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Abstract

The role of the Salmonella Pathogenicity Islands (SPIs) in pathogenesis of Salmonella enterica Typhimurium infection in the
chicken is poorly studied, while many studies have been completed in murine models. The Type VI Secretion System (T6SS)
is a recently described protein secretion system in Gram-negative bacteria. The genus Salmonella contains five
phylogenetically distinct T6SS encoded in differentially distributed genomic islands. S. Typhimurium harbors a T6SS
encoded in SPI-6 (T6SSSPI-6), which contributes to the ability of Salmonella to colonize mice. On the other hand, serotype
Gallinarum harbors a T6SS encoded in SPI-19 (T6SSSPI-19) that is required for colonization of chicks. In this work, we
investigated the role of T6SSSPI-6 in infection of chicks by S. Typhimurium. Oral infection of White Leghorn chicks showed
that a DT6SSSPI-6 mutant had reduced colonization of the gut and internal organs, compared with the wild-type strain.
Transfer of the intact T6SSSPI-6 gene cluster into the T6SS mutant restored bacterial colonization. In addition, our results
showed that transfer of T6SSSPI-19 from S. Gallinarum to the DT6SSSPI-6 mutant of S. Typhimurium not only complemented
the colonization defect but also resulted in a transient increase in the colonization of the cecum and ileum of chicks at days
1 and 3 post-infection. Our data indicates that T6SSSPI-6 contributes to chicken colonization and suggests that both T6SSSPI-6
and T6SSSPI-19 perform similar functions in vivo despite belonging to different phylogenetic families.
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Introduction

Nontyphoidal Salmonella gastroenteritis has an estimated global

burden of 93.8 million cases per year, of which 80.3 million cases

are likely to be food-borne [1]. The most prevalent serovars

responsible for food-borne salmonellosis are S. enterica serovar

Enteritidis and S. enterica serovar Typhimurium [2]. Salmonella

enterica serovar Typhimurium (S. Typhimurium) is a broad host-

range pathogen able to infect humans, mice and birds. In mice,

this serovar causes a systemic infection similar to human typhoid

fever that results from infection with serovar Typhi (as well as

Paratyphi A, B, and C) [3,4]; for this reason the murine model has

been widely used to study the pathogenesis of Salmonella infection.

In humans however, S. Typhimurium causes self-limiting gastro-

enteritis characterized by abdominal pain, vomiting and inflam-

matory diarrhea [5]. In contrast, this pathogen is able to colonize

the chicken without clinical symptoms, and is thus a major vehicle

for transmission of salmonellosis to humans.

Studies conducted using murine models of infection and in vitro

cell culture systems have identified numerous genes required to

establish a successful infection by S. Typhimurium. Most genes are

clustered in genomic islands known as Salmonella Pathogenicity

Islands (SPIs) [6–10]. Of the five SPIs (SPI-1 to SPI-5) common to

all serovars of Salmonella enterica, the SPI-1 and SPI-2 are the two

major virulence determinants of Salmonella. Each of these SPIs

encodes two different type III secretion systems (T3SS) that deliver

effector proteins directly into the cytoplasm of eukaryotic cells

[11,12]. The T3SSSPI-1 is mainly involved in invasion of intestinal

epithelial cells [13,14] but it is also required for intracellular

proliferation and for the biogenesis of the Salmonella containing

vacuole inside infected cells [15,16]. The T3SSSPI-2 is essential for

survival within phagocytic cells and systemic infection [17].

Studies on the role of the SPIs in the pathogenesis of S.

Typhimurium infection in the chicken are few and are sometimes

contradictory. While some authors reported that both T3SSSPI-1
and T3SSSPI-2 are required for the infection process [18–21], one
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study showed that neither T3SSSPI-1 nor T3SSSPI-2 is critical for

colonization of chickens [9]. One report directly compared the

intestinal and systemic colonization of Salmonella-resistant mice and

one-week-old chickens by S. Typhimurium [22]. Infected chicks

had very few organisms in internal organs and no symptoms of

systemic effects, while in mice, spleen and liver were colonized by

bacteria and showed significant enlargement. Furthermore,

colonization of the intestine had a different dynamic in the

chicken versus the mice models of infection, as SPI-1 was

important for association to the intestinal epithelium of the

chicken rather than for invasion, as is the case in mice [22]. From

these studies, it is evident that the murine model has a limited

applicability to Salmonella infection of the chicken, and that genes

in addition to the highly conserved SPIs are required for chicken

colonization and systemic spread.

Type VI secretion systems participate in a variety of different

processes, ranging from inter-bacterial relationships to pathogen-

esis [23–27]. Gram-negative bacteria carrying T6SS clusters

include human, animal and plant pathogens [28–34]. The genus

Salmonella contains five phylogenetically distinct T6SS loci; four of

them are differentially distributed among serovars of S. enterica,

while the fifth T6SS is present in S. bongori [35,36]. Two of these

clusters, T6SSSPI-6 and T6SSSPI-19, have been linked to Salmonella

pathogenesis. T6SSSPI-6 is required for intracellular replication in

macrophages and systemic dissemination in mice by S. Typhimur-

ium [37–41] and S. Typhi [29], while T6SSSPI-19 contributes to

colonization of the gastrointestinal tract and internal organs of

chickens by S. Gallinarum strain 287/1 [42].

In this study we have investigated the contribution of T6SSSPI-6
to S. Typhimurium ability to colonize the gastrointestinal tract and

internal organs of White Leghorn chicks. We have also addressed

whether T6SSSPI-19 of S. Gallinarum can rescue the colonization

defect of a S. Typhimurium mutant lacking T6SSSPI-6. Through

competitive index experiments we demonstrate that T6SSSPI-6 is

crucial to gastrointestinal colonization and systemic spread of S.

