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Abstract

High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in
nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching
observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs
with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse
momentum and impact parameter dependence of the nuclear modification factor RAA can be fit well in an
event-by-event quenching scenario within experimental errors. However the transport coefficient q̂ extracted
from fits to the measured nuclear modification factor RAA in averaged fireballs underestimates the value
from event-by-event calculations by up to 50%. On the other hand, after adjusting q̂ to fit RAA in the event-
by-event analysis we find residual deviations in the azimuthal asymmetry v2 and in two-particle correlations,
that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation
function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

1. Introduction

Collisions of nuclei at high energies at the Rel-
ativistic Heavy Ion Collider (RHIC) and, soon, at
the Large Hadron Collider (LHC) create a fireball
with local energy densities well above 1 GeV/fm3.
At those densities, quarks and gluons form a de-
confined quark gluon plasma (QGP) [1]. In some of
the collisions, high momentum partons in the ini-
tial nuclear wave functions scatter off each other
and propagate away from the collision axis. They
form large momentum jets in the final state. These
jets, and the hadrons fragmenting from them, can
be used as hard probes of the fireball. The inter-
actions of the scattered partons with quark gluon
plasma lead to radiative energy loss and a signifi-
cant suppression of the hadron yield at high trans-
verse momentum PT [2, 3, 4, 5, 6, 7, 8]. One of the
key results from RHIC was the confirmation of this
jet quenching effect: Hadrons with PT ≥ 5 GeV/c
are suppressed by about a factor 5. In addition,
an extinction of away-side jet correlations has been
seen in a certain kinematic regime, further empha-
sizing the large opacity of quark gluon plasma [1].
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The study of quark gluon plasma has now moved
into an era of quantitative assessments of experi-
mental results. A simple question that we should
be able to answer is that of an averaged value 〈q̂〉
of the transport coefficient q̂ = µ2/λ, the average
squared momentum transfer µ2 of a high momen-
tum parton per mean-free path λ. The averaging
〈. . .〉 here refers to the many possible paths of a
parton (thus sampling different local q̂ along the
trajectory in a cooling and expanding fireball), an
average over parton species (until we have means
to reliably distinguish gluon and quark jets), and
the average over many event geometries for a given
centrality bin (hard processes at RHIC are rare and
experimental results are event averaged).

Comparative studies using the mainstream en-
ergy loss models lead to a somewhat unsettled pic-
ture. Bass et al. [9] have reported a wide range
of possible values for q̂0, the local initial value of
q̂ at the center of a central collision, ranging from
2.3 GeV2/fm to 18.5 GeV2/fm depending on the
energy loss model, and on how the local q̂(r, τ)
is modeled as a function of the local energy den-
sity or temperature at position r and time τ . In
addition, we have been cautioned by results that
show that q̂ extracted from single and di-hadron
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nuclear suppression factors are not necessarily com-
patible, and that q̂ is sensitive to assumptions on
pre-equilibrium quenching and the initial parton
spectrum [10] as well as radiative corrections to the
hard process [11].
Clearly we have to discuss and constrain un-

certainties in our modeling of jet quenching very
carefully in order to arrive at reliable quantitative
estimates. In this work we investigate the influ-
ence of inhomogeneities and fluctuations in the fire-
ball on jet quenching observables. As mentioned
above, experimental data are averages of observ-
ables over many events, where in each event jets
are created and propagate through the underlying
fireball. Most calculations found in the literature
on the other hand turn this process around and
propagate jets through an idealized fireball which
can be understood as an average over realistic fire-
balls. These smooth fireballs come in various de-
grees of sophistication, from a simple overlap of nu-
clear thickness functions in the transverse plane to
the use of detailed maps from hydrodynamics cal-
culations that take into account the proper expan-
sion and cooling. However, even the latter are often
based on averaged and hence idealized initial con-
ditions. It has been realized before that event-by-
event computations are crucial to understand some
low-PT observables, e.g. hydrodynamic elliptic flow
[12]. It is important to take into account that the
overlap of two nuclei (i) is irregularly shaped, (ii)
is generally not aligned with the naive geometrical
reaction plane, and (iii) exhibits local fluctuations
with hot spots and cooler regions. This leads to
appreciable differences compared to computations
using averaged, idealized fireballs.
Here we investigate whether an event-by-event

computation of jet quenching differs from one using
an averaged event. If the answer is yes, an interest-
ing question arises: is it possible to study some fea-
tures of the spatial structure of fireballs with hard
probes, despite the averaging over events? In other
words, is a true tomography feasible?

