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Abstract

We develop a unified effective field theory approach to the high-temperature
phase transitions in QCD and string theory, incorporating winding modes (time-
like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons
and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance
and the Zj structure of the centre of SU(3) decree a first-order phase transi-
tion with simultaneous deconfinement and Polyakov loop condensation in QCD,
whereas string vortex condensation is a second-order phase transition breaking
a Z, symmetry. We argue that vortex condensation is accompanied by a dilaton
phase transition to a strong coupling régime, and comment on the possible role
of soliton degrees of freedom in the high-temperature string phase.
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Nowadays there is much discussion about the nature of string at high tempera-
tures, short distance and high energies, and its relation to the low-temperature, low-
energy phase of string that we experience daily. In particular, the possible transition(s)
between low-and high-temperature phases somewhere around the string Hagedorn tem-
perature is (are) the focus of much debate [1]. These discussions echo eerily those of 20
years ago on the true nature of the strong interactions and on what might lie beyond
the hadronic Hagedorn temperature [2]. We now know that this is QCD, and under-
stand that it may be represented at low energies and temperatures by an effective field
theory with approximate chiral and scale invariance [3]. Moreover, even now this effec-
tive field theory can give us extra insight into the phase transition(s) between low-and
high-temperature QCD [4]. In the case of string, we understand the general form of the
effective low-energy field theory, namely some generalized N = 1 no-scale supergrav-
ity (5], [6] containing a model-independent dilaton supermultiplet [7]. In this paper we
study its finite-temperature properties in parallel with those of the low-energy QCD
meson theory, seeking insights into the nature(s) of the string phase transition(s), and
possibly into the nature of the high-temperature string phase.

There are many analogies, but some differences, between the QCD and string
cases. In both cases there are light elementary excitations-pseudocalar mesons and a
scalar pseudo-dilaton glueball in a chiral Lagrangian derived from QCD (3], analo-
gous to the matter and dilaton supermultiplets in a low-energy supergravity theory
derived from string theory [7]. Also, in both cases there are massive winding modes,
time-like Polyakov loops [8] and vortices [9], that are expected to condense in the high-
temperature phase. In this paper we construct and analyze in parallel models coupling
the elementary glueball/dilaton and winding Polyakov/vortex modes, looking for sim-
ilarities and differences between the two cases. In some respects our prior knowledge
is deeper in the QCD case, for example there is a lot of lattice information on the na-
ture of the QCD phase transition(s) [10]. But, amusingly, in some respects we know
more about string, for example the nature of the high-temperature tachyonic mode and
its coupling to the dilaton are calculable in string theory [9], whereas we only have
qualitative symmetry arguments for the corresponding features of the QCD case.

We find in this case that simultaneous first-order transitions in the order vari-
able (the gluon condensate) and the disorder variable (the time-like Polyakov loop) are
enforced by the symmetry properties of QCD (anomalous scale invariance and the Zs
centre of SU(3), respectively). In the case of string, we argue that the dilaton v.e.v. is
first driven towards infinity, i.e. the string coupling is driven towards zero, below the
string Hagedorn temperature. Then vortices condense in a second-order phase transi-
tion at the string Hagedorn temperature, breaking a Z; duality symmetry spontaneously.
This is followed by a transition to strong coupling above the Hagedorn temperature.
We conclude with some speculations on the nature of this phase, in particular on the
possible role that soliton quantum numbers [11] might play in the high-temperature
phase.

We first review and extend previous work on the low-energy effective field theory
analysis of the QCD phase transition [4], emphasizing points of comparison with the
corresponding string case. Since we will be interested in closed string theory, we will
not include quark degrees of freedom. In this case, the only low-energy QCD order
parameter is the scalar gluon condensate < 0|G,G*|0 >: GLG* = %Gﬁ where
64 is the trace of the energy-momentum tensor and divergence of the scale current.
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Scale invariance is exact in classical quark-less QCD, but is broken by renormalization.
The minimal dynamical model incorporating gluon condensation and anomalous scale
invariance contains a single scalar glueball field x [3]:

Lt (0) = 50" = V(1) : V (x) = Bx'In (x/e"*x0) 1)

where xo =< 0[x|0 > and 64 = f—sG,‘,G“" = 4Bx*. When the temperature T increases,
the potential V(x) acquires finite-temperature corrections §V(x, T). Because of the
Coleman- Weinberg-like flatness of V(x) in equation (1), these could be expected to
induce a first-order phase transition at some critical temperature T, and this has been
verified in model calculations [4].

