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SUB-LINEAR ROOT DETECTION, AND NEW HARDNESS RESULTS,

FOR SPARSE POLYNOMIALS OVER FINITE FIELDS

JINGGUO BI, QI CHENG, AND J. MAURICE ROJAS

Abstract. We present a deterministic 2O(t)q
t−2

t−1
+o(1) algorithm to decide whether a uni-

variate polynomial f , with exactly t monomial terms and degree <q, has a root in Fq. A
corollary of our method — the first with complexity sub-linear in q when t is fixed — is that

the nonzero roots in Fq can be partitioned into no more than 2
√
t− 1(q − 1)

t−2

t−1 cosets of
two proper subgroups S1 ⊆ S2 of F∗

q . Another corollary is the first deterministic sub-linear
algorithm for detecting common degree one factors of k-tuples of t-nomials in Fq[x] when k
and t are fixed.

When t is not fixed we show that each of the following problems is NP-hard with respect
to BPP-reductions, even when p is prime:

• detecting roots in Fp for f
• deciding whether the square of a degree one polynomial in Fp[x] divides f

• deciding whether the square of a degree one polynomial in Fp[x] divides f
• deciding whether the gcd of two t-nomials in Fp[x] has positive degree

Finally, we prove that if the complexity of root detection is sub-linear (in a refined sense),
relative to the straight-line program encoding, then NEXP 6⊆P/poly.

Key words and phrases. solvability, sparse polynomial, finite fields, NP-hardness, gcd, square-free, dis-
criminant, resultant.
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1. Introduction

The solvability of univariate sparse polynomials is a fundamental problem in computer
algebra, and an important precursor to deep questions in polynomial system solving and
circuit complexity. Cucker, Koiran, and Smale [CKS99] found a polynomial-time algorithm
to find all integer roots of a univariate polynomial f in Z[x] with exactly t terms, i.e., a
univariate t-nomial. Shortly afterward, H. W. Lenstra, Jr. [Len99] gave a polynomial-time
algorithm to compute all factors of fixed degree over an algebraic extension of Q of fixed
degree (and thereby all rational roots). Independently, Kaltofen and Koiran [KK05] and
Avendano, Krick, and Sombra [AKS07] extended this to finding bounded-degree factors of
sparse polynomials in Q[x, y] in polynomial-time. Unlike the famous LLL factoring algorithm
[LLL82], the complexity for the algorithms from [CKS99, Len99, KK05, AKS07] was relative
to the sparse encoding (cf. Definition 2.1 of Section 2 below) and thus polynomial in t+ log deg f .

Changing the ground field dramatically changes the complexity. For instance, while
polynomial-time algorithms are now known for detecting real roots for trinomials in Z[x]
[RY05, BRS09], no polynomial-time algorithm is known for tetranomials [BHPR11]. Also,
detecting p-adic rational roots for trinomials in Z[x] was only recently shown to lie in NP

(for fixed p), as wasNP-hardness with respect to ZPP-reductions for t-nomials when neither
t nor p are fixed [AIRR12, Thm. 1.4 & Cor. 1.5].

Here, we focus on the complexity of detecting solutions of univariate t-nomials over finite
fields.

1.1. Main Results and Related Work. While deciding the existence of a dth root of an
element of the q-element field Fq is doable in time polynomial in log(d)+log q (see, e.g., [BS96,
Thms. 5.6.2 & 5.7.2, pg. 109]), detecting roots for a trinomial equation a + bxd0 + cxd = 0
with d > d0 > 0 within time sub-linear in d and q is already a mystery. (Erich Kaltofen
and David A. Cox independently asked about such polynomial-time algorithms around 2003
[Kal03, Cox04].) We make progress on a natural extension of this question. In what follows,
we use |S| for the cardinality of a set S.

Theorem 1.1. Given any univariate t-nomial

f(x) := c1 + c2x
a2 + c3x

a3 + · · ·+ ctx
at ∈ Fq[x]

with degree < q, we can decide, within 4t(t log q)O(1) + t
1

2
+o(1)q

t−2

t−1
+o(1) deterministic bit

operations, whether f has a root in Fq. Moreover, letting δ := gcd(q − 1, a2, . . . , at) and

η :=
√
t− 1

(

q−1
δ

)
t−2

t−1 , the entire set of nonzero roots of f in Fq is a union of at most 2η

cosets of two proper subgroups S1 ⊆ S2 of F∗
q, where |S1|=δ and δ

t−2

t−1 (q−1)
1

t−1

√
t−1

≤|S2|≤ q−1
2
. In

particular, the number of nonzero roots of f is no more than max
{

2δη, η−1
η

· q−1
2

}

.

The degree assumption is natural since xq=x in Fq[x]. Note also that deciding whether an
f as above has a root in Fq via brute-force search takes q1+o(1) bit operations, assuming t is
fixed.

Our first main result thus includes a finite field analogue of Descartes’ Rule [SL54]. (The
latter result implies an upper bound of 2t − 1 for the number of real roots of a real uni-
variate t-nomial.) More to the point, Theorem 1.1 provides new structural and algorithmic
information, complementing an earlier finite field analogue of Descartes’ Rule [CFKLLS00,
Lemma 7]. Theorem 1.1 can also be thought of as a refined, positive characteristic analogue
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of results of Tao and Meshulam [Tao05, Mes06] bounding the number of complex roots of
unity at which a sparse polynomial can vanish (a.k.a. uncertainty inequalities over finite
groups).