2. Effects of Inhomogeneities on Quenching

Let us discuss some general expectations when
we go from parton propagation through an averaged
fireball to an average over propagation in many fire-
balls. First consider the limit of extreme quenching,
q̂R2 ≫ p where R is the typical size of the fireball
and p the momentum of the final state parton. All
observed particles then come from the surface of the

fireball. It is clear that we should expect more such
particles from an inhomogeneous fireball compared
to a smooth fireball with equal total energy, if q̂ is
a fixed function of the fireball density. This is due
to the larger effective surface area of an inhomoge-
neous fireball, see e.g. Fig. 2. Hence the single and
double particle nuclear modification factors,

RAA(PT ) =
dNAA/dPT

〈Ncoll〉dNpp/dPT
(1)

JAA(PT1, PT2) =
dNAA/dPT1dPT2

〈Ncoll〉dNpp/dPT1dPT2

(2)

should increase for partons, and for hadrons frag-
menting from them. We also expect the azimuthal
anisotropy

v2(PT ) =

∫

dψ cos(2ψ)dNAA/dPT dψ
∫

dψdNAA/dPTdψ
, (3)

i.e. the difference of parton emission out of the re-
action plane and into the reaction plane, to de-
crease since the relative increase in surface should
be larger on the out-of-plane side. Please note that
the number of collisions Ncoll in the denominator is
an averaged number estimated for the correspond-
ing centrality bin. We will follow this procedure
and will not divide by the number of collisions on
an event-by-event basis. For completeness let us
also give the definition for the nuclear modifica-
tion factor of the two-particle correlation per trigger
IAA(PT1, PT2) = JAA(PT1, PT2)/RAA(PT1) which
we will use later.
Let us consider a more quantitative example.

Imagine energy loss ∆E = Chβ along a parton tra-
jectory determined by an expression of the general
type

hβ(r, ψ) =

∫

dττβρ(r+ τeψ) (4)

where r and ψ are the point of creation and the
emission angle of the parton, eψ the unit vector
along the trajectory, and τ the time elapsed since
creation of the parton. β encodes the path-length
dependence with linear or quadratic dependence
corresponding to β = 0 or β = 1 resp., and C is
a coefficient. ρ(r) encodes a local property of the
fireball, akin to a density, which we do not specify
further at this point. Let n(r) be the probability
for a parton to emerge from point r. The relevant
quantity to study is the energy loss weighted with
the emission probability, n(r)hβ(r, ψ). This quan-
tity characterizes the suppression of single particle
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spectra for not too large quenching (p ≫ ∆E) as
we can infer from the following exercise for a power-
law parton spectrum dN init/d2rdψdp ∼ n(r)p−α.
Expanding the expression (p + Chβ)

−α in the fi-
nal parton spectrum for small energy loss we can
express the final spectrum as

dNfinal

dpdψ
=
dN init

dpdψ

− αp−α−1

∫

d2rn(r)hβ(r, ψ) + . . . . (5)

The energy loss model here is deterministic, but we
do not expect major modifications of the following
arguments if hβ only gives an average value of a
statistical process of scattering and gluon emission.
Now we consider the pair of densities ni(r), ρi(r)

event-by-event by writing them as a sum of ensem-
ble expectation values n̄(r), ρ̄(r) and fluctuations
δn(r), δρ(r), resp. The ensemble average of the
single particle suppression is given by

〈n(r)hβ(r, ψ)〉 = n̄(r)

∫

dττβ ρ̄(r, ψ)

+

∫

dττβ〈δn(r)δρ(r + τeψ)〉 . (6)

The first term is the result from propagating
through the averaged fireball, and we have omit-
ted terms linear in fluctuations due to 〈δn〉 = 0,
〈δρ〉 = 0. The last term contains the correction due
to fluctuations

δ(nhβ)(r, ψ) =

∫

dττβR(r, r+ τeψ) . (7)

