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Nearest-centroid classifiers have recently been successfully employed in high-dimensional applications, such as in genomics. A
necessary step when building a classifier for high-dimensional data is feature selection. Feature selection is frequently carried
out by computing univariate scores for each feature individually, without consideration for how a subset of features performs
as a whole. We introduce a new feature selection approach for high-dimensional nearest centroid classifiers that instead is
based on the theoretically optimal choice of a given number of features, which we determine directly here. This allows us to
develop a new greedy algorithm to estimate this optimal nearest-centroid classifier with a given number of features. In
addition, whereas the centroids are usually formed from maximum likelihood estimates, we investigate the applicability of
high-dimensional shrinkage estimates of centroids. We apply the proposed method to clinical classification based on gene-
expression microarrays, demonstrating that the proposed method can outperform existing nearest centroid classifiers.
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INTRODUCTION
Linear Discriminant Analysis (LDA) is a long-standing prediction

method that has been well characterized when the number of

features used for prediction is small [1]. The method has recently

been shown to compare favorably with more complicated

classifiers in high-dimensional applications, where there are

thousands of potential features to employ, but only a subset are

used [2,3]. In the LDA setting, each class is characterized by its

vector of average feature values (i.e., class centroid). A new

observation is evaluated by computing the scaled distance between

its profile and each class centroid. The observation is then assigned

to the class to which it is nearest, allowing LDA to be interpreted

as a ‘‘nearest centroid classifier.’’

In high-dimensional applications, it is often desirable to build

a classifier using only a subset of features due to the fact that (i)

many of the features are not informative for classification and (ii)

the number of training samples available for building the classifier

is substantially smaller than the number of possible features. It can

also be argued that a classifier built with a smaller number of

features is preferable to an equally accurate classifier built with the

complete set of features. This problem is analagous to, but in

general distinct from, that of selecting variables in a regression

model by, say, least angle regression (LARS) [4]. Early work on the

feature selection problem in discriminant analysis has been

summarized elsewhere [5,6].

Several approaches have been recently proposed for nearest

centroid classifiers that rely on univariate statistics for feature

selection [2,7–9]. These methods assess each feature individually

by its ability to discriminate the classes. However, it has been

noted that the features that best discriminate the classes

individually are not necessarily the ones that work best together

[10]. In the extremely simple case where features are uncorrelated

and only two classes exist, it intuitively follows that the optimal set

of features are those whose means are most different between the

two classes. However, this intuition does not easily carry over to

the more complicated case where features are correlated and/or

there are more than two classes. For example, if we seek to classify

among three classes, it has not been shown whether it is better to

choose features that distinguish one class from the other two well

or those that distinguish among all three classes well. The role of

correlation between features is not currently well understood

either.

In this paper, we provide a theoretical result showing how to

determine the subset of features of a given size that minimizes the

misclassification rate for a nearest-centroid classifier. For example,

if 800 features are available, but one wants to build a classifier

consisting of 12 features, we show which 12 provide the lowest

misclassification rate. This optimal feature set takes into account

the joint behavior of the features in two ways. First, it explicitly

incorporates information about correlation between features.

Second, it assesses how a group of features as a whole is capable

of distinguishing between multiple classes. While we show how to

define the theoretically optimal subset, we must estimate the

optimal subset in practice. The benefit of characterizing the

theoretically optimal target, and the novelty of our contribution, is

that we provide the optimal criteria for comparing subsets. This

reflects the basic motivation for the work presented here, to

identify the theoretically optimal solution to the feature selection

problem, then try to get as close to this solution as possible.

For practical implementation, we propose a simple greedy

algorithm for searching subsets and demonstrate its operating

characteristics.
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Two existing papers [2,11] propose univariate feature selection

techniques to build maximum likelihood estimate based nearest-

centroid classifiers, the latter of which is called the ‘‘Classification

to Nearest Centroids’’ (Clanc) method. The method proposed here

is related to these, except that we propose a multivariate feature

selection method and consider parameter estimation using

a multivariate shrinkage technique.

Nearest centroid classifiers have been shown to perform

well with gene-expression microarrays [2,3], and we illustrate

our findings in this setting. We compare our proposed

classifier with existing nearest centroid classifiers in extensive

simulations and on three previously-published microarray

datasets. Our results demonstrate that improvements in prediction

accuracy can be attained by estimating the optimal feature-

selection criteria.

