		V	10		N5124
40958	13:23:16.3	-21:08:05	29.00 ± 0.20 27.82 ± 0.06			3	47	N5134 N5128
40937	12.25.20.1	-43.01.03	27.62 ± 0.00	v	· ·	-2		IC4247
47075	15:20:44.4	-30:21:43	26.37 ± 0.10		· ·	10	00	IC4247 ESO224-24
48020	13.27.38.4	-41.20:42	21.09 ± 0.10 28.67 ± 0.10	•••	· /	10	•••	ESU524-24 ESO444 79
48082	13.30.30.8	-29.14:07	20.07 ± 0.10 28.34 ± 0.07		· /	10	20	L30444-78 M82
40U02 18331	13:37:00.9	-29:31:30	20.34 ± 0.07		v .	5	52	NGC5252
18368	13.39.30.0	-31.30.24	27.75 ± 0.00 28.10 ± 0.10	v	v /	9 10	04	IC/316
48467	13.40.10.3	-20.33.39	20.19 ± 0.10 28 24 + 0.10		× ./	10		N5264
48738	13:45:01 0	_41.51.35	20.24 ± 0.10 27.66 ± 0.10			10		FSO325-11
49050	13.49.17 5	-36.03.48	27.00 ± 0.10 27.52 ± 0.10		1	8	37	ESO323-11 ESO383-87
49923	14.01.21.6	-33.03.40	29.09 ± 0.10		•	8	54	N5398
50073	14:03:21.2	-41:22:36	28.63 ± 0.10		1	10		N5408
					-	+ V		

(Continued)								
PGC	R.A. (J20	Decl.	μ_0	<i>C</i> ?	<i>T</i> ?	Morph. Type	i	Common Name
	(hms)	(dms)	(mag)				(deg)	
51659	14:28:03.6	-46:18:19	27.79 ± 0.10	•••	1	10		PGC51659
62918	19:13:14.3	-62:05:19	29.23 ± 0.20			10		I4824
63287	19:29:59.0	-17:40:44	25.17 ± 0.10		1	10		Sag DIG
63616	19:44:57.0	-14:48:01	23.41 ± 0.06	1	1	10		NGC6822
64054	20:03:57.3	-31:40:54	29.18 ± 0.10		1	10		KK246
64181	20:09:31.7	-61:51:02	29.56 ± 0.20			8	77	I4951
65367	20:46:51.7	-12:50:51	25.02 ± 0.08		1	10		Aquarius dIrr
67045	21:36:28.9	-54:33:27	29.70 ± 0.09		1	5	78	N7090
67908	22:02:41.4	-51:17:48	26.46 ± 0.10		1	10		I5152
68672	22:22:30.5	-48:24:14	29.52 ± 0.10		1	10		ESO238-005
70027	22:55:45.7	-42:38:31	29.57 ± 0.20			3	43	N7412
71431	23:26:27.9	-32:23:19	26.72 ± 0.08		1	10		UGCA438
71866	23:36:15.0	-37:56:19	29.86 ± 0.20			7	65	N7713
72228	23:43:45.1	-31:57:34	28.20 ± 0.10		1	9	78	UGCA442
73049	23:57:49.8	-32:35:28	27.77 ± 0.07	1	1	7	55	N7793

Table 9

Note. Distance modulus and uncertainty and morphological type from Tully et al. (2013). \checkmark in columns labeled "*C*?" and "*T*?" denote existing Cepheid and TRGB distance determinations. Inclination values as reported by NED, based on the $B = 26 \text{ mag}/\Box''$ isophote.

Figure 10. Top and middle panels: maximum phase gap as a function of period in the light curve of Cepheids observed at the expected LSST cadence and *gri* magnitude limits, for two galaxies with apparent *r* distance moduli of 26.5 and 28.8 mag (top and middle, respectively). P_{\min} indicates the period below which the maximum phase gap always exceeds the $+3\sigma$ value. Bottom panel: Same as above, but based on the cadence obtained during our survey of NGC 4258.