Note that if we pick a2, . . . , at uniformly randomly in {−M, . . . ,M} then, as M −→ ∞,
the probability that gcd(a2, · · · , at)=1 approaches 1/ζ(t− 1) (see, e.g., [Chr56]). The latter
quantity increases from 6

π2 ≈ 0.6079 to 1 as t goes from 3 to ∞. Our theorem thus implies
that, with “high” probability, the rational roots of a sparse polynomial over a finite field
can be divided into two components: one component consisting of few isolated roots, and
the other component consisting of few cosets of a (potentially large) subgroup of F∗

q. Put
another way, if the number of the rational roots of a sparse polynomial is close to its degree,
then the set of the roots must exhibit a strong multiplicative structure.

Since detecting roots over Fq is the same as detecting linear factors of polynomials in
Fq[x], it is natural to ask about the complexity of factoring sparse polynomials over Fq[x].
The asymptotically fastest randomized algorithm for factoring arbitrary f ∈Fq[x] of degree
d uses O(d1.5 + d1+o(1) log q) arithmetic operations in Fq [KU11], but no complexity bound
polynomial in t + log(d) + log q is known. (See [Ber70, CZ81, KS98, Uma08] for some
important milestones, and [GP01, Kal03, vzGat06] for an extensive survey on factoring.)
However, to detect roots in Fq, we don’t need the full power of factoring: we need only
decide whether gcd(xq−x, f(x)) has positive degree. Indeed, a consequence of our first main
result is a speed-up for a variant of the latter decision problem.

Corollary 1.2. Given any univariate t-nomials f1, . . . , fk∈Fq[x], we can decide if f1, . . . , fk
have a common degree one factor in Fq[x] via a deterministic algorithm with complexity

4kt−k(kt log q)O(1) + k
(

k
√
t
)1+o(1)

q
kt−k−1

kt−k
+o(1).

Corollary 1.2 appears to give the first sub-linear algorithm for detecting roots of k-tuples of
univariate t-nomials for k and t fixed.

Remark 1.3. It is important to note that the k=2 case is not the same as deciding whether
the gcd of two general polynomials has positive degree: the latter problem is the same as
detecting common factors of arbitrary degree, or degree one factors over an extension field.
Finding an algorithm for the latter problem with complexity sub-linear in q is already an open
problem for k=2 and t≥3: see [EP05], and Theorem 1.5 and Remark 1.7 below. ⋄

One reason why it is challenging to attain complexity sub-linear in q is that detecting
roots in Fq for t-nomials is NP-hard when t is not fixed, even restricting to one variable and
prime q.

Theorem 1.4. Suppose that, for any input (f, p) with p a prime and f ∈Fp[x] a t-nomial of
degree < p, one could decide whether f has a root in Fp within BPP, using t + log p as the
underlying input size. Then NP⊆BPP.

The least n making root detection in Fn
p be NP-hard for polynomials in Fp[x1, . . . , xn] (for

p prime, and relative to the sparse encoding) appears to have been unknown. Theorem 1.4
thus comes close to settling this problem. Theorem 1.4 also complements an earlier result of
Kipnis and Shamir proving NP-hardness for detecting roots of univariate sparse polynomials
over fields of the form F2ℓ [KiSha99]. Furthermore, Theorem 1.4 improves another recent
NP-hardness result where the underlying input size was instead the (smaller) straight-line
program complexity [CHW11].
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Let Fq denote the algebraic closure of Fq. A consequence of our last complexity lower

bound is the hardness of detecting degenerate roots over Fp and Fq:

Theorem 1.5. Consider the following two problems, each with input (f, p) where p is a
prime and f ∈Fp[x] is a t-nomial of degree < p.

(1) Decide whether f is divisible by the square of a degree one polynomial in Fp[x].

(2) Decide whether f is divisible by the square of a degree one polynomial in Fp[x].

Then, using t + log p as the underlying input size, each of these problems is NP-hard with
respect to BPP-reductions.

The NP-hardness of both problems had been previously unknown. Theorem 1.5 thus im-
proves [KaShp99, Cor. 2] where NP-hardness (with respect to BPP-reductions) was proved
for the harder variant of Problem (2) where one expands the allowable inputs to polynomials
in Fp[x].

Remark 1.6. Note that detecting a degenerate root for f is the same as detecting a common
degree one factor of f and ∂f

∂x
, at least when deg f is less than the characteristic of the field.

So an immediate consequence of Theorem 1.5 is that detecting common degree one factors
in Fp[x] (resp. Fp[x]) for pairs of polynomials in Fp[x] is NP-hard with respect to BPP-
reductions. We thus also strengthen earlier work proving similar complexity lower bounds for
detecting common degree one factors in Fq[x] (resp. Fq[x]) [vzGKS96, Thm. 4.11]. ⋄
Remark 1.7. It should be noted that Problem (2) is equivalent to deciding the vanishing
of univariate A-discriminants (see [GKZ94, Ch. 12, pp. 403–408] and Definitions 2.6 and
2.8 of Section 2.2 below). While Lemma 4.3 of Appendix A tells us that the trinomial case
of Problem (2) can be done in P, we are unaware of any other speed-ups for fixed t. In
particular, it follows immediately from Theorem 1.5 that deciding the vanishing of univariate
resultants (see, e.g., [GKZ94, Ch. 12, Sec. 1, pp. 397–402] and Definition 2.6 of Section 2.2
below), over Fp[x], is also NP-hard with respect to BPP-reductions. ⋄

Our final result is a complexity separation depending on a weak tractability assumption
for detecting roots of univariate polynomials given as straight-line programs (SLPs).