METHODS

Background
An LDA classifier is a canonical nearest centroid classifier. The

problem it addresses is to classify unknown samples into one of K

classes. To build a classifier, we obtain nk training samples per

class, with m features per sample. For each training sample, we

observe class membership Y and profile X. For simplicity, we will

represent the classes by the numbers k = 1,2,…,K. Note that each

profile is a vector of length m. We assume that profiles from class k

are distributed as N(mk,S), the multivariate normal distribution

with mean vector mk and covariance matrix S. Call L(x;mk,S), the

corresponding probability density function. Finally, let pk be the

prior probability that an unknown sample comes from class k.

Bayes’ Theorem states that the probability that an observed

sample comes from class k is proportional to the product of the

class density and prior probability:

Pr Y~k X~xjð Þ!L x; mk,Sð Þ|pk: ð1Þ

We call Pr(Y = k|X = x) the posterior probability that sample x

comes from class k. LDA assigns the sample to the class with the

largest posterior probability. This can be shown to be the rule that

minimizes misclassification error [1]. The rule can be written as:

byy xð Þ~arg mink x{mkð ÞTS{1 x{mkð Þ{2 log pkð Þ
n o

: ð2Þ

Thus, a sample is assigned to the class to which it is nearest, as

measured by the metric x{mk k2
S{2 log pð Þ, where

x{mk k2~ x{mð ÞTS{1 x{mð Þ is the square of the Mahalanobis

distance between x and m.

Optimal Nearest Centroid Classifiers
Misclassification rates A misclassification occurs when

a sample is assigned to the incorrect class. The probability of

making a classification error is:

Pr errorð Þ~
XK

j~1

Pr ŶY=j Y~jj
� �

|pj

� �
: ð3Þ

We can derive misclassification rates using the LDA rule in

equation (2). In particular, we can calculate misclassification rates

for any subset of features. An optimal subset can be found by

simply assigning misclassification rates to all possible subsets of

a given size and choosing the one with the lowest error rate.

The misclassification rate of a nearest-centroid (LDA) classifier

can be shown to be

Pr errorð Þ~
XK

j~1

1{w min
i=j

mj{mi

�� ��2

S
z2log

pj

pi

� �
2 mj{mi

�� ��
S

8<:
9=;

0@ 1A24 35|pj

8<:
9=;, ð4Þ

where w is the cdf of the standard normal distribution, and

mj{mi

�� ��2

S
~ mj{mi

� �T
S{1 mj{mi

� �
is the square of the Mahala-

nobis distance between mj and mi; note that this assumes the data

are Normally distributed, as stated by the model. The subset of

features of size m0#m that minimizes the misclassification rate is

the one with the lowest value of equation (4); note that the m2m0

features not included in the subset are not involved in the

calculation. This defines the optimal subset of size m0.

Equation (4) can be interpreted as measuring the collective

distance between all of the class centroids. In general, the

misclassification rate will be small when all of the class centroids

are far away from each other. Note, however, that the score in (4)

is actually a complicated combination of the pairwise differences

between the centroids and the class priors. Furthermore,

correlations between features are explicitly incorporated through

the distance functions ||mj2mi||S. Further intuition into (4) can

be attained by considering the following simple example.

A Simple Example The data in Table 1 represent an

artificial example with 10 features and 3 classes. The population

means of each class are shown in columns two through four; we

assume that each feature has variance 1 and that all features are

uncorrelated. Suppose that we wish to select the five features that

correspond to the lowest misclassification rate. The final column of

the table lists univariate scores for each feature, where we have

used the average squared difference from the overall feature mean

as the score. A high value for a feature on this score indicates large

overall differences between this feature’s class means. The five

largest univariate scores correspond to features 1, 2, 3, 4, and 5.

An alternative approach to using univariate scores to select

features is to consider all 252 possible quintuplets and choose the

set with the lowest overall misclassification rate. Note that, to do

this, we must be able to assign misclassification probabilities to

arbitrary feature subsets. This highlights the utility of the

multivariate score (4). Using (4), we find that the set of features

chosen by the univariate scores has an overall misclassification rate

of 20%. Similarly, we find that the optimal set in this example

contains features 1, 5, 6, 7, and 8, with an associated error rate of

13%. The most obvious difference between this subset and that

Table 1. Class means with 10 features and 3 classes.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Feature m1 m2 m2 Score

1 3.00 0.00 0.00 2.00

2 2.00 0.00 0.00 0.89

3 1.50 0.00 0.00 0.50

4 1.25 0.00 0.00 0.35

5 0.00 1.10 0.00 0.27

6 0.00 1.00 0.00 0.22

7 0.00 0.90 0.00 0.18

8 0.00 0.00 0.85 0.16

9 0.00 0.00 0.75 0.12

10 0.00 0.00 0.65 0.09

doi:10.1371/journal.pone.0001002.t001..
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chosen by univariate scores is the exclusion of features 2, 3, and 4.