Typhimurium in chicks. In addition, we show that transfer of

T6SSSPI-19 restores the colonization defect of a mutant lacking

T6SSSPI-6, indicating that both T6SS perform similar functions

in vivo despite belonging to different phylogenetic families.

Materials and Methods

Bacteria and Growth Conditions
The bacterial strains used in this work are listed in Table 1.

Bacteria were routinely cultivated in LB broth (10 g/l tryptone,

5 g/l yeast extract, 5 g/l NaCl) at 37uC with aeration or on LB

plates (15 g/l agar) supplemented with the appropriate antibiotic

at the following concentrations: Ampicillin (Amp), 100 mg/ml;

Kanamycin (Kan), 50 mg/ml; Chloramphenicol (Cam), 20 mg/ml;

Trimethoprim (Tm), 100 mg/ml; Spectinomycin (Sp), 250 mg/ml.

DNA Methods
DNA manipulations were performed using standard protocols.

Plasmid DNA was isolated from overnight cultures using the

QIAprep Spin Miniprep Kit (QIAGEN), according to the

manufacturers instructions. Genomic DNA was isolated from

overnight cultures utilizing the GenElute Bacterial Genomic DNA

kit (Sigma) according to the manufacturers instructions. PCR

products were purified using the QIAquick PCR Purification Kit

(QIAGEN). XbaI restriction enzyme (Fermentas) and T4 DNA

ligase (New England Biolabs) were used as per manufacturer

instructions. DNA samples were routinely analyzed by electro-

phoresis in 1% agarose gels (1X Tris-acetate-EDTA buffer) and

visualized under UV light after ethidium bromide staining.

PCR Amplifications
Primers were designed using the Vector NTI Advance 10.0

software (Invitrogen) and are listed in Table 2. PCR amplifica-

tions were performed in a MultiGene TC9600-G thermal cycler

(LabNet), using GoTaq Flexi DNA Polymerase (Promega).

Conditions for tiling-PCR amplification were as follows: 3 min

at 94uC followed by 30 cycles of incubations at 94uC for 30 s,

58uC for 30 s, and 72uC for 4 min, followed by a final extension

step at 72uC for 7 min. Conditions for standard PCR amplifica-

tion were as follows: 3 min at 94uC followed by 30 cycles of

incubations at 94uC for 30 s, 55uC for 30 s, and 72uC for 2 min,

followed by a final extension step at 72uC for 5 min. When

required, PCR products were purified by using the QIAquick

PCR purification kit (Qiagen).

Construction of S. Typhimurium Mutant Strains
Mutants of S. Typhimurium carrying deletions of the T6SSSPI-6

gene cluster and the clpV (STM0272) or phoN genes were

constructed using the Lambda-Red System [43]. The oligonucle-

otides used for the mutagenesis are shown in Table 2 and the

sequences of plasmids pCLF2 and pCLF4 used as templates are

available in GenBank (accession numbers HM047089 and

EU629214.1, respectively). The correct insertion of the resistance

cassettes was checked by PCR, and confirmed mutations were

moved to a clean genetic background by generalized transduction

using the high-frequency transducing phage P22 HT105/1 int-

201. To be able to identify wild type versus mutant colonies in the

mixed competition experiments, the S. Typhimurium DphoN
mutant was used as the wild type strain. phoN+ and phoN- strains

can be distinguished by blue-white selection on 5-bromo-4-chloro-

3-indolyl phosphate (XP) containing media, phoN- strains form

white colonies while phoN+ strains appear blue. Mutations in phoN

do not affect the ability of S. Typhimurium to colonize and persist

in the chick [22].

Cloning of S. Typhimurium SPI-6 by VEX-Capture
Cloning of a ,39 Kb fragment containing the T6SSSPI-6 gene

cluster from S. Typhimurium 14028s onto plasmid R995 was

performed by the VEX-Capture technique for the targeted

excision and cloning of large DNA fragments [44]. First, loxP

sites were inserted at each side of the targeted genomic region by

homologous recombination of PCR products by the Lambda-Red

system, using as templates the plasmids pVEX1212 and

pVEX2212 that encode Sp and Cam resistance cassettes,

respectively. Correct insertion of loxP sites was confirmed by

PCR using primers SPI-6_OUT5 and STM0266_VEX_H2_U2

for loxP insertion located in the upstream region of the T6SS

cluster, and primers SPI-6_OUT_DOWN and

STM0298_VEX_H2_D2 for the downstream loxP insertion. This

cluster was excised from the chromosome as a non-replicating

circular DNA molecule by specific recombination of loxP sites

mediated by the action of Cre recombinase encoded in plasmid

pEKA30. This intermediate was captured into the R995-VC6

vector by a homologous recombination event, producing the

R995+SPI-6 plasmid. The R995-VC6 plasmid contains a

1,209 bp internal region of homology to the T6SSSPI-6 cluster,

cloned by PCR amplification with primers STM_VC_OUT5 and

STM_VC_OUT3 (Table 2).
Plasmid R995+SPI-6 was transferred to E. coli strain EC100D

pir-116 by conjugation and the presence and structural integrity of

the T6SSSPI-6 gene cluster cloned onto R995 was verified by tiling-

PCR analysis in order to amplify ten fragments that cover the

entire T6SS region (Figure S1). For competitive infections in

chickens, the in vivo stability of plasmids R995 and R995+SPI-6

SPI-6 in Salmonella Infection in Chickens
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was assessed in each organ at each time point studied. No

differences were observed on colony forming units (CFU)

indicating that R995 and its derivatives are highly stable in vivo.

