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Abstract

Despite significant advances in high-throughput DNA sequencing, many important species remain understudied at the
genome level. In this study we addressed a question of what can be predicted about the genome-wide characteristics of
less studied species, based on the genomic data from completely sequenced species. Using NCBI databases we performed a
comparative genome-wide analysis of such characteristics as alternative splicing, number of genes, gene products and
exons in 36 completely sequenced model species. We created statistical regression models to fit these data and applied
them to loblolly pine (Pinus taeda L.), an example of an important species whose genome has not been completely
sequenced yet. Using these models, the genome-wide characteristics, such as total number of genes and exons, can be
roughly predicted based on parameters estimated from available limited genomic data, e.g. exon length and exon/gene
ratio.
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Received November 10, 2010; Accepted February 19, 2011; Published March 25, 2011

Copyright: � 2011 Koralewski, Krutovsky. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was funded by the United States Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES)
and the Texas Agricultural Experiment Station (TAES) McIntire-Stennis Project. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: k-krutovsky@tamu.edu

Introduction

Recent advances in high-throughput DNA sequencing led to

significant progress in complete genome sequencing and opened

unprecedented opportunities for comparative genome studies [1–

4]. The complete genome sequences are publicly available from

constantly growing databases, such as the National Center for

Biotechnology Information (NCBI) GenBank, and can be readily

analyzed and compared for a number of evolutionarily distant

species. The early comparisons revealed that the number of genes

and metabolomic complexity progressively increase as species

become more evolutionarily advanced [5–8], but their anatomical,

morphological, physiological and behavioral complexity does not

linearly correlate with the total number of genes discovered. For

instance, whereas the number of protein coding genes in the

human genome is only 14% greater than in the roundworm

Caenorhabditis elegans, the evolutionary differences between these

two species are immense. This suggests that regulatory and post-

transcriptional processes might play an increasingly more impor-

tant role throughout evolution. There are numerous mechanisms,

processes and structures that affect gene regulation, such as

methylation, chromatin structure, regulatory elements, transcrip-

tion factors, polyadenylation, post-translational modifications and

compartmentalization of proteins, and others (for review see [9]).

RNA editing and alternative splicing (AS) are two distinct post-

transcriptional processes that can, however, increase proteomic

complexity and number of various proteins without increasing the

number of genes. While RNA editing, particularly common in

organelles (for review see [10,11]), can lead to nucleotide insertion

or deletion, in higher Eukaryotes base modifications are prevailing

[11–13]. In the process of AS additional variants are created

among the mature mRNA transcripts through modification and

rearrangement of exons (e.g. [14,15]). Both mechanisms promote

adaptive and evolutionary potential of species without increasing

the number of genes and maintenance cost that could be

associated with it. For instance, due to AS the total hypothetical

number of various proteins encoded by the DSCAM gene can

reach 38,016 in Drosophila melanogaster [16]. Therefore, one may

expect that more evolutionarily advanced organisms have more

elaborated and complex AS. We addressed this hypothesis in more

detail in our study. Our objectives were to examine exon-intron

structure in genomes of completely sequenced and fully annotated

species, to infer AS data and to use this information for defining

relationships between genes and proteomic complexity. We expect

that these relationships can be used to predict the anticipated

exon-intron structure and proteomic complexity in non-model

species with large genomes, such as pines, that may remain

unsequenced for a while. We applied our findings to loblolly pine

(Pinus taeda L.), one of the most-studied coniferous species, which

has a very large genome of 24.56 pg (,24 Gb) [17]; complete

genome sequencing for loblolly pine is underway [18], but is still

problematic and unavailable. The obtained knowledge is also

essential for understanding the genetic control of the metabolomic

complexity and functionality in the studied species and the

evolutionary significance of AS in general.

Results

Analysis of complete genomes
First, to explore general trends in the completely sequenced

genomes, we analyzed basic statistics (Table 1 and Table S1).

Previously Lynch and Conery [6] showed strong positive
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correlation between genome size and gene number in multiple

species. Here, we observed an increase in the number of genes

(Fig. 1A), gene products and total number of exons as species

advance evolutionarily. The exon/gene ratio also increases

(Fig. 1B), but the mean and median exon length becomes shorter

(Fig. 1C), whereas CDS length remains relatively constant.

Because the changes in parameter values demonstrated clear

trends that followed evolutionary advancement, we proceeded

with an in-depth correlation analysis. The results of regression

analysis and estimates of the parameters are summarized in

Table 2 and Table S2.

Average exon length as a predictor
Generally, the length of exon can be approximated from a

limited sample of genes. Hence, we explored its potential for

predicting other genomic parameters in incompletely sequenced

species. A very strong negative correlation was observed between

mean exon length and total number of exons (r2 = 0.937,

r2adj = 0.936; Fig. 2A). The negative correlation was weaker but

statistically significant between mean exon length and either

number of protein coding genes (r2 = 0.712, r2adj = 0.703; Fig. 2B)

or the total number of genes (r2 = 0.706, r2adj = 0.697, Fig. S1).

Mean exon length also strongly negatively correlated with exon/

Table 1. Exon-intron gene structure in completely sequenced genomes of 36 species.