Apparently, class one can be sufficiently characterized by feature

1. The other features do not contain sufficient additional

information to merit their selection. We note in this example that

the optimal subset of size m0 + 1 contains the optimal subset of size

m0, m0 = 1, 2,…,9, although this need not be true in general.

Correlation Between Features An important aspect of the

optimal feature-selection procedure is its explicit incorporation of

correlation between features. It is not necessarily clear what effect

correlation between features should have on a classifier.

Intuitively, many weakly informative, correlated genes might be

expected to collectively be highly informative. However, it has

been shown [12] that estimating correlations as zero, making S
a diagonal matrix, can lead to better prediction when the number

of features is large relative to the number of samples.

We investigate the effect of different correlation patterns in the

example of Table 1. Let S be the 10610 covariance matrix. In

Table 2, we refer to the 464 block corresponding to features 1–4

as ‘‘Block 1.’’ The blocks corresponding to features 5–7 and 8–10

are similarly referred to as ‘‘Block 2’’ and ‘‘Block 3,’’ respectively.

‘‘Block 1,2’’ refers to the blocks specific to both features 1–4 and

features 5–7, etc. In all cases, the selected block is given an

autoregressive covariance structure with correlation parameter

0.9, meaning that the correlation between two correlated features i

and j is 0.9|i-j|; no qualitative differences were found when

considering negative correlation. We report the best subset under

each correlation pattern (SO), its error rate, and the error rate for

the best subset chosen ignoring correlation (SI). We also report the

rank of the best subset ignoring correlation in each case.

In this example, correlations that affect features 5–7 change the

entries of the best subset, as well as the associated error rates. For

example, when there is correlation within features 5–7, the

optimal subset includes features 1, 5, 8, 9, and 10, with an error

rate of 14.9%. The set chosen ignoring correlation ranks 64th (out

of 252 possible subsets), with an error rate of 18.2%. These results

suggest that correlated features can be useful together. While there

are many possible scenarios in which correlation could play a role,

the main point is that the feature-selection procedure guided by (4)

automatically identifies the optimal combination of features, even

in the presence of correlation. Of course, in practice, there is the

added challenge of estimating the class centroids and covariance

matrix. In particular, when there are many more features than

samples, it is not clear that covariances can be estimated well

enough to make them worth the effort. We consider this further in

the next section.

Proposed Nearest Centroid Classifier
In practice, unknown model parameters and the general

impracticality of exhaustive searches with genomic data preclude

our finding theoretically optimal subsets. Instead, we must estimate

optimal subsets. A myriad of solutions for this problem have been

proposed, particularly in the context of gene expression micro-

arrays. The novelty of our proposed method is that we have

provided the ideal target for estimation. Specifically, our goal in

practice is to choose the subset that minimizes an estimated

version of (4). To avoid the need for exhaustive searches, we

propose a greedy search algorithm.

We consider several variations of our basic algorithm, employ-

ing different methods for estimating class centroids and covariance

matrices. We compare the proposals with existing alternatives on

both simulated and real datasets. Details of the proposed

algorithms are given in what follows. Based on our comparisons,

the final algorithm that we propose for nearest-centroid classifi-

cation from genomic data uses shrunken centroids and a diagonal

covariance matrix. The following is the proposed algorithm to

build a classifier with m0 features:

1. Estimate the class centroids bmmk by simple averaging using

equation (5).

2. Estimate the pooled variances using equation (8) to form the

diagonal covariance estimate bSS.

3. Using the estimated centroids and variances from Steps 1

and 2, find the single feature with the smallest estimated

misclassification rate from equation (4).

4. For b = 2,3,…,m0, consider each remaining feature

separately:

a. Combine one remaining feature with the already selected

feature(s) 1,2,…,b21, and use these to form shrunken class

centroid estimates emmk based on equations (6–7).

b. Find the single feature with the smallest estimated

misclassification rate according to equation (4), when

included with the already-selected feature(s) 1,2,…,b21.