In the high-temperature phase of QCD, a key role is played [8] by the centre Z3
of the SU(3) gauge group. Time-like Polyakov loops P take values in Z3, and can be
described by an effective Hamiltonian density

Hes (P) = |VP* + V(P) : V(P) = u?|P|* + —‘;- (P3 + P'3) + AP (2)

where the form of the effective potential V(P) is dictated by the Z3 symmetry [8]. It is
easy to see that < 0|P|0 > = 0 when u? > 1A?, corresponding to the low-temperature
phase, but < 0|P|0 >~ exp (27in/3) when u? < 1A? corresponding to the high-
temperature phase. The phase transition is first order, with

AI<O[P|0>]=p=13 3)

at the phase boundary : u = A/2.

For a coupled description of the order and disorder variables, we consider the full
effective potential V (x,P) = V(x) + V(P), and include x-and T-dependence in the
parameter u? ). By analogy with the well-understood string case [9], [1], we expect that

w2100 (35 ) ®

where Ty is the Hagedorn temperature. The expression (4) has the feature that the P
field has infinite mass-squared when T — 0, but becomes a tachyon at the Hagedorn
temperature, like the Z; vortex to be discussed later in the string case. The precise
form of 4? in (4) is not essential for our argument: for simplicity we take it to be
A2 = p3x? : pd > 0. It is easy to see that in this case the first-order phase transition in
< 0|P|0 > at fixed x occurs when

uix
T=Tp:Tp=Tx i + 1A, (5)
which is always less than the Hagedorn temperature, reflecting the fact that
A|< 0|P|0 >| # 0 when u? > 0, because of the trilinear term in V(P) (2).

But is x fixed at the P transition point? Precisely because u? « x2? > 0 at this
point, this term alone in the effective potential would favour x — 0 when P # 0. How-
ever, to determine whether this in fact occurs, we must consider the energy difference

1) We could also include such dependences in A and A, but this would not introduce
any new issues of principle.




between ¥ = xo and x = 0 given by V(x). Treating the latter as a perturbation on
V(P), we find as a first approximation that there is a simultaneous first-order transition
in P and x at

T (©
1+ (1A2 - 5% (;gig)

which is again below the Hagedorn temperature in the limit of small B.

We summarize this QCD analysis as follows. The form of the effective potential
decreed by the symmetries of the order and disorder variables (anomalous scale invari-
ance and Zj respectively) enforce first-order transitions in both the dilaton field x and
the “vortex” field P. A plausible model for the coupling of these fields indicates that
these two first-order phase transitions occur simultaneously at some temperature below
the Hagedorn temperature.

Before extending the above QCD analysis to the string case, we first recall relevant
aspects of supergravity at zero and finite temperature. A general N = 1 supergravity
theory is characterized by the Kahler potential G (¢, ¢*) and the gauge kinetic function
fap (#), where the ¢ are chiral superfields [12]. It is customary to split the Kahler
potential into parts which can (cannot) be written as holomorphic and antiholomorphic
functions of the chiral fields:

T=TC:TC2TH

G(4,90") =G (8,¢") + F () + F(¢%) (7)

where F is called the superpotential. The effective scalar potential can then be written
as

V= [0(6)}gi~ 9] + JRe eD* ®

where G; = 6G/0¢' , etc., and D* = ggi(T");q&i. In string theory [7], G has a model-
dependent generalization of the original no-scale form [5], [6]:

G=—1n(S+S+)+G:G=—3ln(T+T‘—%¢i¢{) (9)
and .
fap = 55,,5 :Sp= ReS = g—2 (10)

is model-independent. (We use natural units: £ = 871Gy = 1). The generalized no-scale
piece G of the Kahler potential (9) fills in the (-3) hole in the potential V (8), so that
it is positive semi-definite.

The v.e.v. of the dilaton S, and hence (10) the value of the gauge and string
coupling g, is believed to be fixed at zero temperature by gaugino condensation <
0|AA 0 ># 0 due to non-perturbative gauge dynamics in one or more hidden sectors
[13]. We expect finite-temperature effects in the corresponding strongly-coupled gauge
theories to dissolve such condensates when the temperature rises above their strong
coupling scales Ay ~< 0|AX|0>'/3, just as happened to the gluon condensate field x
in QCD. What happens to the S field and the string coupling once they are freed from
their zero-temperature fixed values?