Experimental Infections of Chickens
S. Typhimurium strains were grown aerobically at 42uC for 16

hours in LB broth. This temperature of incubation was used

because it corresponds to the body temperature of chicks. For

single and competitive infections, fifteen 4-day old unsexed White

Leghorn chicks were orally inoculated with 109 CFU of a single

strain or with an equal mixture of the strains to be tested in a

volume of 100 ml of sterile PBS. The inoculum was serially diluted

and plated to determine the titer and input ratio. Five birds from

the infected group were sacrificed by asphyxiation with CO2 on

days 1, 3 and 9 post-infection. Ileum, cecum (including contents),

liver and spleen were collected. These organs were homogenized

in sterile PBS and serial ten-fold dilutions spread on LB agar plates

containing the appropriate antibiotics for determination of CFU.

For histopathological analysis, the cecum and liver of experimental

animals were fixed in 10% formalin for 24 h followed by

incubation in 70% ethanol and then embedded in paraffin. The

samples were stained with hematoxylin and eosin and 10 fields per

sample were examined and scored by a trained veterinary

pathologist to determine histopathological changes.

Statistical Analysis
Data obtained from competitive infection experiments were

calculated as a mean ratio of logarithmically converted CFU of

mutant to wild type normalized to the input ratio. Error bars

indicate standard error. Statistical significance was determined

using a two-tailed Students t-test. P values of ,0.05 were

considered statistically significant (SPSS software, SPSS, Inc.,

Chicago, IL).

Ethics Statement
All animal experiments in this study were approved by the

Texas A&M University Institutional Animal Care and Use

Committee (TAMU AUP# 2010-38) and were carried out in

accordance with the Guide to the Care and Use of Laboratory

Animals, the Public Health Service Policy on the Human Care

and Use of Laboratory Animals.

Table 1. Strains and plasmids used in this study.

Strains Features Source of reference

Escherichia coli

DH5a F-W80lacZDM15D(lacZYA-argF)U169 deoR recA1 endA1 hsdR17(rk
-, mk

+) phoA
supE44 thi-1 gyrA96 relA1 l-

Laboratory collection

EC100D pir-116 F-mcrAD(mrr-hsdRMS-mcrBC)W 80dlacZDM15 DlacX74 recA1 endA1 araD139
D(ara, leu)7697 galU galK l- rpsL (StrR) nupG pir-116(DHFR)

Laboratory collection

EC100D pir-116/R995+SPI-6 Strain with T6SSSPI-6 from S. Typhimurium cloned in plasmid R995 This study

EC100D pir-116/R995+SPI-19 Strain with T6SSSPI-19 from S. Gallinarum cloned in plasmid R995 [42]

DH5a/R995 Strain harboring an empty R995 vector This study

DH5a/R995-VC6 Strain containing a derivative of plasmid R995 with a 1,209 bp DNA
fragment of T6SSSPI-6 cloned from S. Typhimurium

This study

Salmonella Typhimurium

14028 s Wild-type strain Laboratory collection

MTM753 14028 s DphoN This study

MTM35 14028 s DSPI-6 T6SS This study

MTM2640 14028 s DclpV This study

WT/R995 14028 s containing an empty R995 vector This study

MTM35R MTM35 harboring R995 plasmid This study

MTM35R6 MTM35 complemented with plasmid R995+SPI-6 This study

MTM35R19 MTM35 complemented with plasmid R995+SPI-19 This study

Plasmids

pKD46 bla PBAD bet exo pSC101 oriTs, AmpR [43]

pEKA30 IncQ plasmid that constitutively express Cre recombinase, AmpR [44]

pCLF2 Red-swap redesigned vector, CamR [50]

pCLF4 Red-swap redesigned vector, KanR [50]

pVEX1212 Suicide vector harboring a loxP site followed by a SpR cassette [44]

pVEX2212 Suicide vector harboring a loxP site followed by a CamR cassette [44]

R995 Self-transmissible broad-host range IncP vector [44]

R995-VC6 A derivative of plasmid R995 with a 1,209 bp DNA fragment of T6SSSPI-6
cloned from S. Typhimurium

This study

R995+SPI-6 T6SSSPI-6 cluster from S. Typhimurium 14028 s cloned in vector R995 This study

R995+SPI-19 T6SSSPI-19 cluster from S. Gallinarum 287/91 cloned in vector R995 [42]

doi:10.1371/journal.pone.0063917.t001
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Table 2. Primers used in this study.