We have introduced the correlation function

〈δn(r1)δρ(r2)〉 = R(r1, r2) (8)

between fluctuations of the position of hard colli-
sions and the density of the bulk fireball. Eq. (7)
is a rather general statement one can make about
event-by-event fluctuations without imposing too
many restrictions on the energy loss mechanism.
Our result indicates that the leading deviation due
to fluctuations is given by correlations between the
emission point of the jet and the fireball along its
trajectory.
What constraints can be put on R? We expect

fluctuations to be granular with a certain length
scale σ (e.g. the nucleon diameter if n is related to
the density of nucleon-nucleon collisions and ρ to
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Figure 1: The correlation function τR(τ) = τR(r, r + τeψ)
as a function of τ along two cuts extending radially from the
point r = 4 fm ey , 4 fm away from the reaction plane, in x
(ψ = 0, solid line) and y direction (ψ = π/2, dashed line)
resp.; calculated from 10,000 GLISSANDO Au+Au events
with an average impact parameter b = 3.2 fm.

the density of participant nucleons). Then R must
be positive for |r2 − r1| . σ because on average the
density of hard processes and the density of the soft,
“underlying” event should be positively correlated.
On the other hand, R will turn negative on distance
scales larger than σ because the total amount of
matter in the transverse plane is conserved on av-
erage. In other words, a hot spot of the fireball
has to be compensated, on average, by less mate-
rial around that spot. This is also the reason for
the argument of a larger effective surface that we
raised for the case of surface-dominated emission:
Clumping of density somewhere along the bound-
ary of the fireball introduces “holes” elsewhere. In
principle ρ also carries an explicit dependence on
the time τ elapsed — suppressed in the notation —
since the fireball is evolving dynamically. We ex-
pect that relaxation phenomena or hydrodynamic
evolution wash out the correlation function R, al-
though this might take several fm/c by which time a
large fraction of the observable jet strength has left
the fireball. We check our qualitative expectations
with an example shown in Fig. 1. We provide two
cuts through the correlation function of the densi-
ties of binary collisions, ρ = n ≡ ncoll, calculated
from the initial state simulation GLISSANDO [13].
We discuss more details about GLISSANDO in the
next section. We clearly see positive correlations
with a radius σ ≈ 1 fm as expected from fluctu-
ations based on collisions of nucleons. The anti-
correlation region extends all the way to the point
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where the nuclear overlap zone ends.
For the following it is useful to look at a simplis-

tic parametrization for the correlation function R
which should be qualitatively true for a wide class
of models. Let us assume a non-spherical fireball
with short and long axes X and Y , resp. In a fluc-
tuating fireball these are only expectation values,
of course. Let us further assume

R(r1, r2) = λΘ(σ −∆r) − µΘ(∆r − σ) (9)

where ∆r = |r2−r1| and we neglect the dependence
of R on the center coordinate r1 + r2 which should
be a satisfying approximation for fireballs which are
on average uniform (i.e. ρ̄ and n̄ are smooth) and
large, (i.e. X , Y ≫ σ). λ and µ are positive num-
bers that characterize the correlation strength on
distance scales σ and the anti-correlation strength
on larger distances, resp. We note that R should
go to zero if the relative distance becomes too large
which is not duly captured in the ansatz above.
However this should not change the following in-
teresting result on elliptic flow. First we note that

δ(nh)(r, ψ) ≈ λσβ+1 − µ
(

lβ+1(r, ψ)− σβ+1
)

(10)

where l is the length of the parton trajectory in the
fireball. We clearly see that the sign of the correc-
tion is determined by the competition between an
increased suppression coming from more jets being
emitted in regions with a denser fireball, and the
decreased suppression around those regions.
While it is hard to predict the sign of δ(nh) even

after integration over emission points r without any
further concrete assumptions we can make the fol-
lowing observation. Let us use the difference of en-
ergy loss in- and out-of-plane as a proxy for v2. To
be more precise, v2 should be a monotonously rising
function of

−

∫

d2rn(r) (h(r, 0)− h(r, π/2)) . (11)

Under the assumptions made here the correction to
this asymmetry due to fluctuations is

−

∫

d2r (δ(nh)(r, 0)− δ(nh)(r, π/2)) .