Theorem 1.8. Suppose that, given any straight-line program of size L representing a poly-
nomial f ∈ F2ℓ [x], we could decide if f has a root in F2ℓ within time LO(1)2ℓ−ω(ℓ). Then
NEXP 6⊆P/poly.

One should recall that NEXP⊆P/poly ⇐⇒ NEXP=MA [IKW01]. So the conditional
assertion of our last theorem indeed implies a new separation of complexity classes. It may
actually be the case that there is no algorithm for detecting roots in F2ℓ better than brute-
force search. Such a result would be in line with the Exponential Time Hypothesis [IP01]
and the widely-held belief in the cryptographic community that the only way to break a
well-designed block cipher is by exhaustive search.

1.2. Highlights of Main Techniques. The key new advance needed to attain our speed-
ups is a method, based on the Shortest Vector Problem (SVP) for a lattice basis (see [MV10]
and Section 2.1), to lower the degree of any sparse polynomial in Fq[x] to a power of q strictly
less than 1 while still preserving solvability over Fq.

Lemma 1.9. Given integers a1, · · · , at, N satisfying 0 < a1 < · · · < at < N and
gcd(N, a1, · · · , at) = 1, one can find, within 4t(t logN)O(1) bit operations, an integer e with
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the following property for all i∈{1, . . . , t}: if mi∈{−⌊N/2⌋, . . . , ⌈N/2⌉} is the unique integer

congruent to eai mod N then |mi|≤
√
tN1−t−1

.

We prove this lemma in Section 2.1, and show how the lemma can be applied to the exponents
of a sparse polynomial to yield Theorem 1.1 in Section 3.1. Corollary 1.2 is proved in Section
3.2.

Example 1.10. Consider any polynomial of the form
f(x)=c1 + c2x+ c3x

2200+26 + c4x
2200+27∈Fq[x]

where
q :=6(2200 +26)+ 1=9641628265553941653251772554046975615133217962696757011808413
(which is a 61-digit prime) and c1c4 6= 0. Considering the lattice generated by the vectors
(1, 2200+26, 2200+27), (q− 1, 0, 0), (0, q− 1, 0), (0, 0, q− 1), it is not hard to see that (6, 0, 6)
is a minimal length vector in this lattice. Moreover, 6 ·1≡6, 6(2200+26)≡0, 6(2200+27)≡6
mod q − 1. Letting σ be any generator of F∗

q it is clear that any x ∈ F∗
q can be written as

x= σiz for some i∈ {0, . . . , 5} and z ∈ F∗
q satisfying z

q−1

6 = 1. So then, we see that solving
f(x)=0 is equivalent to finding an i∈{0, . . . , 5} and a z∈F∗

q with
(

c1 + c3σ
(2200+26)i

)

+
(

c2σ
i + c4σ

(2200+27)i
)

z6 = z
q−1

6 − 1 = 0. ⋄

Recall that any Boolean expression of one of the following forms:
(♦) yi ∨ yj ∨ yk, ¬yi ∨ yj ∨ yk, ¬yi ∨ ¬yj ∨ yk, ¬yi ∨ ¬yj ∨ ¬yk, with i, j, k∈ [3n],

is a 3CNFSAT clause. A satisfying assigment for an arbitrary Boolean formula B(y1, . . . , yn)
is an assigment of values from {0, 1} to the variables y1, . . . , yn which makes the equality
B(y1, . . . , yn)=1 true.1

A key construction behind the proofs of Theorems 1.4 and 1.5 in Section 4 is a highly
structured randomized reduction from 3CNFSAT to detecting roots of univariate polynomial
systems over finite fields. In particular, the finite fields arising in this reduction have car-
dinality coming from a very particular family of prime numbers. (See Definition 2.1 from
Section 2 for our definition of input size.)

Theorem 1.11. Given any 3CNFSAT instance B(y1, . . . , yn) in n≥4 variables with k clauses,
there is a (Las Vegas) randomized polynomial-time algorithm that produces positive integers
c, p1, . . . , pn and a k-tuple of polynomials (f1, . . . , fk)∈Z[x] with the following properties:

(1) c≥11 and log(cp1 · · · pn)=nO(1).
(2) p1, . . . , pn is an increasing sequence of primes and p :=1 + cp1 · · · pn is prime.
(3) For all i, fi is monic, fi(0) 6=0, deg fi<p1 · · ·pn, and size(fi)=nO(1).
(4) For all i, the mod p reduction of fi has exactly deg fi distinct roots in Fp.
(5) B has a satisfying assignment if and only if the mod p reduction of (f1, . . . , fk) has

a root in Fp. �

Theorem 1.11 is based on an earlier reduction of Plaisted involving complex roots of unity
[Pla84, Sec. 3, pp. 127–129] and was refined into the form below in [AIRR12, Secs. 6.2–6.3].2

We now review some additional background necessary for our proofs.

1We respectively identify 0 and 1 with “False” and “True”.
2[AIRR12] in fact contains a version of Theorem 1.11 with c≥ 2, but c≥ 11 can be attained by a trivial

modification of the proof there.
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2. Background

Our main notion of input size essentially reduces to how long it takes to write down
monomial term expansions, a.k.a. the sparse encoding.