Primer Sequencea

Mutagenesis

SPI-6_T6SS_(H1+P1) AGGGTGTTTTTATACATCCTGTGAAGTAAAAAAAACCGTAGTGTAGGCTGGAGCTGCTTC

SPI-6_T6SS_(H2+P2) GTGAACATGGCACATTAATTTGAAGCAGCTCTCATCCGGTCATATGAATATCCTCCTTAG

SPI-6_OUT5 CCGAAGTGTATCTGGCGATGA

STM0272_(H1+P1) GGCATAACACATGGAAACTCCTGTTTCACGCAGTGCGTTGGTGTAGGCTGGAGC TGCTTC

STM0272_(H2+P2) ACGGCCGGTTTCAGCAAACGATCTCAAAAACAATCTGCTCCATATGAATATCCTCCTTAG

STM0272_OUT5 GGCGGCAGTAAATACGATGT

STM_DphoN_(H1+P1) GTGAGTCTTTATGAAAAGTCGTTATTTAGTATTTTTTCTAGTGTAGGCTGGAGCTGCTTC

STM_DphoN_(H2+P2) ACTTTCACCTTCAGTAATTAAGTTCGGGGTGATCTTCTTTCATATGAATATCCTCCTTAG

STM_DphoN_OUT5 TTGCCTGATCCGGAGTGA

K1 CAGTCATAGCCGAATAGCCT

C3 CAGCTGAACGGTCTGGTTATAGG

VEX Capture

STM0266_VEX_H1_U1 GGCCACGTGGGCCGTGCACCTTAAGCTT

STM0266_VEX_H2_U2 GAGGTTATTCATGTCAACAGGATTACGTTTCACACTGGAGGTGCAGGCTGGAGCTGCTTC

STM0298_VEX_H1_D1 GGGGAGGTTGTGCGACGTTTGCATAATCCAGCAAGAACTGGGTTTAACGGTTGTGGACAACAAGCCAGGG

STM0298_VEX_H2_D2 ACACAGGCCAGACTGATTATACAGGCATGAAAAAGCTCTCCAGGTCGACGTCCCATGGCCATTCGAATTC

STM_VC_OUT5 GCTCTAGACCGGAGGGGTTATCTTTTCC

STM_VC_OUT3 GCTCTAGATTGAAGCAGCTCTCATCCGG

5trfA ACGTCCTTGTTGACGTGGAAAATGACCTTG

3trfA CCGGAAGGCATACAGGCAAGAACTGATCG

SPI-6_OUT_DOWN AAACGGGTCTATTTACAGGGGCAC

Tiling-PCR

1_T6SS_SPI-6_FOR TTCAAGAAGTTCCACCGTCTATCG

1_T6SS_SPI-6_REV ACCTGTTTGAGCTGCTACATACCAG

2_T6SS_SPI-6_FOR CATTCAGTTCGCCGTCAAAGTG

2_T6SS_SPI-6_REV CCGCTGCGAATTTTGTTATCG

3_T6SS_SPI-6_FOR CCACGTTCTTCGGCATTACCAG

3_T6SS_SPI-6_REV CGGTGTTGTAAACCAGATGCTCC

4_T6SS_SPI-6_FOR AGACGCTGGCGAACACGATC

4_T6SS_SPI-6_REV TAAGCACTGGCCGTAGCTCTGG

5_T6SS_SPI-6_FOR GCAGCCATCCTTTGCACAAG

5_T6SS_SPI-6_REV GGTTGTGTTATTGGCGGCTTC

6_T6SS_SPI-6_FOR TATGCGATCAGGCGAACCTG

6_T6SS_SPI-6_REV TCTTCCTGTAACCGGGTATCCAG

7_T6SS_SPI-6_FOR GGTTGGATCAGGGACTGGATACC

7_T6SS_SPI-6_REV CGTAACCCTCAACATCCTGCG

8_T6SS_SPI-6_FOR AAAGCACCGGTGAATGTGGCTG

8_T6SS_SPI-6_REV TCGGTGTGGTCATCCTTACGGG

9_T6SS_SPI-6_FOR TGTCAGCACCAACAGTCGCC

9_T6SS_SPI-6_REV CGCCCTTCGATAGAATCTGGC

10_T6SS_SPI-6_FOR TAGTAGGGCCAGATTCTATCGAAGG

10_T6SS_SPI-6_REV CCCTCCGGCTTTTACACATTATTC

aItalics indicate the region that anneals to the 59 or 39 end of the antibiotic resistance cassette used for the mutagenesis. Underline indicates XbaI restriction sites used
for cloning an internal region of homology to T6SS of SPI-6 into R995 plasmid.
doi:10.1371/journal.pone.0063917.t002
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Results

The T6SS Encoded in SPI-6 Contributes to Efficient
Colonization of the Avian Host by Salmonella
Typhimurium
Single infections and competitive index experiments were

performed to determine the contribution of the SPI-6 T6SS to

intestinal and systemic colonization of chicks by S. Typhimurium.

For single infections, White Leghorn chicks were orally-infected

with either the wild-type strain, a DT6SSSPI-6 mutant (MTM35) or

a DclpV deletion mutant (MTM2640) and colonization of the

cecum, ileum, liver and spleen was evaluated over 9 days of

infection. ClpV, a conserved structural component of the T6SS

that belongs to Clp/Hsp100 AAA+ of ATPase superfamily, is

required for the activity of the secretion system [45,46]. As shown

in Figure 1, the cecum and ileum of chicks infected with the wild-

type strain were heavily colonized at all time points, while the liver

and spleen were only lightly colonized, as reported previously [22].

Interestingly, both the DT6SSSPI-6 and DclpV mutant strains

showed an overall lower degree of colonization of the cecum and

ileum from day 3 post-infection and of the liver and spleen from

day one post-infection, suggesting a role for the SPI-6 T6SS in

chick colonization.

In order to determine the competitive fitness within the host, of

each mutant strain, competitive index experiments were per-

formed. White leghorn chicks were orally infected with a mixture

of each mutant with the wild-type strain at a 1:1 ratio and

colonization of each organ was evaluated over 9 days of infection.

As shown in Figure 2, a strong colonization defect was observed

for both the DT6SSSPI-6 and DclpV mutants during intestinal and

systemic colonization from day 1 post-infection. This markedly

attenuated phenotype was more pronounced at the third day post-

infection and it was maintained throughout day 9 in each organ

analyzed. These results indicate that S. Typhimurium requires a

functional T6SS to efficiently colonize the avian host.

Histopathological analysis of the cecum and liver from infected

birds was performed to determine whether or not this attenuated

phenotype was accompanied by tissue damage and/or signs of an

inflammatory response. Single infections were performed as

described above, and 3 days post infection the chicks were

sacrificed and each organ tested was excised, fixed, stained with

hematoxylin and eosin, and analyzed for histopathological lesions.