5. The final nearest centroid classifier is composed of the

subsets of emmk and bSS built from the m0 selected features.

We call this method ‘‘Clanc’’, as it is an extension of the Clanc

procedure proposed earlier [11]. The algorithm has also been

implemented in the Clanc software [13].

Estimating the Decision Rule To estimate (4), we estimate

the class centroids mk, k = 1,2,…,K, and the common covariance

matrix S. Reducing the MSE of each estimated centroid will bring

us closer to (4) [11]. According to Stein’s Paradox of statistics [14],

we can reduce the MSEs by shrinking each centroid toward its

overall mean (or any other constant). In our setting, this suggests

shrinking each centroid estimate across its m components. We note

that existing shrinkage proposals for nearest-centroid classifiers

shrink each feature across the K classes [9]. This makes the

estimated centroids less distinguishable and tends to result in

increased misclassification rates [11].

While there are many possible approaches to shrinking the

centroids, we take the following simple approach. We begin with

the usual centroid estimate bmmk, an m-vector with ith component

equal to the average expression for feature i in class k:

bmmik~
1

nk

Xnk

j~1

xijk, ð5Þ

Table 2. The effect of covariance on the optimal feature-
selection procedure.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Error

Covariance Selected Features SO SI Rank SI

None 1, 5, 6, 7, 8 13.1% 13.1% 1

Block 1 1, 5, 6, 7, 8 13.1% 13.1% 1

Block 2 1, 5, 8, 9, 10 14.9% 18.2% 64

Block 3 1, 5, 6, 7, 8 13.1% 13.1% 1

Block 1,2 1, 4, 5, 8, 9 6.1% 14.0% 143

Block 1,3 1, 5, 6, 7, 8 11.6% 11.6% 1

Block 2,3 1, 2, 3, 7, 8 2.2% 3.5% 18

doi:10.1371/journal.pone.0001002.t002..
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where xijk is the expression for feature i in sample j of class k. Now

let bmm0
k be the m-vector with each of the i = 1,2,…,m components

equal to the estimated overall mean for class k, bmm0
ik~Sm

i~1bmmik=m,

and consider shrunken centroids of the form

emmk~vkbmm0
kz 1{vkð Þbmmk: ð6Þ

We choose vk so that E mk{emmkk k2
S

� �
is minimized. It can be

shown that the desired value of vk is

bvvk~ m{1ð Þ m{2znk mk{m0
k

�� ��2

S
z

1

m2
1T

mS
{11m

� � Xm

i~1

s2
i

 !" #{1

, ð7Þ

where m0
k is the m-vector with each component equal to the overall

mean for class k, m0
ik~Sm

i~1mik=m, 1m is the m-vector of ones, and

the s2
i are the diagonal components of S. In practice, we use plug-

in estimates for the unknown parameters.

Drawing from earlier versions of our work [15], a recent article

has also considered the use of shrinkage across genes rather than

across centroids [16]. Their shrinkage proposal is based on hard-

thresholding. By contrast, we propose the shrinkage of each

centroid toward a constant, as was originally considered by Stein

[14]. Furthermore, the eigenvector-based selection routine pro-

posed in reference [16] does not estimate the optimal selection, as

we do here.

While we can form an unbiased estimate of the covariance

matrix S, such an estimate will tend to be singular in the

microarray setting, with many more features than samples.

Furthermore, theoretical justification for shrinking the off-diagonal

components of S to zero in such settings has recently been

published [12]. An alternative approach is to attempt to improve

our estimate of S by shrinkage. Shrunken covariance matrices can

be of the form eSS~vbSSz 1{vð ÞbSSR. Here, bSS is the usual unbiased

empirical covariance matrix estimate, bSSR is the estimate under

some simplifying restriction (such as diagonal form), and v is

a constant that is used to multiply every matrix entry. For

example, bSS has (i, j)th element

sij~
1P

nk{K

� 	XK

k~1

Xnk

l~1

xilk{bmmikð Þ xjlk{bmmjk

� �
: ð8Þ

This is a pooled version of the class-specific estimates, reflecting

the model assumption of a common covariance matrix. In what

follows, we define bSSR as the diagonalized version of bSS, with

diagonal elements equal to the diagonal elements of bSS and all off-

diagonal elements set to zero.