Definition 2.1. For any polynomial f ∈Z[x1, . . . , xn] written f(x)=
∑t

i=1 cix
a1,i
1 · · ·xan,i

n , we

define size(f) :=
∑t

i=1 log2 [(2 + |ci|)(2 + |a1,i|) · · · (2 + |an,i|)]. Also, when F := (f1, . . . , fk),

we define size(F ) :=
∑k

i=1 size(fi). ⋄
The definition above is also sometimes known as the sparse size of a polynomial. Note that
size(c)=O(log |c|) for any integer c.

A useful fact, easily obtainable from the famous Schwartz-Zippel Lemma is that systems of
univariate polynomial equations can, at the expense of some randomization, be reduced to
pairs of univariate equations. (See Appendix A for the proof and [GH93] for a multivariate
version.)

Lemma 2.2. Given any prime power q and f1, . . . , fk ∈ Fq[x], let Z(f1, . . . , fk) denote the

set of solutions of f1= · · · =fk=0 in Fq. Also let d :=maxi deg fi. Then at least a fraction
of 1− d

q
of the (u2, . . . , uk)∈Fk−1

q satisfy Z(f1, . . . , fk)=Z(f1, u2f2 + · · ·+ ukfk).

Remark 2.3. For this lemma to yield a high-probability reduction from k × 1 systems to
2×1 systems, we will of course need to assume that d is a small constant fraction of q. This
will indeed be the case in our upcoming applications since we will be combining the lemma
with Theorem 1.11, and Assertions (1)–(3) of the theorem force d< p

11
(with q=p a prime). ⋄

Let us now observe the following complexity bound for root detection for (not necessarily
sparse) polynomials over finite fields.

Proposition 2.4. Given any polynomial f ∈Fq[x] of degree d and N |(q − 1), we can decide
within d1+o(1)(log q)2+o(1) deterministic bit operations whether f has a root in the order N
subgroup of F∗

q. �

Since detecting roots for f as above is the same as deciding whether gcd(xN − 1, f(x))
has positive degree, the complexity bound above can be attained as follows: compute
r(x) :=xN mod f(x) via recursive squaring [BS96, Thm. 5.4.1, pg. 103], and then compute
gcd(r(x) − 1, f(x)) in time d1+o(1)(log q)1+o(1) via the Knuth-Schönhage algorithm [BCS97,
Ch. 3].

2.1. Geometry of Numbers for Speed-Ups. Recall that a lattice in Rm is the set

L(b1, . . . ,bd) =

{

d
∑

i=1

xibi

∣

∣

∣

∣

xi ∈ Z
}

of all integral combinations of d linearly independent

vectors b1, . . . ,bd ∈ Rm. The integers d and m are respectively called the rank and dimen-
sion of the lattice. The determinant det(L) of the lattice L is the volume of the d-dimensional
parallelepiped spanned by the origin and the vectors of any Z-basis for L. Any lattice can
be conveniently represented by a d × m matrix B, where b1, . . . ,bd are the rows. The
determinant of the lattice L can then be computed as det(L(B))=

√

det(BB⊤).
Let ‖ · ‖ denote the Euclidean norm on Rn for any n. Perhaps the most famous computa-

tional problem on lattices is the (exact) Shortest Vector Problem (SVP): Given a basis of a
lattice L, find a non-zero vector u∈L, such that ‖v‖ ≥ ‖u‖ for any vector v ∈ L \ 0. The
following is a well-known upper bound on the shortest vector length in lattice L.
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Minkowski’s Theorem. Any lattice L of rank d contains a non-zero vector v with
‖v‖≤

√
d det(L)1/d. �

Given a lattice with rank d, the celebrated LLL algorithm [LLL82] can find, in time

polynomial in the bit-size of a given basis for L, a vector whose length is at most 2
d
2 times

the length of the shortest nonzero vector in L. An algorithm with arithmetic complexity
dO(1)4d, proposed in [MV10, Sec. 5] by Micciancio and Voulgaris, is currently the fastest
deterministic algorithm for solving SVP. (See [Ngu11] for a survey of other SVP algorithms.)

Let us now prepare for our degree-lowering tricks. First, we construct the lattice L spanned
by the rows of matrix B, where

(⋆⋆) B =













a1 a2 · · · at
N 0 · · · 0
0 N · · · 0
...

...
. . . 0

0 0 · · · N













Letting v := (m1, m2, · · · , mt) be the shortest vector of lattice L, there then clearly exists
an integer e such that ea1 ≡ m1, . . . , eat ≡ mt mod N . (In fact, e is merely the coeffi-
cient of (a1, . . . , at) in the underlying linear combination defining v.) Most importantly, the
factorization of det(L) is rather restricted when the ai are relatively prime.

Lemma 2.5. If gcd(N, a1, . . . , at)=1 then det(L)|N t−1.

Proof: Let Li denote the sublattice of L generated by all rows of B save the ith row. Clearly
then, det(L)| det(Li) for all i. Moreover, we have det(L1) =N t and, via minor expansion
from the ith column of B, we have det(Li+1)=aiN

t−1 for all i∈{1, . . . , t}. So det(L) divides
a1N

t−1, . . . , atN
t−1 and we are done. �

We are now ready to prove Lemma 1.9.