8. SUMMARY

We used GMOS on Gemini North to carry out a synoptic survey of two fields within NGC 4258 which resulted in the

Figure 11. P_{\min} vs. distance modulus for the simulated LSST observations. Solid symbols denote spiral galaxies, while open ones represent dwarf galaxies. The star symbol shows the corresponding values for our survey of NGC 4258. LSST will deliver excellent phase coverage down to P = 4 days for galaxies with $D \lesssim 4.4$ Mpc ($mu \lesssim 27.5$ mag), after which the limiting magnitude will impact the completeness of the P–L relation at the shortest periods.

detection of 94 Cepheid candidates and 215 periodic variables; 180 of these were previously unknown. We derived synthetic P–L relations in the SDSS filters using the Cepheid models of Di Criscienzo et al. (2013) and found that their absolute calibration yields distance moduli that are in good agreement with the maser distance to this galaxy obtained by Humphreys et al. (2013). We investigated the prospects for surveys of extragalactic Population I and II Cepheids using the expected cadence and depth of LSST and found they bode well for a survey of suitable southern galaxies out to $D \sim 10$ Mpc.

S.L.H. and L.M.M. were visiting astronomers at Kitt Peak National Observatory, National Optical Astronomy Observatory, operated by the Association of Universities for Research in Astronomy under cooperative agreement with the National Science Foundation. We acknowledge support by: NASA through the grants HST-GO-09810, -10399, -10802, and -12880; Texas A&M University through a faculty startup fund; and the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University. L.M.M. acknowledges initial support for this project by NASA through Hubble Fellowship grant HST-HF-01153 from the Space Telescope Science Institute and by the National Science Foundation through a Goldberg Fellowship from the National Optical Astronomy Observatory. We thank P. Yoachim for kindly generating B-band Cepheid light curve templates. This publication has made use of the following resources.

- 1. Observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).
- 2. Observations obtained at the WIYN Observatory, which is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University and the National Optical Astronomy Observatory.
- 3. Data products from the SDSS (SDSS and SDSS-II), funded by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U. S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/. The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, University of Cambridge, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Scientist Group, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the Max-Planck-Institute for Astronomy (MPIA), the Max-Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.
- 4. Montage, funded by the National Aeronautics and Space Administration's Earth Science Technology Office, Computational Technologies Project, under Cooperative

Agreement Number NCC5-626 between NASA and the California Institute of Technology. The code is maintained by the NASA/IPAC Infrared Science Archive.

- 5. NASA's Astrophysics Data System at the Harvard-Smithsonian Center for Astrophysics.
- 6. The NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.
- 7. The Extragalactic Distance Database (EDD), with support for the development of its content provided by the National Science Foundation under Grant No. AST09-08846.

Facilities: Gemini:Gillett, WIYN.