Taxonomic
group Species

All
genes

Protein
coding
genes

Protein
coding/All
gene ratio CDSs Exons

Mean
exon
length

Mean CDS
length

Exon/
Gene
ratio

Excavata Leishmania braziliensis 7,898 7,897 0.9999 7,898 7,998 1,844.8 1,868.2 1.013

Leishmania infantum 7,993 7,993 1.0000 7,993 8,069 1,839.9 1,857.6 1.010

Trypanosoma brucei 9,336 8,772 0.9396 8,772 8,774 1,506.2 1,506.5 1.000

Chromalveolata Cryptosporidium parvum 3,885 3,396 0.8741 3,396 3,440 1,821.1 1,844.7 1.013

Guillardia theta 742 632 0.8518 632 648 851.1 872.6 1.025

Hemiselmis andersenii 524 471 0.8989 471 471 1,018.3 1,018.3 1.000

Plasmodium falciparum 5,300 5,263 0.9930 5,267 12,651 949.6 2,280.8 2.404

Theileria parva 4,089 4,035 0.9868 4,035 14,447 393.2 1,408.0 3.580

Amoebozoa Dictyostelium discoideum 13,322 13,322 1.0000 13,331 30,441 686.9 1,569.2 2.285

Fungi Aspergillus fumigatus 9,859 9,630 0.9768 9,630 28,259 504.0 1,479.0 2.934

Aspergillus niger 14,420 14,086 0.9768 14,086 50,371 370.4 1,324.4 3.576

Candida glabrata 5,499 5,271 0.9585 5,272 5,356 1,485.5 1,509.2 1.016

Cryptococcus neoformans 6,407 6,273 0.9791 6,475 39,350 257.2 1,608.8 6.273

Debaryomyces hansenii 7,081 6,866 0.9696 6,872 7,227 1,274.3 1,340.5 1.053

Encephalitozoon cuniculi* 2,029 1,996 0.9837 1,996 2,011 1,072.3 1,080.4 1.008

Eremothecium gossypii* 4,971 4,714 0.9483 4,714 4,940 1,406.1 1,474.7 1.048

Gibberella zeae 11,619 11,619 1.0000 11,619 37,454 477.2 1,538.2 3.224

Kluyveromyces lactis 5,504 5,331 0.9686 5,331 5,461 1,377.1 1,410.7 1.024

Neurospora crassa 10,093 9,699 0.9610 9,709 26,598 533.5 1,462.6 2.742

Pichia stipitis 5,816 5,816 1.0000 5,816 8,383 1,025.5 1,478.1 1.441

Saccharomyces cerevisiae* 6,136 5,861 0.9552 5,861 6,185 1,412.6 1,490.7 1.055

Schizosaccharomyces pombe* 5,374 5,083 0.9459 5,084 9,844 722.9 1,400.4 1.937

Ustilago maydis 6,604 6,495 0.9835 6,495 11,373 1,052.2 1,842.4 1.751

Yarrowia lipolytica 7,180 6,660 0.9276 6,661 7,402 1,295.4 1,439.7 1.111

Viridiplantae Arabidopsis thaliana* 28,245 26,977 0.9551 30,705 138,876 236.8 1,208.0 5.148

Oryza sativa* 29,102 26,777 0.9201 26,777 128,267 250.2 1,198.3 4.790

Ostreococcus ‘lucimarinus’ 7,603 7,603 1.0000 7,603 9,767 944.8 1,213.7 1.285

Metazoa Caenorhabditis briggsae 17,363 16,429 0.9462 16,429 98,457 209.8 1,257.1 5.993

(Nematoda) Caenorhabditis elegans* 21,172 20,174 0.9529 23,759 124,949 203.1 1,322.0 6.194

Metazoa Anopheles gambiae 12,423 11,971 0.9636 12,500 48,875 358.2 1,454.4 4.083

(Arthropoda) Drosophila melanogaster* 14,807 13,887 0.9379 17,837 56,580 401.0 1,719.8 4.074

Drosophila pseudoobscura 11,875 9,606 0.8089 9,707 39,256 383.9 1,553.0 4.087

Metazoa Canis lupus familiaris 19,384 19,380 0.9998 31,837 194,624 169.2 1,748.3 10.043

(Mammalia) Homo sapiens* 25,074 23,055 0.9195 27,904 201,083 174.5 1,548.4 8.722

Mus musculus* 26,314 25,533 0.9703 27,159 200,714 179.4 1,420.9 7.861

Pan troglodytes 23,962 23,881 0.9966 40,767 177,922 170.2 1,440.1 7.450

*The most annotated species (see Materials and Methods for details).
doi:10.1371/journal.pone.0018055.t001
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gene ratio (r2 = 0.957, r2
adj = 0.956; Fig. 2C). In all these cases the

correlations were not linear. No statistically significant correlation

was observed between mean exon length and mean CDS length

(P = 0.132; Fig. S2). These results proved that exon length is,

indeed, a robust predictor.

Similar correlations were observed for median exon length, and

the r2 values were close to those obtained for mean exon length

(see Table 2 for details).