≈ µ

∫

d2r
(

lβ+1(r, 0)− lβ+1(r, π/2)
)

∼ Xβ+2Y − Y β+2X < 0 (12)

for reasonable β since X < Y . Hence, the az-
imuthal anisotropy v2 tends to be diminished in

event-by-event calculations for a broad variety of
energy loss models. Basically there is more room
for the anti-correlation in R to decrease energy loss
along the longer side of the fireball than along the
narrow side. This is compatible with the argument
we made in the case of extremely strong quenching
and surface dominated emission, and it can also be
seen in Fig. 1.

3. Numerical Study

We want to back up some of the analytic argu-
ments from the last section through a numerical
study. The distribution of hard collisions is usually
taken to be the density of binary nucleon-nucleon
collisions, n(r) = ncoll(r). q̂(r) is often assumed to
be a function of the local energy density ǫ(r) in the
transverse plane. Around midrapidity the initial
energy density is usually modeled as a superposi-
tion of the density of collisions and the density of
participant nucleons ǫ(r) = αnpart(r) + γncoll(r).
Here, we produce an ensemble of realistic initial

distributions through the Glauber-based event gen-
erator GLISSANDO [13]. We take n = ncoll as
above and for simplicity identify the initial density
of the fireball as ρ(r) ∼ ncoll(r) as well, as in some
well-known energy loss model calculations [14]. We
do not implement a time evolution, since we only
look at deviations of observables from their coun-
terparts in smooth, averaged collisions. In other
words we are only sensitive to the time evolution of
R(r1, r2). However we can argue that the longitu-
dinal expansion of the fireball will not change the
transverse correlation function R except for an over-
all scaling factor, and transverse expansion is build-
ing up from zero at early times, being not overly
relevant for most measured jets. Smooth fireballs
are created by averaging over 500,000 GLISSANDO
events in the corresponding centrality bin. Fig. 2
compares a typical single event around b = 3.2 fm
with the averaged event of the same centrality. The
highly fragmented nature of this fireball is evident.
We use GLISSANDO with the default values pro-
vided [13]. All our runs have the following choices
made: binary collisions, no superimposed weights,
and variable-axes quantities. To make contact be-
tween a range of impact parameters b in GLIS-
SANDO and experimental centrality bins we use
the tables in [15].
We use the software package PPM to calculate

jet quenching results. PPM is a modular code de-
veloped by us to calculate hard probes observables.
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Figure 2: Top panel: density of binary collisions in the trans-
verse plane for a typical GLISSANDO event for a centrality
bin around impact parameter b = 3.2 fm. Lower panel: the
same averaged over 500,000 such events. The total number
of collisions for the particular individual event here is about
15% larger than the average number of collisions for this bin.

Here we run it in a mode that propagates samples
of hard partons on eikonal trajectories through the
background fireball with different leading particle
energy loss models selected. We let PPM read in
GLISSANDO output for both the distribution of
hard processes and as a map for the fireball for a
given event. The initial momentum distribution of
quark and gluon jets used follows a leading order
pQCD calculation [16, 17]. As we check against
pion data PPM uses the option for KKP fragmen-
tation [18] which gives reasonable results for pi-
ons. Finally PPM computes RAA, IAA, and v2.
For leading particle energy loss we espouse two op-
tions in PPM: (i) a simple, deterministic, LPM-
inspired model (sLPM) in which ∆E = csLPMh1
where h1 is given by Eq. (4). The parameter csLPM

measures the relative quenching strength csLPM =
q̂(r)/ncoll(r). (ii) the energy loss model known as
the Armesto-Salgado-Wiedemann (ASW) formal-

Figure 3: RAA of neutral pions for b around 3.2 fm computed
for sLPM and ASW energy loss compared with PHENIX
data [20]. Both average fireball and event-by-event calcula-
tions are shown, using the same values of csLPM and cASW.

ism, which is non-deterministic. Instead, it assigns
a probability density for energy loss which is given
as [19]