The shrinkage parameter v can be estimated using cross-

validation on training data [17] or by computing the value that

minimizes mean square error (MSE) [18]. We follow the latter

approach in the results below, as described in Table 1 of reference

[18]. Specifically, denote the (i, j)th off-diagonal element of the

covariance matrix as rij
ffiffiffiffiffiffiffiffiffi
siisjj
p

, where sii and rij are the empirical

variance and correlation, respectively. Shrinkage is applied to the

correlation parameters, with the shrunken version of rij equal to

errij~
1 if i~j

rij min 1, max 0, 1{bvvð Þð Þ if i=j:

�
ð9Þ

The estimator bvv proposed in reference [18] that approximately

minimizes the MSE of the shrunken covariance matrix is

bvv~

P
i=j Vbaar sij

� �P
i=j s2

ij

: ð10Þ

Adapting the estimator in reference [18] to our pooled covariance

matrix setting, we have

Vbaar sij

� �
~

1PK
k~1

nk{1ð Þ3

26664
37775XK

k~1

nk

Xnk

l~1

uijlk{uijk

� �2
, ð11Þ

where uijlk~ xilk{bmmikð Þ xjlk{bmmjk

� �
and uijk~Sluijlk

�
nk.

Searching for the Optimal Subset We have characterized

the theoretically optimal subset of given size by computing the

misclassification rate (4) for nearest-centroid classifiers. Ideally,

having estimated the decision rule, we would evaluate all subsets of

given size and choose the one corresponding to the lowest estimated

error rate. In high-dimensional settings, such an exhaustive search is

not feasible. We now consider practical strategies for searching for

the optimal subset. These are analogous to existing routines for

selecting subsets in discriminant analysis [5,6].

A simple approach to this problem is to rank each feature

individually on its ability to discriminate between the classes and

choose the top features from this list. Many previous publications

use versions of univariate t-statistics or F-statistics to score features

[2,7–9,11]. As discussed above, univariate selection procedures do

not take into account the joint performance of a set of features.

Thus, whereas the selected features will each individually discrim-

inate well, the selected set of features may not.

As an alternative to univariate scoring, we might consider more

computationally-intensive search algorithms. For example,

a greedy forward-selection algorithm would (i) select the one

feature that scores best individually according to some criterion, (ii)

select the one feature that scores best together with the already

chosen feature(s), (iii) repeat until the desired number of features

have been chosen. The misclassification rate (4) itself is the ideal

score to use for guiding the selection of a subset. As such, we

propose the greedy forward-selection algorithm that proceeds as

above, using an estimate of (4) to score each proposed subset. For

reference, the greedy algorithm identifies the same subset as the

exhaustive search algorithm in the example of Table 1.

RESULTS

Illustration on Simulated Examples
We evaluate different methods for estimating the optimal subset of

a given size with the following sets of simulations. There are 3

classes and 1000 genes, from which a subset of size 30 is desired.

For each class, 15 training samples and 15 test samples are

generated. In simulation set one (Table 3), the class centroids are

equidistant from one another. In simulation set two (Table 4), class

one is more easily distinguished than class two, which is more

easily distinguished than class three. The second scenario is

analogous to that described in Table 1. A univariate scoring

procedure will prefer features from class one, since its features will

score highest individually. A forward-selection procedure, on the

other hand, will spread out the chosen features among the classes

in such a way that the overall misclassification rate is approxi-

mately minimized. We also consider the effect of correlation

among the features. Since the misclassification rate (4) explicitly

Classification in Genomics
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incorporates correlations, we expect that using (4) to guide feature

selection will achieve greater accuracy relative to its competitors.

The details of the simulations are as follows. Twenty five

percent of the genes are noise, with centroid components

mi1 = mi2 = mi3 = 0. Another 25% of the genes characterize class

one, with centroid components mi1 = 0.5 or 1 in simulation sets one

and two, respectively, and mi2 = mi3 = 0. Another 25% of the genes

characterize class two, with mi2 = 0.5 and mi1 = mi3 = 0. The

remaining genes characterize class three, with mi3 = 0.5 or 0.25

in simulation sets one and two, respectively, and mi1 = mi2 = 0. In

each simulation, the genes are randomly broken into 50 blocks of

20 genes. Within each block, an autoregressive covariance

structure is used. Correlation (r) is positive in half of the blocks

and negative in the other half. In each simulation set, four

scenarios are presented: (i) independence (r = 0), (ii) low

correlation (r = 0.4), (iii) medium correlation (r = 0.65), and (iv)

high correlation (r = 0.9). Samples for class k are generated from

Nm(mk,S), the multivariate normal distributions with mean vector

mk and covariance matrix S.