REFERENCES

- Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543
- Anderson, L., Aubourg, É, Bailey, S., et al. 2014, MNRAS, 441, 24
- Argon, A. L., Greenhill, L. J., Reid, M. J., Moran, J. M., & Humphreys, E. M. L. 2007, ApJ, 659, 1040
- Barnes, T. G., III, Ivans, I. I., Martin, J. R., Froning, C. S., & Moffett, T. J. 1999, PASP, 111, 812
- Bonanos, A. Z., & Stanek, K. Z. 2003, ApJL, 591, L111
- Bonanos, A. Z., Stanek, K. Z., Kudritzki, R. P., et al. 2006, ApJ, 652, 313
- Bresolin, F. 2011, ApJ, 729, 56
- Castelli, F., & Kurucz, R. L. 2003, in IAU Symp. 210, Modelling of Stellar Atmospheres, ed. N. Piskunov, W. W. Weiss, & D. F. Gray (San Francisco, CA: ASP), A20
- Davies, R. L., Allington-Smith, J. R., Bettess, P., et al. 1997, Proc. SPIE, 2871, 1099
- Di Criscienzo, M., Marconi, M., Musella, I., Cignoni, M., & Ripepi, V. 2013, MNRAS, 428, 212
- Dvorkin, C., Wyman, M., Rudd, D. H., & Hu, W. 2014, PhRvD, 90, 083503 Fausnaugh, M. M., Kochanek, C. S., Gerke, J. R., et al. 2014,
- arXiv:1303.5076
- Ferrarese, L., Mould, J. R., Stetson, P. B., et al. 2007, ApJ, 654, 186 Fitzpatrick, E. L. 1999, PASP, 111, 63
- Freedman, W. L., Grieve, G. R., & Madore, B. F. 1985, ApJS, 59, 311
- Fukugita, M., Ichikawa, T., Gunn, J. E., et al. 1996, AJ, 111, 1748
- Gerke, J. R., Kochanek, C. S., Prieto, J. L., Stanek, K. Z., & Macri, L. M. 2011, ApJ, 743, 176
- Hartman, J. D., Bersier, D., Stanek, K. Z., et al. 2006, MNRAS, 371, 1405
- Herrnstein, J. R., Moran, J. M., Greenhill, L. J., et al. 1999, Natur, 400, 539
- Humphreys, E. M. L., Reid, M. J., Greenhill, L. J., Moran, J. M., & Argon, A. L. 2008, ApJ, 672, 800
- Humphreys, E. M. L., Reid, M. J., Moran, J. M., Greenhill, L. J., & Argon, A. L. 2013, ApJ, 775, 13
- Jørgensen, I. 2009, PASA, 26, 17
- Kodric, M., Riffeser, A., Hopp, U., et al. 2013, AJ, 145, 106
- Kodric, M., Riffeser, A., Seitz, S., et al. 2015, ApJ, 799, 144
- Macri, L. M., Ngeow, C.-C., Kanbur, S., Mahzooni, S., & Smitka, M. 2015, AJ, 149, 117
- Macri, L. M., Stanek, K. Z., Bersier, D., Greenhill, L. J., & Reid, M. J. 2006, ApJ, 652, 1133
- Martin, W. L., Warren, P. R., & Feast, M. W. 1979, MNRAS, 188, 139
- Miyoshi, M., Moran, J., Herrnstein, J., et al. 1995, Natur, 373, 127
- Ngeow, C., & Kanbur, S. M. 2007, ApJ, 667, 35
- Ngeow, C.-C., & Kanbur, S. M. 2006, MNRAS, 369, 723
- Pietrzyński, G., Graczyk, D., Gieren, W., et al. 2013, Natur, 495, 76
- Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2014, A&A, 571, 16 Rejkuba, M. 2004, A&A, 413, 903
- Ribas, I., Jordi, C., Vilardell, F., et al. 2005, ApJL, 635, L37
- Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119
- Schlafly, E. F., & Finkbeiner, D. P. 2011, ApJ, 737, 103
- Sebo, K. M., Rawson, D., Mould, J., et al. 2002, ApJS, 142, 71
- Soszynski, I., Poleski, R., Udalski, A., et al. 2008, AcA, 58, 163
- Stetson, P. B. 1987, PASP, 99, 191
- Stetson, P. B. 1993, in IAU Coll. 136, Stellar Photometry-Current Techniques and Future Developments ed. C. J. Butler, & I. Elliott (Cambridge: Cambridge Univ. Press), 291

- Stetson, P. B. 1996, PASP, 108, 851
- Tanvir, N. R., & Boyle, A. 1999, MNRAS, 304, 957
- Thim, F., Tammann, G. A., Saha, A., et al. 2003, ApJ, 590, 256
- Tully, R. B., Courtois, H. M., Dolphin, A. E., et al. 2013, AJ, 146, 86 Tully, R. B., Rizzi, L., Shaya, E. J., et al. 2009, AJ, 138, 323
- Udalski, A., Soszynski, I., Szymanski, M., et al. 1999, AcA, 49, 223
- Ulaczyk, K., Szymański, M. K., Udalski, A., et al. 2013, AcA, 63, 159
- Vilardell, F., Ribas, I., Jordi, C., Fitzpatrick, E. L., & Guinan, E. F. 2010, A&A, 509, A70
- Weinberg, D. H., Mortonson, M. J., Eisenstein, D. J., et al. 2013, PhR, 530, 87
- Yoachim, P., McCommas, L. P., Dalcanton, J. J., & Williams, B. F. 2009, AJ, 137, 4697