P (∆E;R,ωc) = p0δ(∆E) + p(∆E;R,wc) (13)

where p0 is the probability to have no medium-
induced gluon radiation and the continuous weight
p(∆E) is the probability to radiate an energy ∆E if
at least one gluon is radiated. In order to find these
two quantities for each trajectory in our fireball we
define ρ(r) = cASWncoll, and PPM computes the
integrals h1(r, ψ) and h2(r, ψ). The probability dis-
tributions are evaluated in the multiple soft scatter-
ing approximation (the ASW-BDMPS formalism)
[19], by using the relations introduced in [14] :

ωc = h1 and R = 2h21/h0 . (14)

For the Monte Carlo sampling of the distribution
we choose the non-reweighting algorithm explained
in Ref. [14]. As in scenario (i) the parameter cASW

gives the quenching strength per density.

We fit the energy loss parameters csLPM and
cASW by comparing PHENIX data on neutral pion
suppression RAA at top RHIC energy for three dif-
ferent centralities: 0− 10%, 20− 30% and 50− 60%
[20] to PPM calculations using averaged fireballs
for three corresponding impact parameter bins.
The extracted values are csLPM = 0.055 GeV and
cASW = 1.6 GeV. We note that ASW requires a
much larger relative quenching, but we do not want
to focus on a comparison of different energy loss
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Figure 4: RAA of neutral pions for three centrality bins com-
puted in the ASW energy loss model compared to PHENIX
data [20]. For each bin we show the result for the averaged
fireball (dotted lines) for cASW = 1.6 GeV, for the event-
by-event computation (dashed lines) for the same quenching
strength, and the event-by-event calculation for the refitted
value of cASW = 2.8 GeV (solid lines).

models here. We simply use two models to esti-
mate the uncertainties associated with our incom-
plete attempts to quanitify energy loss, and we only
focus on relative changes between the smooth and
the event-by-event case.

Next we run PPM over samples of individual
events and then take the average of our observ-
ables, keeping csLPM and cASW constant. For all
centralities and all values of PT we observe an in-

crease in RAA, i.e. a consistently lower energy loss
event-by-event compared to results using an aver-
aged fireball. Fig. 3 compares both scenarios and
PHENIX data for central collisions (around b = 3.2
fm) using both the sLPM and ASW energy loss.
The deviations grow going from central to periph-
eral collisions.

Now we check whether the decreased suppression
can be absorbed in a redefinition of the quench-
ing strength. Indeed, at not too large transverse
momentum we find that calculations of RAA us-
ing event-by-event quenching can be fit to describe
the PT - and centrality dependence of RHIC data
by increasing csLPM to 0.085 GeV and cASW to 2.8
GeV. Fig. 4 shows the results for RAA for a central,
a mid-central and a peripheral bin using ASW en-
ergy loss. For each bin three curves are compared to

Figure 5: The azimuthal asymmetry v2 of neutral pions as
a function of PT for impact parameters around b = 11 fm
compared with data from PHENIX [21]. We show computa-
tions in the ASW model using the average event (solid line),
an event-by-event calculation (dotted line) with cASW fit-
ted to the RAA using the average event. We also show the
event-by-event case for cASW = 2.8 GeV which fits the RAA
in the event-by-event case (dashed line).

data from PHENIX: calculations with (i) the aver-
age and (ii) event-by-event fireballs using the old fit
values for cASW, and (iii) the event-by-event results
using the newly adjusted parameter cASW. sLPM
energy loss leads to a similar picture. At low trans-
verse momentum the new fits can be matched per-
fectly to the original curves from smooth fireballs,
while at high PT differences can occur, however well
within experimental error bars. We conclude that
the use of smooth fireballs could underestimate the
extracted energy loss coefficient by as much as 50%
in the ASW model compared to an event-by-event
analysis, and still by as much as 25% in the sLPM
model. Suppose we do not trust GLISSANDO to
capture spatial details of the initial collision cor-
rectly. We can still make the following model inde-
pendent statement: There is an (additional) uncer-
tainty of up to a factor 2 on extracted values of q̂
coming from the unknown event-by-event geometry
of the fireball.