Number of genes and exons in genomes
Since both number of genes and number of exons increase with the

species complexity, we measured how robust the correlation between

these parameters was. Strong and nonlinear but positive correlations

were found between the number of genes and number of exons

(r2 = 0.897, r2adj = 0.894 for protein coding genes, Fig. 2D; r2 = 0.891,

r2adj = 0.888 for the total number of genes, Fig. S3). Also very strong

positive correlation was observed between the total number of genes

and number of protein coding genes (r2 = 0.996, r2adj = 0.996; Fig. 2E).

These tight relationships show clear directions in the genome

evolution, where not only amount of genetic information is increasing

but also is accompanied by fragmentation that facilitates its dynamic

use. The linearity and extremely high r2 value between all genes and

protein coding genes also shows that the non-protein coding gene

fraction changes proportionally.

Exon/gene ratio as a predictor
Similarly as the exon length, exon/gene ratio has a high

predictive power for complex genomic parameters. Strong positive

linear correlation was observed between exon/gene ratio and the

total number of exons in the genome (r2 = 0.864, r2adj = 0.860;

Fig. 2F). The relationship between exon/gene ratio and the

number of protein coding genes was also strongly positive but

rather nonlinear (r2 = 0.648, r2adj = 0.638; Fig. S4).

Alternative splicing
The traditional methods of using EST data to study AS are

sensitive to the EST coverage [19]. To diminish biases related to

this problem we used the NCBI GenBank annotations of the well-

annotated genomic data for 12 model species in our study. Despite

numerous AS studies (see Discussion) we are unaware of any that

would take an advantage of thorough annotations. The five most

annotated species (A. thaliana, C. elegans, D. melanogaster, M. musculus

and H. sapiens) were analyzed in more detail (Table 3). Among the

five most common AS types, alternative 39 splice sites type (A3)

Figure 1. Comparison of selected genome parameters across taxonomic groups (A–C) and species (D). Number of all (black) and protein
coding (gray) genes (A), exon/gene ratio (B), and mean (black) and median (gray) exon lengths (C) averaged over taxonomic groups, and ratio of
alternatively spliced genes in five species (D).
doi:10.1371/journal.pone.0018055.g001
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was the most frequent in A. thaliana and C. elegans, but exon

skipping (ES) was the most frequent in D. melanogaster, M. musculus

and H. sapiens.

The frequency of the ES type increases following organism

complexity and reaches more than 51% of all AS types in human

(Fig. 3). It is accompanied by a decrease in the intron retention

(IR), A3 and alternative 59 splice sites (A5) types. In the plant

model, A. thaliana, the most common type is A3 (44.3%), followed

by IR (19.7%).

Alternative splicing ratio
The AS ratio, that is the ratio of the alternatively spliced genes

and the total number of protein coding genes was highest (0.186)

in Pan troglodytes among all analyzed species. When only the most-

annotated species were considered, the highest AS ratio was

observed in human (0.080), followed by the one in D. melanogaster

(0.073) and A. thaliana (0.066; Table 3). In general, the ratio

increases with evolutionary progress (Fig. 1D). Although these

estimates seem low as compared to other AS studies (see

Discussion for details), we may expect a rapid growth in the data

abundance in the near future due to the fast development of novel

genomic techniques (e.g. [20]), which will help fully understand

the effects of this mechanism.

AS negatively correlated with exon length and occurred more

frequently in organisms with shorter exons (Fig. S5; r2 = 0.615).

Similarly, AS increases as exon/gene ratio (r2 = 0.498; Fig. S6) and

the total number of CDSs (r2 = 0.725; Fig. S7) increase.

Among the five most-annotated species, both Shannon’s

diversity index and equitability were highest in A. thaliana

(H = 7.38, E = 0.985; Table 3) showing high richness and evenness

of distribution. Second high value (H = 7.26) was observed in

human, but the evenness was lower (E = 0.966).

Predictions for other species with large genomes such as
Pinus taeda

Having defined regression equations between the key genomic

parameters, we applied these models to P. taeda, an important but

incompletely sequenced species. Based on the 99 complete CDSs

available in GenBank, the mean and median transcript lengths

were practically the same (1278 bp; Table 4). However, the mean

and median exon lengths were very different – 334.8 and 198 bp,

respectively. These estimates are very preliminary and based only

on 21 exons. An additional 43 complete exons were identified in

partial CDSs. Their length was shorter – 166.2 bp on average, but

these estimates could be biased toward shorter exons due to the

PCR-biased amplicon resequencing. It is worth noting that any

Table 2. Predicted values for exon-intron gene structure and alternative splicing (AS) parameters for an organism with mean and
median exon lengths of 334.8 and 198.0 bp, respectively, such as observed in Pinus taeda, based on results of regression analysis.