For each of 50 simulations, we applied the following nearest

centroid classification methods. We report the PAM method [9],

which uses univariate statistics to score features individually, and

several variants of our greedy algorithm. We evaluate the effect of

shrinking the centroids using equations (6–7). We also evaluate

different choices for the covariance matrix: unrestricted, diagonal,

and shrunken [18]. Precise expressions for each covariance matrix

choice are given in equations (8–11).

Table 3 reports the results for simulation set one, and Table 4 is

for simulation set two. The second column indicates whether the

centroids were shrunken; PAM is marked with an asterisk in these

Tables due to its alternative approach to shrinking centroids across

classes rather than across features. The third column indicates the

form of the covariance matrix used. The remaining numbers

report test error rates, averaged across the 50 simulations, for each

of the considered levels of correlation. The numbers in parentheses

next to the error rates are the estimated standard errors. The

Clanc classifiers that estimate nonzero covariances increase in

accuracy with higher levels of correlation. While slightly less

accurate with high correlations, Clanc using a diagonal covariance

matrix performs well in all simulations. When classes are

equidistant, the classifiers based on univariate scoring perform

well. When classes are not equidistant, a substantial increase in

accuracy can be had by employing a greedy search. There is some

evidence that using shrunken centroids improves accuracy.

Illustration on Real Examples
We now illustrate our methods on three previously published

gene-expression microarray experiments. We compare the meth-

ods on the basis of error rates from five-fold cross-validation. We

avoid gene-selection bias by completely rebuilding classifiers to

identical specifications in each cross-validation iteration [19].

Cross-validated error rates are nearly unbiased, being slightly

conservative, and they are thus sufficient for comparing classifiers.

Note that the optimal subset depends on the prior probabilities pk,

k = 1, 2,…, K. In what follows, we assume equal priors, although

no substantial changes were seen when using priors that reflected

the proportions observed in the samples.

The first example involves small round blue cell tumors

(SRBCT) of childhood [20]. Expression measurements were made

Table 3. Test error rates (standard errors): Classes equidistant.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Absolute Value of Correlation

Algorithm Centroids Covariance 0.00 0.40 0.65 0.90

PAM shrunken* diagonal 0.15 (0.07) 0.15 (0.06) 0.18 (0.07) 0.29 (0.08)

Clanc unshrunken unrestricted 0.30 (0.08) 0.28 (0.08) 0.28 (0.07) 0.11 (0.07)

Clanc shrunken unrestricted 0.27 (0.09) 0.27 (0.08) 0.26 (0.10) 0.09 (0.07)

Clanc unshrunk. diagonal 0.07 (0.04) 0.08 (0.04) 0.10 (0.04) 0.19 (0.07)

Clanc shrunken diagonal 0.06 (0.04) 0.08 (0.04) 0.10 (0.05) 0.19 (0.07)

Clanc unshrunk. shrunken 0.30 (0.08) 0.28 (0.08) 0.28 (0.07) 0.06 (0.04)

Clanc shrunken shrunken 0.27 (0.09) 0.27 (0.08) 0.26 (0.10) 0.06 (0.04)

*Shrinkage in this case takes place across classes rather than across features.
doi:10.1371/journal.pone.0001002.t003..
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Table 4. Test error rates (standard errors): Classes not equidistant.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Absolute Value of Correlation

Algorithm Centroids Covariance 0.00 0.40 0.65 0.90

PAM shrunken* diagonal 0.33 (0.02) 0.33 (0.02) 0.34 (0.03) 0.37 (0.03)

Clanc unshrunken unrestricted 0.25 (0.07) 0.26 (0.08) 0.25 (0.08) 0.12 (0.08)

Clanc shrunken unrestricted 0.25 (0.08) 0.28 (0.09) 0.22 (0.07) 0.13 (0.09)

Clanc unshrunk. diagonal 0.04 (0.03) 0.04 (0.03) 0.06 (0.04) 0.14 (0.06)