Let us proceed to discuss the azimuthal asymme-
try v2. As expected from our analytic arguments
the value of v2 decreases for all centrality bins and
for both sLPM and ASW energy loss if event-by-
event computations are compared to the average
fireball with the quenching strengths csLPM and
cASW fixed. However, we observe that readjust-
ing the strength to fit RAA for all centrality bins
does not bring v2 to the level observed for smooth
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Figure 6: The two-hadron correlation IAA of neutral pion
triggers between 7 and 9 GeV/c and associated charged pions
as a function of associated PT for impact parameters around
b = 3.2 fm. Trigger particles are counted in a window from
7 to 9 GeV/c. We show computations in the ASW model
using the average event (dotted line) with an event-by-event
calculation (solid line) with cASW fitted to the RAA using
the average event. We also show the event-by-event case for
cASW = 2.8 GeV which fits the RAA in the event-by-event
case (dashed line). PHENIX data for π0-charged hadron
correlations and the same trigger window are taken from
Ref. [23].

fireballs. This residual effect increases with impact
parameter b. Fig. 5 shows the calculated values
of v2 for ASW energy loss for impact parameters
around b = 11 fm compared to PHENIX data [21].
At a transverse momentum of 4 GeV/c the residual
suppression of v2 is about 25%. This rather deep-
ens the puzzle of v2 calculations which are routinely
underpredicting the experimentally observed values
at large PT [22]. On the other hand, an interest-
ing possibility takes shape. Looking at RAA alone
did not give us any handle on the geometry of the
fireball since a simple rescaling of the energy loss
parameters could absorb the effect. Looking at v2
in addition could in principle put experimental lim-
its on inhomogeneities in the fireball.

Fig. 6 shows our results for the triggered di-
hadron correlation function IAA in the ASW model
for impact parameters around b = 3.2 fm. We
see that quenching in the average event is larger
than for the event-by-event scenario, analogous to
the single hadron case. JAA rises by up to 25%
in the event-by-event case with fixed quenching
strength, but this is almost canceled by the cor-
responding rise in RAA such that the modified per
trigger yield IAA is almost unchanged. However,
when we use the quenching parameter that fits RAA

for event-by-event computations to data we observe
that the refitting of RAA overcompensates the ef-
fect for di-hadron quenching in a dramatic fashion.
IAA from event-by-event computations is now up to
25% smaller than for the averaged event. This over-
compensation could serve as another signature for
inhomogeneities. It is observed for both sLPM and
ASW energy loss models. We conclude that a blend
of single and dihadron measurements supplemented
with v2 measurements can in principle discriminate
between different scenarios for the density correla-
tion function R. At this point the uncertainties in
IAA data are still somewhat large and quantitative
estimates are not yet conclusive.

4. Summary

We have shown that realistic fluctuations and in-
homogeneities in the fireball can have significant
effects on jet quenching. We tie the deviation of
single particle suppression from that in an average
fireball to a path integral over the correlation func-
tion 〈n(r1)ρ(r2)〉 between the fluctuations in the
density of hard processes and the density of the
medium. We predict that for a fixed quenching
strength q̂(ρ) v2 should be diminished for a wide
class of energy loss models, while the sign of the
correction to RAA is less obvious and depends on
details of the correlation function and the energy
loss model used. We expect less suppression for
event-by-event jet quenching in the limit of very
strong, surface-dominated quenching.
We have verified numerically with two energy

loss models that at RHIC energies single hadron
suppression RAA is decreased for realistic event-
by-event quenching. On the other hand v2 is de-
creased as expected. The quenching strength q̂
as a function of the medium density ρ can be in-
creased to describe the observed single particle sup-
pression in event-by-event calculations. In fact, we
can not distinguish, at low transverse momentum,
between smooth and inhomogeneous fireballs using
the PT - and centrality dependence of RAA alone if
the quenching strength q̂(ρ) is an adjustable param-
eter. The quenching strength has to be increased
by up to 100% which can be interpreted as an addi-
tional uncertainty in the extraction of q̂ from data.
We observe that v2 is still suppressed by up to

25%, and IAA is decreased by the same amount
even after adjusting the quenching strength to fit
the data on single hadron suppression. This resid-
ual signal of inhomogeneities can in principle be
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used for a true tomography which can measure the
degree of initial fragmentation in the fireball. Of
course this is only viable with di-hadron data that
has significantly smaller error bars, and once the-
oretical uncertainties from other sources in energy
loss calculations are under control.
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