Response (y) Factor (x) R2 R2
adj

P-value at
95% CI Figure Predicted

95% CI at
population level

95% CI at
individual level

(lower/upper) (lower/upper)

Number of exons Mean exon length 0.937 0.936 ,0.0001 2A 53,374 47,887 58,860 20,093 86,655

Number of protein
coding genes

Mean exon length 0.712 0.703 ,0.0001 2B 13,288 11,780 14,797 4,824 21,752

Number of all genes Mean exon length 0.706 0.697 ,0.0001 S1 13,871 12,270 15,471 4,891 22,850

Exon/Gene ratio Mean exon length 0.957 0.956 ,0.0001 2C 4.245 4.049 4.441 3.146 5.344

Mean CDS length Mean exon length 0.065 0.038 0.1321 S2 -

Number of protein
coding genes

Number of exons 0.897 0.894 ,0.0001 2D -

Number of all genes Number of exons 0.891 0.888 ,0.0001 S3 -

Number of protein
coding genes

Number of all genes 0.996 0.996 ,0.0001 2E -

Number of exons Exon/Gene ratio 0.864 0.860 ,0.0001 2F -

Number of protein
coding genes

Exon/Gene ratio 0.648 0.638 ,0.0001 S4 -

AS Mean exon length 0.615 0.576 0.0025 S5 0.018 0 0.053 0 0.117

AS Exon/Gene ratio 0.498 0.448 0.0103 S6 -

AS Number of CDSs 0.725 0.698 0.0004 S7 -

Number of exons Mean exon length 0.999 0.998 0.0175 - 71,010* 49,220 92,801 29,385 112,636

Number of protein
coding genes

Mean exon length 0.997 0.994 0.0351 - 19,785* 13,411 26,159 7,063 32,508

Number of all genes Mean exon length 0.990 0.980 0.0632 - 20,923* 8,371 33,474 0 45,975

Number of exons Median exon length 0.852 0.848 ,0.0001 - 59,904 51,343 68,465 8,737 111,070

Number of protein
coding genes

Median exon length 0.715 0.707 ,0.0001 - 11,827 10,422 13,231 3,432 20,221

Number of all genes Median exon length 0.710 0.701 ,0.0001 - 12,342 10,853 13,831 3,441 21,243

Exon/Gene ratio Median exon length 0.903 0.901 ,0.0001 - 3.658 3.382 3.934 2.007 5.308

Median CDS length Median exon length 0.035 0.006 0.2767 - -

*Models constructed based on three plant species; see text for details.
doi:10.1371/journal.pone.0018055.t002
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species, completely or incompletely sequenced, with a known

estimate of the exon length could be investigated here in place of

P. taeda. Moreover, the accuracy of the exon length estimation for

any species will increase if more data are available and if the

ascertainment bias (e.g. resulting from overrepresentation of

certain gene families in the sample, or from inclusion of only

Figure 2. Correlations between selected genome parameters. Correlations of number of exons and mean exon length (A), number of protein
coding genes and mean exon length (B), exon/gene ratio and mean exon length (C), number of protein coding genes and number of exons (D),
number of protein coding genes and number of all genes (E), and number of exons and exon/gene ratio (F) based on 36 species studied. The most
annotated 10 species are represented by solid markers. Green, orange and blue markers correspond to Arabidopsis thaliana, Oryza sativa and
Ostreococcus ‘lucimarinus’, respectively. 95% confidence intervals are presented for both population (internal dashed line) and individual (external
dashed line) levels.
doi:10.1371/journal.pone.0018055.g002
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partially sequenced genes) is kept at the minimum. Based on the

regression models created for the 36 complete genomes, we

computed estimates for a hypothetical species with an average

exon length such as the one observed in P. taeda (Table 2). The

predicted exon/gene ratio was 4.245, very close to the observed

4.000 in P. taeda (95% CI on individual level: 3.146 to 5.344). The

predicted total number of exons, genes and number of protein

coding genes were 53,374 (95% CI on individual level: 20,093 to

86,655), 13,871 (95% CI on individual level: 4,891 to 22,850) and

13,288 (95% CI on individual level: 4,824 to 21,752), respectively.

The estimates differed slightly when median exon length was used

(see Table 2 for details).

Discussion

Despite significant progress in sequencing technologies, com-

plete genomic data are still limited for eukaryotic organisms; and,

more importantly, only a few extensively studied model species

have been well annotated and featured. The most abundant data

have been collected for microbial, fungal and some animal

genomes, while vascular plants have been understudied. Only a

few species have been completely sequenced and annotated in this

underrepresented group so far, such as Arabidopsis thaliana, Oryza

sativa, Vitis vinifera, Physcomitrella patens, and, recently, Populus

trichocarpa, which remains relatively poorly annotated and featured.

Therefore, due to insufficient experimental data, it is very likely

that not all gene transcripts and AS products have been recorded

in GenBank even for the best-studied species; this can cause

underestimation of AS ratios in our study. As more experimental

data are collected, the situation gradually improves with every new

genome build that updates the number of genes, exons, and their

locations on the chromosome. AS has different types, occurs at

different developmental stages and tissues, and can be affected by

environmental factors [21,22]. AS is still insufficiently studied, and,

therefore, not all AS events and types are well documented in the

databases. Moreover, precise inference is more difficult due to

Table 3. Alternative splicing types observed in five most studied species.