Proof of Lemma 1.9: From Lemma 2.5 and Minkowski’s theorem, there exists a shortest
vector v of L satisfying ‖v‖≤

√
tN1−t−1

. By invoking the exact SVP algorithm from [MV10]
we can then find the shortest vector v in time 4t(t logN)O(1). Let v :=(m1, . . . , mt). Clearly,
by shortness, we may assume |mi|≤N/2 for all i∈{1, . . . , t}. (Otherwise, we would be able
to reduce mi in absolute value by subtracting a suitable row of the matrix B from v.) Also,
by construction, there is an e such that eai ≡ mi mod N for all i∈{1, . . . , t}. �

2.2. Resultants, A-discriminants, and Square-Freeness. Let us first recall the classical
univariate resultant.

Definition 2.6. (See, e.g., [GKZ94, Ch. 12, Sec. 1, pp. 397–402].) Suppose
f(x) = a0 + · · · + adx

d and g(x) = b0 + · · · + bd′x
d′ are polynomials with indeterminate

coefficients. We define their Sylvester matrix to be the (d+ d′)× (d+ d′) matrix
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S(d,d′)(f, g) :=



















a0 · · · ad 0 · · · 0
. . .

. . .
0 · · · 0 a0 · · · ad
b0 · · · bd′ 0 · · · 0

. . .
. . .

0 · · · 0 b0 · · · bd′

























d′ rows







d rows

and their Sylvester resultant to be Res(d,d′)(f, g) :=detS(d,d′)(f, g). ⋄
Lemma 2.7. Following the notation of Definition 2.6, assume f, g∈K[x] for some field K,
and that ad and bd′ are not both 0. Then f=g=0 has a root in the algebraic closure of K if
and only if Res(d,d′)(f, g)=0. More precisely, we have Res(d,d′)(f, g)=ad

′

d

∏

f(ζ)=0

g(ζ) where the
product counts multiplicity. �

The lemma is classical: see, e.g., [GKZ94, Ch. 12, Sec. 1, pp. 397–402], [RS02, pg. 9], and
[BPR06, Thm. 4.16, pg. 107] for a more modern treatment.

We may now define a refinement of the classical discriminant.

Definition 2.8. (See also [GKZ94, Ch. 12, pp. 403–408].) Let A := {a1, . . . , at}⊂N ∪ {0}
and f(x) :=

∑t
i=1 cix

ai , where 0≤a1< · · · <at and the ci are indeterminates. We then define
the A-discriminant of f , ∆A(f), to be

Res(āt,āt−ā2)

(

f̄ , ∂f̄
∂x

/

xā2−1
)/

c
āt−āt−1

t ,

where āi :=(ai − a1)/g for all i, f̄(x) :=
∑t

i=1 cix
āi, and g :=gcd(a2 − a1, . . . , at − a1). ⋄

Remark 2.9. Note that when A= {0, . . . , d} we have ∆A(f)=Res(d,d−1)(f, f
′)/cd, i.e., for

dense polynomials, the A-discriminant agrees with the classical discriminant. ⋄
Lemma 2.10. Suppose p is any prime and f, g ∈ Fp[x] are relatively prime polynomials
satisfying f(0)g(0) 6= 0, d := deg g ≥ deg f , and p > d. Then the polynomial f + ag is
square-free for at least a fraction of 1− 2d−1

p
of the a∈Fp.

Remark 2.11. Just as for Lemma 2.2, we will need to assume that d is a small constant
fraction of q for Lemma 2.10 to be useful. This will indeed be the case in our upcoming
applications since the setting will be the polynomials coming from Theorem 1.11, and
Assertions (1)–(3) of the theorem force 2d− 1< 2

11
p (with q=p a prime). ⋄

A stronger assertion, satisfied on a much smaller set of a, was observed earlier in the proof
of Theorem 1 of [KaShp99]. For our purposes, easily finding an a with f + ag square-free
will be crucial. We prove Lemma 2.10 in Appendix B.

3. Faster Root Detection: Proving Theorem 1.1 and Corollary 1.2

3.1. Proving Theorem 1.1. Before proving Theorem 1.1, let us first prove a result that
will in fact enable sub-linear root detection in arbitrary subgroups of F∗

q .

Lemma 3.1. Given a finite field Fq and the polynomials
(⋆ ⋆ ⋆) xN − 1 and c1 + c2x

a2 + · · ·+ ctx
at ,

in Fq[x] with 0<a2< · · · <at<N , gcd(N, a2, · · · , at) = 1, ci 6=0 for all i, and N |(q−1), there

exists a deterministic q1/4(log q)O(1) +4t(t logN)O(1) + t
1

2
+o(1)N

t−2

t−1
+o(1)(log q)2+o(1) algorithm
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to decide whether these two polynomials share a root in Fq. Furthermore, for some δ′|N with

δ′≤
√
t− 1N

t−2

t−1 and γ∈{1, . . . , δ′}, the roots of (⋆⋆⋆) lie in the union of a set of cardinality

2γ
√
t− 1N

t−2

t−1/δ′ and the union of δ′ − γ cosets of a subgroup of F∗
q of order N/δ′.