Figure 1. Distribution of S. Typhimurium 14028 s and SPI-6 T6SS mutants in the gastrointestinal tract and internal organs of orally
infected chickens. Four-day-old White Leghorn chicks were infected by gavage with 109 CFU of either the wild-type S. Typhimurium 14028 s, the
DT6SSSPI-6 mutant or the DclpV mutant strains. After 1, 3 and 9 days post-infection, the chicks were humanely euthanized and the ileum, cecum, liver
and spleen were aseptically removed. Tissues were homogenized and viable bacterial counts were determined. Data are mean values of log10 CFU/g
of tissue, from five animals at each time point.
doi:10.1371/journal.pone.0063917.g001
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Significant pathological changes were observed in the cecum of

chicks infected with the wild-type strain. Among these changes,

focal necrosis of the mucosal epithelial cells and heterophil

infiltration were evident, indicating a strong inflammatory

response induced by S. Typhimurium 14028 s (Figure 3, left

panel). In contrast, chicks infected with either the DT6SSSPI-6 or

DclpV mutant strains showed a considerable lower level of

heterophil infiltration in the cecum, with no signs of necrosis of

the epithelial cells (Figure 3, central and right panels, respective-

ly). No significant histopathological differences were found in livers

infected with either the wild-type or the T6SS mutants (data not

shown). Absence of lesions in the liver are most probably due to

the low levels of bacterial colonization of internal organs by both

the wild-type and T6SS mutant strains (Figure 1).

The Colonization Defect of the DT6SSSPI-6 Mutant is
Complemented by Transfer of the T6SSSPI-6 Gene Cluster
To directly link the absence of the T6SSSPI-6 gene cluster to the

phenotype of the DT6SSSPI-6 mutant, the complete 35,921 base

pair T6SS gene cluster was returned to the mutant on the self-

transmissible broad-host range R995 vector. The capture of the

entire T6SSSPI-6 gene cluster was performed using the VEX-

Capture method [44] and confirmed by tiling PCR analysis

(Figure S1).

Figure 2. In vivo competition between DT6SSSPI-6 and DclpV deletion mutants and the wild type S. Typhimurium strain 14028 s.
Fifteen four-day-old White Leghorn chicks were infected intragastrically by gavage with 109 CFU of a mixture at a 1:1 ratio of the respective mutant
strain and the wild type S. Typhimurium 14028 s. At 1, 3 and 9 days post-infection groups of 5 chicks were sacrificed and organs were excised,
homogenized, and serially diluted to determine bacterial loads. Bars represent the geometric mean of the log ratio of the mutant CFU/wild type CFU,
normalized to the inoculum ratio. Error bars denote standard error. Statistical significance was determined using a two-tailed Student’s t test, and
asterisks indicate that normalized output ratios were significantly statistically different from the equivalent ratio in the inoculum (*P,0.05;
**P,0.001).
doi:10.1371/journal.pone.0063917.g002

Figure 3. Histopathological changes in the cecum of infected chicks at day 3 post-infection. Groups of 3 White Leghorn chicks were
inoculated intragastrically by gavage with 109 CFU of the wild type S. Typhimurium 14028 s strain, the DT6SSSPI-6 mutant strain or the DclpV mutant
strain. At day 3 post-infection the chicks were sacrificed and the ceca were excised, fixed, stained with hematoxylin and eosin, and analyzed for
histopathological lesions. Representative images of stained sections (400X) and scores for histopathological lesions in the cecum of infected chicks
are shown (-, no changes; +, mild; ++, strong; +++, severe). White arrows indicate heterophil infiltration.
doi:10.1371/journal.pone.0063917.g003
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The complemented strain (MTM35R6) was tested in a

competition experiment against the DT6SSSPI-6 mutant and the

wild type, each bearing the empty vector (MTM35/R995 and

WT/R995, respectively) and colonization was determined at days

1, 3, and 9 post infection. As shown in Figure 4, transfer of the
T6SSSPI-6 gene cluster to the DT6SSSPI-6 mutant restored its

ability to colonize the cecum and the ileum at all time points. On

the other hand, in the spleen and liver, the results were not

conclusive due to a very low and heterogeneous colonization of

these deeper tissues by S. Typhimurium harbouring the R995

plasmid (data not shown). Nevertheless, complementation of the

defective phenotype of the DT6SSSPI-6 mutant in the gastrointes-

tinal tract supports the contribution of T6SSSPI-6 in chicken

colonization.

The SPI-19 T6SS from S. Gallinarum Restores the
Colonization Defect of the SPI-6 T6SS Mutant Strain
In a previous study, we reported that T6SSSPI-19 contributes to

efficient colonization of infected chicks by S. Gallinarum 287/91

[42]. T6SSSPI-6 and T6SSSPI-19 have different evolutionary

histories, and were probably acquired at different times during

Salmonella evolution [35,36]. Because both T6SS are relevant for

Salmonella colonization of infected chicks, we examined the

possibility that both T6SS could contribute to chicken colonization

in a similar extent. To test whether T6SSSPI-19 can restore the

ability of the S. Typhimurium DT6SSSPI-6 mutant to efficiently

colonize the avian host, the complete T6SSSPI-19 gene cluster

captured from S. Gallinarum 287/91 in the R995 plasmid was

Figure 4. In vivo competition between the DT6SSSPI-6 mutants complemented in trans with T6SSSPI-6 or T6SSSPI-19 and the wild type
S. Typhimurium 14028 s. Fifteen four-day-old White Leghorn chicks were orally infected with 109 CFU of a mixture at a 1:1 ratio of strains WT/
R995, DT6SSSPI-6/R995+SPI-6 and DT6SSSPI-6/R995+SPI-19. At 1, 3 and 9 days post-infection groups of five chicks were sacrificed and the organs were
excised, homogenized, and serially diluted for determination of bacterial loads. Bars represent the geometric mean of the log converted ratio of the
mutant CFU to the wild type CFU normalized to the equivalent ratio in the inoculum. Error bars denote standard error. Statistical significance was
determined using a two-tailed Student’s t test, and asterisks indicate statistically significant differences between normalized output ratios (*P,0.05).
`Indicate statistically significant differences between normalized output ratios and the equivalent ratio in the inoculum (`P,0.05).
doi:10.1371/journal.pone.0063917.g004
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transferred to S. Typhimurium DT6SSSPI-6 by conjugation. The