Species ES IR A3 A5 ME A5A3 ESA3 A5ES MEA3 A5ME ESES A5ESA3 Other N A R H Hmax E

Arabidopsis
thaliana

106 428 960 396 4 195 11 9 0 0 15 10 34 1,787 0.066 1.138 7.38 7.49 0.985

Pr 0.049 0.197 0.443 0.183 0.002 0.090 0.005 0.004 0.000 0.000 0.007 0.005 0.016

Caenorhabditis
elegans

407 194 527 318 34 59 9 12 1 0 104 18 86 1,251 0.062 1.177 6.95 7.13 0.975

Pr 0.230 0.110 0.298 0.180 0.019 0.033 0.005 0.007 0.001 0.000 0.059 0.010 0.049

Drosophila
melanogaster

464 292 297 165 102 62 31 16 2 0 79 9 67 1,008 0.073 1.284 6.66 6.92 0.964

Pr 0.293 0.184 0.187 0.104 0.064 0.039 0.020 0.010 0.001 0.000 0.050 0.006 0.042

Mus musculus 423 128 133 72 35 32 18 5 5 1 126 5 41 714 0.028 1.064 6.40 6.57 0.974

Pr 0.413 0.125 0.130 0.070 0.034 0.031 0.018 0.005 0.005 0.001 0.123 0.005 0.040

Homo sapiens 1,519 92 468 262 124 41 25 19 2 0 294 20 114 1,834 0.080 1.210 7.26 7.51 0.966

Pr 0.510 0.031 0.157 0.088 0.042 0.014 0.008 0.006 0.001 0.000 0.099 0.007 0.038

ES – exon skipping; IR – intron retention; A3 – alternative 39 splice site; A5 – alternative 59 splice site; ME – mutually exclusive exons; N – number of alternatively spliced
genes; A – alternative splicing ratio (proportion of alternatively spliced genes); R – ratio of the total number of protein products to the total number of protein genes;
H – Shannon’s index; Hmax – maximum possible value of Shannon’s index, where for a given n, H is a maximum and equal to logn, when all the Pi are equal (i.e., 1/n);
E – Shannon’s equitability (E = H/Hmax). Complex cases are denoted as combinations of these abbreviations. Pr - proportion (ratio) of the type to all types.
doi:10.1371/journal.pone.0018055.t003

Figure 3. Relative frequency of alternative splicing (AS) types in five species. The category ‘‘Other’’ includes complex schemes of AS, e.g.
simultaneous occurrences of alternative 59 and 39 splice sites within an intron.
doi:10.1371/journal.pone.0018055.g003
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incomplete annotation, along with different stringency criteria,

customary thresholds to classify true and erroneous AS events, and

various gene models used in different species. To avoid these

complications, we limited our analyses only to extensively studied

completely sequenced genomes. However, we hope that the results

obtained can be used for predictions in insufficiently studied and

incompletely sequenced organisms, such as pine in our study, in

which investigation of exon-intron architecture is impeded by the

availability of the data.

Alternative splicing ratio
In general, both AS and number of genes are higher in more

evolved organisms (Figs. 1A, D). However, surprisingly the AS rate

was not always as high in more evolutionarily advanced species as

expected and did not correlate linearly with their evolutionary

progress. For instance, the ratio observed in D. melanogaster (0.073)

was higher than in A. thaliana (0.066), but very close to the one in

human (0.080). This could suggest that a relatively small number

of genes in D. melanogaster compared to human (14,807 vs. 25,074,

respectively) is compensated by a higher AS rate that increases

proteomic and metabolomic complexity. We cannot completely

exclude that the discrepancies are explained by insufficient AS

data, but we can conclude in general that both the number of

genes and the AS rate increase in more evolutionarily advanced

species. Certainly, more experimental data are needed to increase

the precision of estimates and predictions of AS ratios. For

instance, a number of studies demonstrated AS in rice [23–25],

but it is not documented in rice genomic data from the NCBI

GenBank database, a likely indication that annotation of the rice

genome is still in progress.

A substantially higher AS rate for shorter exons found in the

study (Fig. S5) is consistent with previous studies that suggested

that both tandem exon duplication [26] and insertion of

noncoding intron sequences [27] could promote AS. Both

within-gene duplication and AS would have less drastic effect on

functionality of final proteins when they both deal with mutually

exclusive exons (ME) that have shorter lengths. In addition,

converting a part of an intron into an exon via AS has the risk of

including a stop codon. This risk is higher when alternative exon

sequences are longer.

Although not as drastic, higher exon/gene ratio is also

associated with a higher AS rate (Fig. S6). This can be observed

from the above described correlation of exon length and AS

because more exons per gene mean both shorter exons (assuming a

constraint on the final gene product length) and more options for

AS. Exon/gene ratio, similarly to AS, increases in evolutionarily

advanced species (Figs. 1B, D). More advanced species also show

higher numbers of CDSs. AS increases as number of CDSs

increases (Fig. S7), playing an important role in creating higher

proteomic complexity.

Previous studies reported the ES type of AS as the most frequent

in mammals [28,29]. Our results are consistent with these findings.

ES accounted for 51.0% of AS in human and 41.3% in mouse.

Moreover, frequency of ES increases with complexity. Kim et al.

[30] used a modified approach that required the final number of

ESTs in the compared organisms’ genes to be the same to mitigate

the bias in data availability for the studied species. They also found

a high frequency of ES in mammals (,40%) and low IR (,10%).