Proof of Lemma 3.1: By Lemma 1.9 we can find an integer e such that, if m2, . . . , mt

are the unique integers in the range [−⌊N/2⌋, ⌈N/2⌉] respectively congruent to ea2, . . . , eat,

then |mi| <
√
t− 1N

t−2

t−1 for each i∈{2, . . . , t}. Thanks to [MV10], this takes 4t(t logN)O(1)

deterministic bit operations. By [Shp96], we can then find a generator σ of F∗
q within

q1/4(log q)O(1) bit operations. For any τ ∈F∗
q, let 〈τ〉 denote the multiplicative subgroup of

F∗
q generated by τ .

Now, xN − 1 vanishing is the same as x ∈ 〈σ q−1

N 〉 since N |(q − 1). Let ζN := σ
q−1

N and
define δ′ := gcd(e,N). If δ′ = 1 then the map from 〈ζN〉 to 〈ζN〉 given by x 7→ xe is
one-to-one. So finding a solution for (⋆ ⋆ ⋆) is equivalent to finding x ∈ 〈ζN〉 such that
c1 + c2x

ea2 + · · · + ctx
eat =0. Thanks to Lemma 1.9, the last equation can be rewritten as

the lower degree equation c1 + c2x
m2 + · · · + ctx

mt =0, and we may conclude our proof by
applying Proposition 2.4.

However, we may have δ′>1. In which case, the map from 〈ζN〉 to 〈ζN〉 given by x 7→ xe

is no longer one-to-one. Instead, it sends 〈ζN〉 to a smaller subgroup 〈ζδ′N 〉 of order N/δ′. We
first bound δ′: re-ordering monomials if necessary, we may assume that m2 6= 0. We then
obtain

δ′=gcd(e,N)≤gcd(ea2, N)=gcd(m2, N)≤|m2| ≤
√
t− 1N

t−2

t−1 .
Any element x ∈ 〈ζN〉 can be written as ζ iNz for some i ∈ {0, . . . , δ′ − 1} and z ∈ 〈ζδ′N〉.
It is then clear that xN − 1 = c1 + c2x

a2 + · · · + ctx
at = 0 has a root in F∗

q if and only if

there is an i ∈ {0, . . . , δ′ − 1} and a z ∈ 〈ζδ′N〉 with c1 + c2(ζ
i
Nz)

a2 + · · · + ct(ζ
i
Nz)

at = 0.
Now, gcd(e/δ′, N/δ′) = 1. So the map from 〈ζδ′N〉 to 〈ζδ′N 〉 given by x 7→ xe/δ′ is one-to-one.
By the definition of the mi, (⋆ ⋆ ⋆) having a solution is thus equivalent to there being an
i∈{0, . . . , δ′ − 1} and a z∈〈ζδ′N 〉 with c1 + c2ζ

a2i
N zmt/δ′ + · · ·+ ctζ

ati
N zmt/δ′ = 0. So define the

Laurent polynomial
fi(z) :=c1 + c2(ζ

i
N)

a2zm2/δ′ + · · ·+ ct(ζ
i
N)

atzmt/δ′

If fi is identically zero then we have found a whole set of solutions for (⋆ ⋆ ⋆): the coset
ζ iN〈ζδ

′

N〉. If fi is not identically zero then let ℓ := minimin(mi/δ
′, 0). The polynomial

z−ℓfi(z) then has degree bounded from above by 2
√
t− 1N

t−2

t−1/δ′. Deciding whether the
pair of equations zN/δ′ − 1= z−ℓfi(z)= 0 has a solution for some i takes deterministic time

δ′
(√

t− 1N
t−2

t−1/δ′
)1+o(1)

(log q)2+o(1), applying Proposition 2.4 δ′ times.

The final statement characterizing the set of solutions to (⋆ ⋆ ⋆) then follows immediately
upon defining γ to be the number of i∈{0, . . . , δ′−1} such that fi is not identically zero. In
particular, γ≥1 since deg f <N and thus f is not identically zero on the order N subgroup
of F∗

q. �

Remark 3.2. Via fast randomized factoring, we can also pick out a representative from each
coset of roots within essentially the same time bound. Note also that it is possible for some
of the Laurent polynomials fi to vanish identically: the polynomial 1 + x− x2 − x3 and the
prime q = 13, obtained by mimicking Example 1.10, provide one such example (with δ′ = 6
and γ=1). ⋄
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We are now ready to prove our first main theorem.
Proof of Theorem 1.1: Let δ := gcd(q − 1, a2, . . . , at) and y=xδ. Then the solvability of
f is equivalent to the solvability of the following system of equations:

c1 + c2y
a2/δ + · · ·+ cty

at/δ = 0

y
q−1

δ = 1

Since gcd
(

a1
δ
, . . . , at

δ
, q−1

δ

)

= 1, we can solve this problem via Lemma 3.1 (with N = q−1
δ
),

within the stated time bound. (Note that q1/4 ≤ q
t−2

t−1 for all t≥ 3. Also, the computation
of gcd(q− 1, a2, . . . , at) is dominated by the other steps of the algorithm underlying Lemma

3.1.) Also, since y
q−1

δ =1, each solution y of the preceding 2 × 1 system induces exactly δ
roots of f in Fq. So we can indeed efficiently detect roots of f , and the second assertion of
Lemma 3.1 gives us the stated characterization of the roots of f . In particular, S2 is the
unique order q−1

δ′
subgroup of F∗

q (following the notation of the proof of Lemma 3.1).
The final upper bound then follows easily from computing the maximal cardinality of the

resulting union of cosets, for the cases γ ∈ {1, η} (following the notation of the proof of
Lemma 3.1). In particular, cosets of S2 do not appear when δ′ = 1, and when δ′ > 1 we
clearly have |S2|≤ q−1