resulting strain (MTM35R19) was tested in a competition

experiment with the wild-type S. Typhimurium strain bearing

the empty R995 vector (WT/R995). The results showed that

introduction of the T6SSSPI-19 complemented the colonization

defect of the DT6SSSPI-6 mutant in both the cecum and ileum

(Figure 4). Interestingly, at days 1 and 3 post-infection, the cross-

complemented strain colonized the cecum to higher levels than the

wild-type strain. Analysis of the competitive fitness of the

complemented strains in the spleen and liver did not show

statistically significant differences; this was due to the heteroge-

neous and low colonization levels of systemic organs reached by

Salmonellae in the chicken, as previously reported [22].

Discussion

We previously reported that Salmonella encodes five distinct

T6SS differentially distributed among different serotypes [35,36].

Two of these systems, encoded in the SPI-6 and SPI-19, have been

linked to the ability of serotypes Typhimurium and Gallinarum to

efficiently infect mice and chickens, respectively [37,42,47]. Even

though most of our knowledge regarding S. Typhimurium

pathogenesis comes from murine models of infection, recent

reports have highlighted the limited applicability of this model

when it comes to extrapolating conclusions regarding other hosts,

including the chicken.

In this work, we evaluated the contribution of T6SSSPI-6 to the

ability of S. Typhimurium 14028 s to colonize the gastrointestinal

tract and internal organs of White Leghorn chicks. Competitive

index experiments demonstrated that the T6SSSPI-6 gene cluster

was necessary for efficient colonization of the cecum, ileum, spleen

and liver from day 1 post-infection. A similar colonization defect

was observed for a mutant lacking the T6SS-essential component

ClpV. Interestingly, the colonization defects were more pro-

nounced at days 3 and 9 post-infection suggesting that mutants in

the DT6SSSPI-6 do not persist well.

Histopathological analyses revealed that the attenuated pheno-

types of the mutants were accompanied by changes in the

inflammatory response in the cecum. Chicks infected with SPI-6

T6SS mutant strains showed considerable less inflammation and

necrosis in the cecum in comparison with those infected with the

wild-type strain. This could be due to the lower level of

colonization of the cecum by the SPI-6 T6SS mutant compared

to the wild type, or that this secretion system effectively contributes

to the inflammatory response generated by S. Typhimurium

infection. Further experiments will be needed to clarify these

issues.

To confirm that T6SSSPI-6 was responsible for these pheno-

types, the entire gene cluster was cloned and introduced in the

DT6SSSPI-6 mutant. Although complementation was not observed

in the spleen and liver, transfer of the T6SS gene cluster

complemented the colonization defect of the mutant in the cecum

and ileum throughout infection, suggesting a critical role for

T6SSSPI-6 in the gastrointestinal phase of infection. In this context,

Sivula et al. have shown that S. Typhimurium preferentially

colonize the cecum in order to maintain a long-term persistence in

chicks [22]. Therefore, T6SSSPI-6 may be contributing to this

critical phase of the infectious process.

A role for T6SS in colonization of the gastrointestinal tract is

not unexpected. Several T6SS have been linked to antibacterial

killing through delivery of toxins to susceptible Gram-negative

bacteria, and several authors have proposed that T6SS could

contribute to bacterial adaptation and competition for new niches,

including animal hosts [23–26,48]. Therefore, it is possible that

the defect observed in colonization of the ileum and cecum of the

T6SS mutant is due to an inability of this mutant to compete with

normal flora of the chicken gut. Further experiments will be

needed to test this hypothesis.

On the other hand, a recent report has pointed out a role for

T6SSSPI-6 in the intracellular survival of S. Typhimurium in

murine macrophages [37]. Our data indicate that this secretion

system is also needed for colonization of the internal organs of the

chicken, suggesting a role for T6SSSPI-6 in intracellular survival

within avian macrophages. Hence, the T6SSSPI-6 might contribute

to both competition with the normal intestinal flora and survival

within phagocytic cells.

We have previously reported that a phylogenetically distinct

T6SS encoded in SPI-19, is necessary for the efficient colonization

of the intestinal tract and systemic organs of chicks, and for

survival of serotype Gallinarum in cultured avian macrophages

[42,49]. Because the phenotypes observed for the DT6SSSPI-6
mutant were similar to those exhibited by a DT6SSSPI-19 mutant of

Gallinarum, we hypothesized that both systems could perform

similar functions in chicken infection. Transfer of the T6SSSPI-19
gene cluster to the DT6SSSPI-6 mutant complemented the

colonization defect of this strain in the ileum and cecum.

Moreover, it caused an advantage for colonization of cecum at

days 1 and 3 post-infection. These results indicate that both T6SS,

despite their different evolutionary histories, contribute to a similar

extent to chicken colonization by Salmonella. This statement is

supported by the fact that both SPI-6 and SPI-19 T6SS have been

shown to be required for Salmonella intracellular survival within

macrophages [37,49].

Altogether, we have determined that T6SSSPI-6 contributes to

chicken colonization by S. Typhimurium. Also, we show that

T6SSSPI-19 from the avian-adapted serotype Gallinarum is able to

replace T6SSSPI-6, suggesting a broad role for these secretion

systems in Salmonella host colonization. Most interestingly, our

results indicate that T6SSSPI-19 confers an advantage to S.

Typhimurium to colonize the gastrointestinal tract of the chicks

early in infection.