It is the opposite in plants, where IR type was the most frequent

(over 50%) in both rice and thale cress [24,31]. The A3 was the

second most frequent type, while ME was the least frequent type.

Nagasaki et al. [28] reported that IR accounted for over 42% of

AS events in thale cress and 55% in rice. Although our analysis

also found a very low level of ME in thale cress (0.2%), the most

abundant type was A3 (44.3%) followed by IR (19.7%). Assuming

that none of the classes is underrepresented in the dataset we used,

this could indicate that IR tends to be overestimated in the EST/

cDNA based studies, possibly due to the highest incidence of

nonsense-mediated mRNA decay (NMD)-targeted products in this

class. Wang and Brendel [31] estimated that ,43% of AS events

in Arabidopsis are potential NMD candidates, with IR showing the

highest incidence of 40–48%. Conversely, Kim et al. [30] found

the rate of IR in Arabidopsis (,30%) less than A3 (,40%). In their

study, ES accounted for approximately 5% of all types. McGuire

et al. [25] found that in A. thaliana IR accounted for 38.7% of

splice variants, only slightly more than A3 (36.8%) and ES (7.7%)

events. These results show great sensitivity to the methods and

assumptions used. McGuire et al. [25] discussed how including

unspliced alignments may affect the outcomes.

Alternative evolutionary scenarios for plants
This study demonstrates that plants and animals may have used

different mechanisms and strategies for developing proteomic and

metabolomic complexity. The AS rate is low in plants compared

to animals, whereas the number of genes is high (Figs. 1A, D). This

could indicate that animals have evolved a more efficient system of

managing the genomic information that allows them to increase

proteomic complexity with the same or smaller number of genes.

Flowering plants could have relied primarily on duplications (from

exon shifting to entire chromosome or genome duplications that

are common in flowering plants) [32], duplication modifications

and divergence. In contrast, large genomes in genus Pinus (class

Coniferopsida) might be a result of retrotransposon expansion

rather than polyploidy [33]. Cui et al. [32] found no evidence of

recent genome duplications in P. taeda nor P. pinaster, and Grot-

kopp et al. [17] estimated that the genome sizes varied from

22.10 pg to 36.89 pg in pines, with the putative common

ancestor’s genome of 32.09 pg. Nevertheless, sporadic polyploidy

has been observed in gymnosperms (for review see [34]).

In order to check how well our regression models fit the real

data, we compared the values observed in the three plants in our

dataset with those predicted by the models. The total numbers of

exons predicted based on the observed average exon length in

Oryza sativa and Arabidopsis thaliana were underestimated in both

cases (predicted 92,581 and 102,910 vs. observed 128,267 and

138,876, respectively), but the observed values were only slightly

greater than the 95% confidence interval upper limit at the

individual level (126,092 and 136,543, respectively; Fig. 2A). The

observed number of exons in the primitive alga Ostreococcus

‘lucimarinus’ (9,767) was close to the predicted number (10,021) and

fell within 95% CI.

Similarly, the observed numbers of protein coding genes

(Fig. 2B) in both higher plants (26,977 in thale cress and 26,777

in rice) were only slightly higher than the upper 95% CI limit at

Table 4. Exon and CDS lengths in Pinus taeda based on
complete CDS sequences.

Feature CDS Exon

Number 99 21

Mean length, bp 1278.3 334.8

Median length, bp 1278.0 198.0

Standard deviation 667.3 296.7

doi:10.1371/journal.pone.0018055.t004
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individual level (26,282 and 25,445, respectively), and predicted

values were underestimated (17,694 and 16,888, respectively). The

total observed number of genes (Fig. S1) for the two species, again,

fell only slightly above the 95% individual level CI (28,245.

27,591 for thale cress and 29,102.26,715 for rice; predicted

values: 18,480 and 17,637, respectively). In both cases the num-

bers observed in the alga fell within the 95% CI.

The discrepancy between Viridiplantae and other kingdoms can

also be observed in the relationship between exon count and

number of genes (Fig. 2D, Fig. S3), as well as exon/gene ratio and

number of protein coding genes (Fig. S4). In our models the values

for the two higher plants fall outside the upper 95% CI at the

individual level in all these cases. Interestingly, comparison of the

two evolutionarily youngest groups in kingdoms Metazoa and

Viridiplantae reveals much longer exons in plants (236.8 bp in A.