2
. �

3.2. The Proof of Corollary 1.2. Deciding whether 0 is a root of all the fi is trivial, so
let us divide all the fi by a suitable power of x so that all the fi have a nonzero constant
term. Next, concatenate all the nonzero exponents of the fi into a single vector of length
T ≤ k(t − 1). Applying Lemma 1.9, and repeating our power substitution trick from our
proof of Theorem 1.1, we can then reduce to the case where each fi has degree at most
2
√
Tq1−T−1

, at the expense of 4T (T log q)O(1) deterministic bit operations.
At this stage, we then simply compute g(x) :=((· · · (gcd(gcd(f1, f2), f3), . . .), fk) via k − 1

applications of the Knuth-Schönhage algorithm [BCS97, Ch. 3]. This takes

(k − 1)
(

2
√
Tq1−T−1

)1+o(1)

(log q)1+o(1)

deterministic bit operations. We then conclude via Proposition 2.4, at a cost of
(

2
√
Tq1−T−1

)1+o(1)

(log q)2+o(1) big operations.

Summing the complexities of our steps, we arrive at our stated complexity bound. �

4. Hardness in One Variable: Proving Theorems 1.4, 1.5, and 1.8

4.1. The Proof of Theorem 1.4. Thanks to Theorem 1.11 we obtain an immediate ZPP-
reduction from 3CNFSAT to the detection of roots in Fp for systems of univariate polynomials
in Fp[x]. By Lemma 2.2 and Remark 2.3 we then obtain a BPP-reduction to 2× 1 systems.
Let us now describe a ZPP-reduction from 2× 1 systems to 1× 1 systems.

Suppose χ∈ Fq is a quadratic non-residue. Clearly, the only root in F2
q of the quadratic

form x2 − χy2 is (0, 0). So we can decide the solvability of f1(x) = f2(x) = 0 over Fq by
deciding the solvability of f 2

1 − χf 2
2 over Fq. Finding a usable χ is easily done in ZPP via

random-sampling and polynomial-time Jacobi symbol calculation (see, e.g., [BS96, Cor. 5.7.5
& Thm. 5.9.3, pg. 110 & 113]).

So there is indeed a BPP-reduction from 3CNFSAT to our main problem, and we are done.
�

4.2. The Proof of Theorem 1.5. First note that the hardness of detecting common degree
one factors in Fp[x] (or Fp[x]) for pairs of polynomials in Fp[x] follows immediately from
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Theorem 1.11 and Lemma 2.2: the proof of Theorem 1.4 above already tells us that there
is a BPP-reduction from 3CNFSAT to detecting common roots in Fp of pairs of polynomials
in Fp[x]. Thanks to Assertion (4) of Theorem 1.11, we also obtain a BPP-reduction to
detecting common roots, in Fp instead, for pairs of polynomials in Fp[x].

So why does this imply hardness for deciding divisibility by the square of a degree one
polynomial in Fp[x] (or Fp[x])? Assume temporarily that Problem (2) is doable in BPP.
Consider then, for any f, g∈Fp[x], the polynomial H :=(f + ag)(f + bg) where {a, b}⊂Fp[x]
is a uniformly random subset of cardinality 2. Note that should f and g have a common
factor in Fp[x], then H has a repeated factor in Fp[x].

On the other hand, if f and g have no common factor, then f +ag and f + bg clearly have
no common factors. Moreover, thanks to Lemma 2.10 and Remark 2.11, the probability
that f + ag and f + bg are both square-free — and thus H is square-free — is at least
(

1− 2d−1
q

)(

1− 2d−2
q

)

, assuming f and g satisfy the hypothesis of the lemma.

In other words, to test f and g for common factors, it’s enough to check square-freeness
of H for random (a, b).

To conclude, thanks to Theorem 1.11, the pairs of polynomials arising from our BPP-
reduction from 3CNFSAT satisfy the hypothesis of Lemma 2.10. Furthermore, thanks to

Assertion (1) of Theorem 1.11, our success probability is at least
(

1− 2
11

)2 ≥ 2
3
, so we are

done. �

4.3. Proving Theorem 1.8. We will need the following proposition, due to Ryan Williams.

Proposition 4.1. [Wil11] Assume that, for any Boolean circuit of size L, the Circuit
Satisfiability Problem can be solved in 2L−ω(L) time. Then NEXP 6⊆P/poly. �

We will also need the following lemma, which is implicit in [KiSha99]. For completeness,
we prove Lemma 4.2 in Appendix C.

Lemma 4.2. Given a Boolean circuit with d inputs and L gates, we can find a straight-line
program of size LO(1) for a polynomial f ∈F2d [x] such that the circuit is satisfied if and only
if f has a root in F2d.

Proof of Theorem 1.8: From Lemma 4.2, an algorithm as hypothesized in Theorem 1.8
would imply a 2L−ω(L) algorithm for any size L instance of the Circuit Satisfiability Problem.
By Proposition 4.1, we would then obtain NEXP 6⊆P/poly. �
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Appendix A: The Proof of Lemma 2.2; and Trinomial Discriminants

Let us first recall the following famous quantitative lemma.