Supporting Information

Figure S1 In vivo cloning of T6SSSPI-6 from S. Typhi-
murium 14028 s. (A) Scheme of the VEX-Capture procedure:

loxP sites were inserted in the chromosome of S. Typhimurium

14028 s at each side of the T6SSSPI-6 gene cluster through

homologous recombination of PCR products using the Lambda-

Red system. In presence of pEKA30, a plasmid that constitutively

expresses the Cre recombinase, the T6SS cluster was excised from

the chromosome as a non-replicative, circular DNA intermediate

that was captured through homologous recombination in R995-

VC6, a derivative of R995 plasmid harboring an internal region of

homology to T6SSSPI-6. (B) Tiling-PCR analysis of the T6SSSPI-6
gene cluster cloned onto the R995 plasmid. Specific primers were

designed to amplify ten fragments that cover the entire T6SSSPI-6
region and whose lengths vary between 3,298 and 4,274 bp.

(TIF)

Acknowledgments

We thank James W. Wilson for generous gift of bacterial strains and

plasmids during the implementation of VEX-Capture technique, and

Lydia Bogomolnaya, Marissa Talamantes and Claudia Lopez for technical

assistance.

SPI-6 in Salmonella Infection in Chickens

PLOS ONE | www.plosone.org 8 May 2013 | Volume 8 | Issue 5 | e63917



Author Contributions

Conceived and designed the experiments: DP CJB CAS HAP IC.

Performed the experiments: DP HJY. Analyzed the data: DP CJB CAS

HAP IC. Contributed reagents/materials/analysis tools: CAS HAP IC.

Wrote the paper: DP CJB CAS HAP IC.

References

1. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, et al. (2010) The global

burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50: 882–889.

2. WHO Global Foodborne Infections Network Country Databank www.who.int/
salmsurv.

3. House D, Bishop A, Parry C, Dougan G, Wain J (2001) Typhoid fever:
pathogenesis and disease. Curr Opin Infect Dis 14: 573–578.

4. Jones BD, Falkow S (1996) Salmonellosis: host immune responses and bacterial
virulence determinants. Annu Rev Immunol 14: 533–561.

5. Santos RL, Raffatellu M, Bevins CL, Adams LG, Tukel C, et al. (2009) Life in
the inflamed intestine, Salmonella style. Trends Microbiol 17: 498–506.

6. Hansen-Wester I, Hensel M (2001) Salmonella pathogenicity islands encoding

type III secretion systems. Microbes Infect 3: 549–559.

7. Smith RL, Kaczmarek MT, Kucharski LM, Maguire ME (1998) Magnesium

transport in Salmonella typhimurium: regulation of mgtA and mgtCB during

invasion of epithelial and macrophage cells. Microbiology 144 (Pt 7): 1835–1843.

8. Dorsey CW, Laarakker MC, Humphries AD, Weening EH, Baumler AJ (2005)
Salmonella enterica serotype Typhimurium MisL is an intestinal colonization factor

that binds fibronectin. Mol Microbiol 57: 196–211.

9. Morgan E, Campbell JD, Rowe SC, Bispham J, Stevens MP, et al. (2004)

Identification of host-specific colonization factors of Salmonella enterica serovar

Typhimurium. Mol Microbiol 54: 994–1010.

10. Knodler LA, Vallance BA, Celli J, Winfree S, Hansen B, et al. (2010)
Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal

epithelia. Proc Natl Acad Sci U S A 107: 17733–17738.

11. Galan JE (2001) Salmonella interactions with host cells: type III secretion at work.

Annu Rev Cell Dev Biol 17: 53–86.

12. Haraga A, Ohlson MB, Miller SI (2008) Salmonellae interplay with host cells.

Nat Rev Microbiol 6: 53–66.

13. Coombes BK, Coburn BA, Potter AA, Gomis S, Mirakhur K, et al. (2005)

Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric
disease progression using a novel bovine ileal loop model and a murine model of

infectious enterocolitis. Infect Immun 73: 7161–7169.

14. Hapfelmeier S, Ehrbar K, Stecher B, Barthel M, Kremer M, et al. (2004) Role of

the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and
SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in

streptomycin-pretreated mice. Infect Immun 72: 795–809.

15. Brawn LC, Hayward RD, Koronakis V (2007) Salmonella SPI1 effector SipA

persists after entry and cooperates with a SPI2 effector to regulate phagosome
maturation and intracellular replication. Cell Host Microbe 1: 63–75.

16. Steele-Mortimer O, Brumell JH, Knodler LA, Meresse S, Lopez A, et al. (2002)
The invasion-associated type III secretion system of Salmonella enterica serovar

Typhimurium is necessary for intracellular proliferation and vacuole biogenesis

in epithelial cells. Cell Microbiol 4: 43–54.

17. Kuhle V, Hensel M (2004) Cellular microbiology of intracellular Salmonella

enterica: functions of the type III secretion system encoded by Salmonella

pathogenicity island 2. Cell Mol Life Sci 61: 2812–2826.

18. Jones MA, Hulme SD, Barrow PA, Wigley P (2007) The Salmonella pathogenicity

island 1 and Salmonella pathogenicity island 2 type III secretion systems play a
major role in pathogenesis of systemic disease and gastrointestinal tract

colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian

Pathol 36: 199–203.

19. Porter SB, Curtiss R, 3rd (1997) Effect of inv mutations on Salmonella virulence

and colonization in 1-day-old White Leghorn chicks. Avian Dis 41: 45–57.

20. Dieye Y, Ameiss K, Mellata M, Curtiss R, 3rd (2009) The Salmonella

Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of

the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9: 3.

21. Turner AK, Lovell MA, Hulme SD, Zhang-Barber L, Barrow PA (1998)

Identification of Salmonella typhimurium genes required for colonization of the

chicken alimentary tract and for virulence in newly hatched chicks. Infect
Immun 66: 2099–2106.