thaliana and 250.2 bp in O. sativa) than in mammals (ranging from

169.2 bp in Canis lupus familiaris to 179.4 bp in M. musculus),

demonstrating that the processes that reduce exon length have

been slower in plants. Body plan complexity is much greater in

mammals than in angiosperms, and shorter mammalian exons

coupled with lower number of genes could indicate greater

pressure towards efficient use of gene space. The highest values of

Shannon’s index and equitability observed in A. thaliana (Table 3)

indicated more even AS distribution than in four animal species,

despite their higher evolutionary position. Perhaps AS is not the

main mechanism in achieving the observed complexity level in

plants. If AS is correlated with exon length, then longer exons in

plants can imply that the pressure for greater AS rates is not as

strong as in the case of higher animals. Other mechanisms, such as

more frequent duplications and elevated retrotransposon activity

in plants could be responsible for the high number of genes, and

also greater exon lengths, through intron loss. Indeed, studies on

animal species have shown a negative correlation between gene

family size and AS frequency [35–37]. This could explain not only

lower rates of AS observed in plants but also the different patterns

of AS forms, potentially increasing chances of NMD, a phenome-

non not very well studied in plants [23]. Conversely, building upon

the theory proposed by Lynch and Conery [6], Babenko et al. [38]

suggested that intron gain/loss is not a commonly ongoing

process, but rather may be triggered by certain dramatic evo-

lutionary events that lead to long-term bottlenecks. Therefore the

observed differences in exon lengths could be merely due to

chance of the ancestors being affected by drastic events in the past.

These conclusions seem to be supported by Sammeth et al. [29],

showing rather abrupt differences between invertebrates and

vertebrates.

Current genomic data are insufficient to build separate robust

regression models for plants. The conclusions about the total

number of exons, the total number of genes and the total number

of protein coding genes in P. taeda may therefore be biased; and the

true values may be close to the upper 95% CI limit on the

individual level, higher than the ones predicted by the proposed

models (see below).

Short exons promote genomic complexity
The strong relationship between exon length and total number

of exons (Fig. 2A) as well as exon length and exon/gene ratio

(Fig. 2C) suggest that shorter exons increase potential for AS.

Indeed, a much higher ratio of AS was observed in organisms with

shorter exons (Fig. S5). However, more evolutionarily advanced

organisms not only have shorter exons, but also more genes

(Fig. 2B, Figs. 1A, C, and Fig. S1). The presence of shorter exons

increases the potential for exon shuffling along with exon

duplications; and, as a complement of AS, both increase proteomic

and metabolomic complexity. It is likely that both evolved

simultaneously and synergistically to amplify their effects on

increasing physiological, behavioral and morphological complexity

of the organisms through positive feedback loop-like mechanisms.

No statistically significant correlation was found between exon

length and CDS length (Fig. S2). Since 3-dimensional protein

structure and binding sites determine protein functionality, the

length of the coding sequence seems to be of primary importance,

and therefore the variation in the transcript length may be

constrained. This could suggest that in the process of evolution,

partitioning of the ancestral coding sequences has been occurring

rather than extension through e.g. hypothetical stacking of coding

blocks together. Such a process could have stimulated splicing out

duplicated exons, eventually leading to alternatively spliced forms.

At the genome level, most of the species with less than 10,000

genes had a very small number of exons (Fig. 2D and Fig. S3).

Consequently, the number of exons per gene was low in these

species (Fig. 2F, Figs. 1A, B and Fig. S4). These observations show

a general trend of genomic complexity increasing in evolutionarily

advanced species.

The shortest exons identified in some of the analyzed species

(including three plants) were only 1 bp long. We did not find any

peer-reviewed publications experimentally confirming this obser-

vation. In previous studies Long et al. [39] identified single base

pair exons, and Deutsch and Long [40] identified exons as short as

1 amino acid in a number of species including A. thaliana and

human, although the exact length in bp is not clear. An

experimental approach is necessary to find support for these

structures and to verify that it is not an artifact resulting from

exon/intron model assumptions. For instance, Kondrashov and

Koonin [26] used 9 bp as threshold.

Implications for Pinus taeda
Due to the small sample size, the P. taeda exon length estimate

may be significantly biased. An alternative would be to include in

the study completely sequenced exons from only partially

sequenced genes. However, in this scenario shorter exons would

be overrepresented due to the PCR amplicon length bias (typically

a few hundred bp), making the mean and median underestimated.

The observed exon/gene ratio was 4.000 based on 5 CDSs and 20

exons. This estimate is very close to the predicted exon/gene ratio

of 4.245, based on the regression model, when the average exon

length was the predictor or 3.658 when the median exon length

was used (Table 2). The predicted values based on the average

exon length for the other two higher plants analyzed were also

close to the observed values (5.970 vs. 5.148 in thale cress and

5.654 vs. 4.790 in rice). The observed values for all three species

fell inside the 95% CI at the individual level.

The number of protein coding genes and total number of genes

expected in an organism with the average exon length of 334.8 bp

(such as in P. taeda) is 13,871 and 13,288, respectively. These values

seem to be underestimated as far as P. taeda is concerned, especially

when compared with the other analyzed plants. Moreover, there

are currently about nineteen thousand unique sequences in the

NCBI UniGene database for P. taeda. The model severely

underestimates the number of genes in the other two vascular

plants described above as well. The number of protein coding

genes in A. thaliana is underestimated by about 34.4% and O. sativa

by about 36.9%. If P. taeda followed this bias, and the expected

number of protein coding genes was also underestimated by

approximately 35%; that would mean about 7,155 underestimated

genes, which would raise the predicted number of protein coding

genes to about 20,443 in this species, making this number more

realistic.
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Regression models that are based exclusively on the three

examined plants and that follow the same logic as in the case of the

36 studied genomes also demonstrated that higher numbers are

expected for loblolly pine (Table 2). The total number of genes

expected would be 20,923 (upper limit is 45,975 at 95%

confidence level; model significant at 93.7% confidence level)

and the number of protein coding genes 19,785 (upper limit is

32,508 at 95% confidence level). These numbers seem to be more

realistic when compared to the observed values in other higher

plants, especially considering broad confidence intervals. Although

the above findings for loblolly pine are restricted by the limited

availability of the data, this study is the first attempt to address the

questions of exon-intron structure and genomic complexity in this

species, and will likely stimulate further studies.