The Schwartz-Zippel Lemma. SupposeK is any algebraically closed field, f ∈K[x1, . . . , xn]
is a non-constant polynomial of degree d, and S⊆K has cardinality N . Then f vanishes at
no more than dNn−1 points of Sn. �

Proof of Lemma 2.2: Let h= gcd(f1, . . . , fk). It is then clear that h ∈ Fq[x], deg
fi
h
≤ d

for all i, Z(h)=Z(f1, . . . , fk), and Z
(

f1
h
, . . . , fk

h

)

=∅. So if Z
(

f1
h
, u2

f2
h
+ · · ·+ uk

fk
h

)

=∅ then
we clearly obtain Z(f1, u2f2 + · · ·+ ukfk)=Z(f1, . . . , fk). We may thus reduce our lemma
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to the special case where Z(f1, . . . , fk)=∅ by simply replacing each fi by
fi
h
. So let us now

prove this special case.
Consider the polynomial L(u) :=Res(f1, u2f2+· · ·+ukfk)∈Fq[u2, . . . , uk]. By construction,

for any ζ ∈Fq, we either have f1(ζ) 6=0 or fi(ζ) 6=0 for some i≥2. In the latter case, we see
that u2f2(ζ) + · · ·+ ukfk(ζ) 6=0 when ui=1 and all other uj are 0. So, by Lemma 2.7, L(u)
is not identically zero. By the Schwartz-Zippel Lemma, we then obtain that L(u2, . . . , uk) is
nonzero for at least a fraction of 1− d

q
of the (u2, . . . , uk)∈Fk−1

q . Moreover, Lemma 2.7 tells

us that at any such point, Z(f1, u2f2 + · · ·+ ukfk)=∅. So we are done. �
We now make a final observation about the roots of trinomials over finite fields, easily

following from [AIRR12, Lemma 5.3].

Lemma 4.3. Suppose f(x) = c1 + c2x
a2 + c3x

a3 ∈ Fq[x] has degree < q, A := {0, a2, a3},
0 < a2 < a3, and gcd(a2, a3) = 1. Recall that ζ ∈ Fq is a degenerate root of f ⇐⇒
f(ζ)=f ′(ζ)=0. Then:

(0) ∆A(f) = (a3 − a2)
a3−a2aa22 ca32 − (−a3)

a3ca3−a2
1 ca23 .

(1) ∆A(f) 6=0 ⇐⇒ f has no degenerate roots in Fq. In which case, we also have

∆A(f)=
(−1)a3 c

a2−1

3

c
a2−1

1

∏

f(ζ)=0

f ′(ζ) where the product ranges over the a3 distinct roots of f in Fq.

(2) Deciding whether f has a degenerate root in Fp can be done in time polynomial in
log q.

(3) If f has a degenerate root ζ ∈F
∗
p then (ζa2, ζa3)= c1

a3−a2

(

−a3
c2
, a2
c3

)

. In particular, such a

Appendix B: The Proof of Lemma 2.10

For 2d − 1 ≥ p the lemma is vacuous, so let us assume 2d − 1 < p. Note also that the
polynomial f + ag is irreducible in Fp[x, a], since f and g have no common factors in Fp[x].

The splitting field L$Fp(a) of f(x) + ag(x) must have degree [L : Fp(a)] dividing (deg f)!.
Since deg f≤d<p, p can not divide [L : Fp(a)] and thus L is a separable extension of Fp(a),

i.e., f + ag has no degenerate roots in Fp(a). So the classical discriminant of f + ag (where
the coefficients are considered as polynomials in a) is a polynomial in a that is not identically
zero. Furthermore, from Definition 2.6, Res(d,d−1)(f +ag, f ′+ag′)∈Fp[a] has degree at most
d+ d− 1=2d− 1. So by Lemma 2.2, the classical discriminant of f + ag is non-zero for at
least 1− 2d−1

p
of the a∈Fp. Thanks to Lemma 2.7, we thus obtain that f + ag is square-free

for at least a fraction of 1− 2d−1
p

of the a∈Fp. �

Appendix C: The Proof of Lemma 4.2

A Boolean circuit can be viewed as a straight-line program using Boolean variables and
Boolean operations. One can replace the Boolean operations by polynomials over F2:

x1 ∧ x2 = x1x2

x1 ∨ x2 = x1 + x2 + x1x2

¬x1 = 1− x1

Hence a straight-line program for a Boolean function of size L with d inputs can be converted
into a straight-line program for a polynomial f(x0, x1, · · · , xd−1) ∈ F2[x0, x1, · · · , xd−1] of size
O(L).
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Let b(x) be an irreducible polynomial of degree d over F2. Let α be one root of b(x).
Then {1, α, α2, . . . , αd−1} is a basis for F2d over F2. Then any element x∈F2d can be written
uniquely as x=x0 + x1α + · · ·+ xd−1α

d−1, where xi ∈ F2 for all i. So we obtain the system
of linear equations















1 α · · · αd−1

1 α2 · · · α2(d−1)

1 α4 · · · α4(d−1)

...

1 α2d−1 · · · α2d−1(d−1)



























x0

x1

x2
...

xd−1













=













x
x2

x4

...

x2d−1













.

The underlying matrix is Vandermonde and thus non-singular. So we can represent each xi

as a linear combination of x, x21 , x22 , . . . , x2d−1

over F2d. Replacing each xi by the appropriate
linear combination of high powers of x, in the SLP for f , we obtain our lemma. �
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