22. Sivula CP, Bogomolnaya LM, Andrews-Polymenis HL (2008) A comparison of

cecal colonization of Salmonella enterica serotype Typhimurium in white leghorn

chicks and Salmonella-resistant mice. BMC Microbiol 8: 182.

23. Murdoch SL, Trunk K, English G, Fritsch MJ, Pourkarimi E, et al. (2011) The
opportunistic pathogen Serratia marcescens utilizes type VI secretion to target

bacterial competitors. J Bacteriol 193: 6057–6069.

24. Hood RD, Singh P, Hsu F, Guvener T, Carl MA, et al. (2010) A type VI

secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host

Microbe 7: 25–37.

25. MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S (2010) The Vibrio cholerae type
VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A

107: 19520–19524.

26. Schwarz S, West TE, Boyer F, Chiang WC, Carl MA, et al. (2010) Burkholderia

type VI secretion systems have distinct roles in eukaryotic and bacterial cell
interactions. PLoS Pathog 6(8): e1001068.

27. Schwarz S, Hood RD, Mougous JD (2010) What is type VI secretion doing in all
those bugs? Trends Microbiol 18: 531–537.

28. Ma AT, Mekalanos JJ (2010) In vivo actin cross-linking induced by Vibrio cholerae

type VI secretion system is associated with intestinal inflammation. Proc Natl
Acad Sci U S A. 107(9): 4365–70.

29. Wang M, Luo Z, Du H, Xu S, Ni B, et al. (2011) Molecular Characterization of
a Functional Type VI Secretion System in Salmonella enterica serovar Typhi. Curr

Microbiol 63: 22–31.

30. Pukatzki S, McAuley SB, Miyata ST (2009) The type VI secretion system:
translocation of effectors and effector-domains. Curr Opin Microbiol 12: 11–17.

31. Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, et al. (2011) The
cluster 1 type VI secretion system is a major virulence determinant in Burkholderia

pseudomallei. Infect Immun 79: 1512–1525.
32. Jani AJ, Cotter PA (2010) Type VI secretion: not just for pathogenesis anymore.

Cell Host Microbe 8: 2–6.

33. de Pace F, Nakazato G, Pacheco A, de Paiva JB, Sperandio V, et al. (2010) The
type VI secretion system plays a role in type 1 fimbria expression and

pathogenesis of an avian pathogenic Escherichia coli strain. Infect Immun 78:
4990–4998.

34. Pukatzki S, Ma AT, Revel AT, Sturtevant D, Mekalanos JJ (2007) Type VI

secretion system translocates a phage tail spike-like protein into target cells where
it cross-links actin. Proc Natl Acad Sci U S A 104: 15508–15513.

35. Blondel CJ, Jimenez JC, Contreras I, Santiviago CA (2009) Comparative
genomic analysis uncovers 3 novel loci encoding type six secretion systems

differentially distributed in Salmonella serotypes. BMC Genomics 10: 354.

36. Fookes M, Schroeder GN, Langridge GC, Blondel CJ, Mammina C, et al.
(2011) Salmonella bongori Provides Insights into the Evolution of the Salmonellae.

PLoS Pathog 7: e1002191.
37. Mulder DT, Cooper CA, Coombes BK (2012) Type VI secretion system-

associated gene clusters contribute to pathogenesis of Salmonella enterica serovar
Typhimurium. Infect Immun 80: 1996–2007.

38. Chan K, Kim CC, Falkow S (2005) Microarray-based detection of Salmonella

enterica serovar Typhimurium transposon mutants that cannot survive in
macrophages and mice. Infect Immun 73: 5438–5449.

39. Haneda T, Ishii Y, Danbara H, Okada N (2009) Genome-wide identification of
novel genomic islands that contribute to Salmonella virulence in mouse systemic

infection. FEMS Microbiol Lett 297: 241–249.

40. Klumpp J, Fuchs TM (2007) Identification of novel genes in genomic islands that
contribute to Salmonella typhimurium replication in macrophages. Microbiology

153: 1207–1220.
41. Lawley TD, Chan K, Thompson LJ, Kim CC, Govoni GR, et al. (2006)

Genome-wide screen for Salmonella genes required for long-term systemic
infection of the mouse. PLoS Pathog 2: e11.

42. Blondel CJ, Yang HJ, Castro B, Chiang S, Toro CS, et al. (2010) Contribution

of the type VI secretion system encoded in SPI-19 to chicken colonization by
Salmonella enterica serotypes Gallinarum and Enteritidis. PLoS One 5: e11724.

43. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes
in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–

6645.

44. Wilson JW, Figurski DH, Nickerson CA (2004) VEX-capture: a new technique
that allows in vivo excision, cloning, and broad-host-range transfer of large

bacterial genomic DNA segments. J Microbiol Methods 57: 297–308.
45. Basler M, Pilhofer M, Henderson GP, Jensen GJ, Mekalanos JJ (2012) Type VI

secretion requires a dynamic contractile phage tail-like structure. Nature 483:
182–186.

46. Silverman JM, Brunet YR, Cascales E, Mougous JD (2012) Structure and

Regulation of the Type VI Secretion System. Annu Rev Microbiol 66: 453–472.
47. Liu J, Guo JT, Li YG, Johnston RN, Liu GR, et al. (2012) The type VI secretion

system gene cluster of Salmonella typhimurium: required for full virulence in mice. J
Basic Microbiol. 52: 1–8.

48. Russell AB, Singh P, Brittnacher M, Bui NK, Hood RD, et al. (2012) A

Widespread Bacterial Type VI Secretion Effector Superfamily Identified Using a
Heuristic Approach. Cell Host Microbe 11: 538–549.
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