Clanc shrunken diagonal 0.03 (0.03) 0.03 (0.03) 0.06 (0.03) 0.13 (0.06)

Clanc unshrunk. shrunken 0.25 (0.07) 0.26 (0.08) 0.25 (0.08) 0.12 (0.08)

Clanc shrunken shrunken 0.25 (0.08) 0.28 (0.09) 0.22 (0.07) 0.13 (0.09)

*Shrinkage in this case takes place across classes rather than across features.
doi:10.1371/journal.pone.0001002.t004..
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on 2,307 genes in 83 SRBCT samples. The tumors were classified

as Burkitt lymphoma, Ewing sarcoma, neuroblastoma, or

rhabdomyosarcoma. There are 11, 29, 18, and 25 samples in

each respective class. In the second example, expression measure-

ments were made on 4,026 genes in 58 lymphoma patients [21].

The tumors were classified as diffuse large B-cell lymphoma and

leukemia, follicular lymphoma, and chronic lymphocytic leuke-

mia. There are 42, 6, and 10 samples in each respective class. The

third example involves the cell lines used in the National Cancer

Institute’s screen for anti-cancer drugs [22]. Expression measure-

ments were made on 6,830 genes in 60 cell tumors. There are

representative cell lines for each of lung cancer, prostate cancer,

CNS, colon cancer, leukemia, melanoma, NSCLC, ovarian cancer,

renal cancer, and one unknown sample. We filtered out 988 genes

for which 20% or more of the tumors had missing values. We also

excluded samples from prostate cancer (due to there being only two

samples) and the one unknown sample. There are 9, 6, 7, 6, 8, 7, 6,

and 8 samples in each remaining respective class.

The results for the SRBCT data are shown in Figure 1, those for

the lymphoma data in Figure 2, and those for the NCI data in

Figure 3. The classifiers presented are identical to those in Tables 3

and 4, except that Clanc classifiers with unrestricted covariances

are excluded. The Clanc classifiers indicated by ‘‘v1-v4’’

correspond to the last four classifiers reported in Tables 3 and 4.

Clanc improves accuracy over the PAM approach using univariate

scoring. Shrunken centroids in Clanc improve accuracy in the

NCI example but make no difference in the other examples.

Diagonal covariance matrices result in greater accuracy overall for

these examples. Overall, we interpret these results as indicating

that Clanc classifiers with greedy searches guided by (4) can

outperform the existing PAM classification method. In particular,

the results support the use of shrunken centroids and diagonal

covariance matrices, and we have implemented this algorithm in

the Clanc software [13].

DISCUSSION
We have characterized the theoretically optimal subset of a given

size for a nearest centroid classifier. We have also considered the

estimation of this optimal subset. Although an exhaustive search

would be ideal, it is not generally practical in the genomic setting.

We have thus proposed a greedy algorithm for estimating optimal

subsets and demonstrated that the resulting classifier can produce

more accurate classifiers in both simulated and real applications.

Our results indicate that some improvement in accuracy can be

had by shrinking class centroids, for which we have proposed

a novel procedure. Although the theoretically optimal subset

explicitly incorporates correlation between features, our results

concur with those of others in suggesting that correlations should

be shrunken to zero in settings with many more features than

samples.
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Figure 1. Results for SRBCT data. Classifiers are identical to those in
Tables 3 and 4, with Clanc v1-v4 corresponding to the last four variants
reported there, respectively.
doi:10.1371/journal.pone.0001002.g001
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Figure 2. Results for Lymphoma data. Classifiers are identical to those
in Tables 3 and 4, with Clanc v1-v4 corresponding to the last four
variants reported there, respectively.
doi:10.1371/journal.pone.0001002.g002
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Figure 3. Results for NCI data. Classifiers are identical to those in
Tables 3 and 4, with Clanc v1-v4 corresponding to the last four variants
reported there, respectively.
doi:10.1371/journal.pone.0001002.g003

Classification in Genomics

PLoS ONE | www.plosone.org 6 October 2007 | Issue 10 | e1002



We note that our approach to estimating the optimal decision

rule could likely be improved upon. In particular, while MLE

estimators of the class centroids and common covariance matrix

themselves have good properties, the resulting estimator of the

decision rule may not. An alternative in the two class case would

be to directly estimate the decision rule using a variant of logistic

regression. The multiclass case would be more complicated. We

intend to investigate these issues in future work.
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