Conclusions
This study confirmed the general trend of increasing number of

genes, gene products, and exons in the genome, along with higher

exon/gene ratio and AS ratio as species become more evolution-

arily advanced. We demonstrated that parameters easily comput-

able from small data samples (e.g. exon length or exon/gene ratio)

are relatively good predictors of characteristics that are difficult to

assess, such as total number of genes, gene products and exons. We

also showed that taxonomic kingdoms may require different model

calibration as their strategies to increase complexity throughout

evolution have been different. As more genomic data become

available and more species representing various taxonomic

groups are annotated, these models can be tuned or applied to

specific monophyletic groups, which will improve precision of the

predictions.

Materials and Methods

Selection of completely sequenced species for analysis
We selected the 36 most-annotated and featured species

(Table 1) from eukaryotic genomic assemblies available in the

NCBI GenBank [41]. For 10 species in our set (Arabidopsis thaliana,

Caenorhabditis elegans, Drosophila melanogaster, Encephalitozoon cuniculi,

Eremothecium gossypii, Homo sapiens, Mus musculus, Oryza sativa,

Saccharomyces cerevisiae and Schizosaccharomyces pombe), the annotation

involved at least partial curation of the records. AS in rice was not

documented in the present NCBI GenBank genome annotation,

although it has been reported previously [23,24]. Therefore, this

species was excluded from the AS analysis.

Source of data
All genomic data were downloaded from the FTP directory of the

NCBI GenBank (ftp://ftp.ncbi.nih.gov/genomes/MapView/).

Sequences for P. taeda were downloaded from the Nucleotide

database from the NCBI GenBank.

Genomic data analysis
Genomic data were analyzed using Perl scripts specifically written

for this study (available at http://treenome.tamu.edu/). The

downloaded files were screened, and chromosome ID, position

and orientation of the exons on the chromosome, feature ID, AS

type, transcript accession number, and group label were traced,

partitioned and analyzed. Pseudogenes, mitochondrial, plastid and

insufficiently annotated genes were excluded from further analysis.

Total numbers of genes, protein coding genes and their coding

sequences (CDSs) were calculated for each species. The number of

exons and their boundaries were determined based on the coding

structure of each protein coding gene ID recorded in their

corresponding CDS section. For each gene supported by more

than one CDS, the alternative coding sequences were compared

with each other. Cases when corresponding exons had different

boundaries or no matching counterpart were qualified as AS

variants. Average and median lengths were calculated for both

exons and CDSs. The exon estimates were computed based on all

unique exons found in the genome. All CDSs, including

alternatively spliced forms, were considered for estimation of the

average and median CDS lengths. The exon/gene ratio was defined

as the average number of exons per protein coding gene. AS ratio

was defined as the ratio between the number of alternatively spliced

and all protein coding genes. AS variants were categorized using the

binary approach described by Nagasaki et al. [42]. Shannon’s index

H and equitability E were calculated for genes with AS to reflect

richness and distribution evenness of AS forms [43].

Parameter estimation for Pinus taeda
In total, 99 complete CDS sequences representing protein coding

genes in P. taeda were downloaded from NCBI GenBank, and their

CDS structure and length were analyzed. The data were

prescreened by a Perl script and rearranged manually. The majority

of these sequences represented mRNA/cDNA. Only five CDSs

represented genomic sequences and could provide complete infor-

mation about exon-intron structure. Average and median CDS and

exon lengths were calculated based on this information. Using the

mean exon length and regression models developed based on the

genomic data for other species, we computed the expected total

number of exons, total number of genes, exon/gene ratio, and total

number of protein coding genes for P. taeda. Software package JMP

version 5 was used for the statistical analysis.

Supporting Information

Figure S1 Correlation of number of all genes and mean
exon length in the genomes of 36 species.

(TIF)

Figure S2 Correlation of mean CDS length and mean
exon length in the genomes of 36 species.

(TIF)

Figure S3 Correlation of number of all genes and
number of all exons in the genomes of 36 species.

(TIF)

Figure S4 Correlation of number of protein coding
genes and exon/gene ratio in the genomes of 36 species.

(TIF)

Figure S5 Correlation of alternative splicing ratio and
mean exon length. Only 12 species with alternative splicing

were considered.

(TIF)

Figure S6 Correlation of alternative splicing ratio and
exon/gene ratio. Only 12 species with alternative splicing were

considered.

(TIF)

Figure S7 Correlation of alternative splicing ratio and
number of all CDSs. Only 12 species with alternative splicing

were considered.

(TIF)
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Table S1 Exon-intron gene structure in completely
sequenced genomes of 56 species.

(XLS)

Table S2 Regression models.

(XLS)
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