The answer to this question involves finite-temperature corrections to the N=1
supergravity effective potential (8), which arise from loops of matter fields, gauge bosons
and gauginos, and gravitinos. These are given at the one-loop level by

2
AVy = %NBT + 21—41& (m'g + %m%-) T? + ... (11)
where Np is the number of bosonic degrees of freedom, which is equal to the number of
fermionic degrees of freedom, and m% (m%) is the boson (fermion) mass-squared matrix.
The complete expression for AVt has been calculated for general G and for mininal f,4
[14]. The resulting expression is simplified by taking the limit of large N, the total
number of chiral superfields. The large-N limit selects the contributions to AVt from
G¥, leading to [15]

o L amag i
AVy = SNT? (6.6 -2) (12)
in minimal supergravity, and [15]
AVr =~ 11—8NT2V (13)

where V is given by equation (8), in no-scale supergravity.
Here we are interested in the dilaton dependence of the finite-temperature correc-
tions, which for the Kahler potential (9) takes the form

AVr o« NT?/Sg (14)

This suggests that at high temperatures Sg — oo and g? — 0, the weak coupling
limit. This effect is also seen in a toy example where we set N=1, i.e. we only include the
S fields (while assuming that the other matter fields, moduli, etc., still play their role
of cancelling the (-3) in V (8)). In this case with G 3 —In (S + S*) the scalar potential
(8) becomes

1
V(Sr) = 2—5'; (15)
and
Trm} = 2/Sg, Trm?,; = 0, Trm3); = —2/Sg

so that 1
_ ima
AVy = 24T /Sr (16)

displaying again the 1/Sg dependence that pushes string towards weak coupling as the
temperature increases towards the string Hagedorn temperature.

To discuss the transition to the high-temperature phase of string, we must also
include the new effects due to its extended nature. As in field theory, the free energy
of thermal strings can be computed by doing the path integral for propagation on
RP-1 @ S!, where S! has circumference 8 = 1/t. In closed string theory, this raises
the novel possibility [9] that the string “wraps” some number of times around the s?
time coordinate, analogously to time-like Polyakov loops in finite-temperature QCD
[8]. These “vortex” configurations represent sectors topologically distinct from the “un-
wrapped” string states that dominate the path integral at low temperatures, and lead
to intinsically stringy effects at high temperatures T = 0(mMpianck)-
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The contribution of these sectors to the genus-one partition function for finite-
temperature string theory is restricted by modular invariance [16]. World-sheet modular
transformations can interchange contributions from “wrapped” strings and strings with
quantized time-like momenta. Modular invariance then relates the contributions to the
free energy from these sectors. In string mode computations, modular invariance imposes
the level matching constraint Ly — Lo = 0. In the case of the bosonic string, the mode
expansion for the compactified time coordinate is (where we now use units in which the
string tension a'~! = 2)

2rmr  nfo

X%(o,7) = X+ 3 —— + oscillators (17)
and the mass-shell condition is
1. ., 1 np _ 1/fmr nfB 2
ZM N+2(ﬂ +2ﬂ_) 1= N+2(ﬂ 2—ﬂ_) -1 (18)

where Ni, and Ny are the left and right oscillator mode numbers. Level-matching en-
forces

NL - NR =mn (19)

The tachyonic ground state of the bosonic string has N, = 0 = Ng andn =0
= m. There are in addition time-like excitations of the tachyon with m = + 1, n =
0 that are also tachyonic at low temperatures. Dual to these modes, in the sense of
modular transformations, are the vortex modes that wind once around S* time: n = +
1, m = 0 with N, = 0 = Ng. Their masses-squared have an inverse dependence on the
temperature:

2

M= —4+ (20)

and so become tachyonic when

T=THE

1
W (21)
which is the Hagedorn temperature of the bosonic string.

In the case of heterotic string, modular invariance imposes a generalized GSO
projection [1], [16] that removes the tachyon from the theory. The mass-shell condition
for the physical states analogous to (18) is:

M? 1 1{mm nB\’ 1 nB\?
5 NR——+—(———7r—) —NL—-1+2(ﬂ +2 (22)
where we consider right-moving modes in the Neveu-Schwarz sector, for which modular
invariance requires us to take half-integer values(1], [16]. The vortex modes whose dy-
namics determines the Hagedorn temperature for the heterotic string are N, = 0 = Nr
with n = +1,m = +1, which we denote hereafter by ¢*. They are self-dual, with
2
M? = —6+ — + ﬂ

s (23)

and become tachyonic when



T=THE7lr(\/§—1) (24)

the Hagedorn temperature of the heterotic string [17].

The Hagedorn phase transition is charaterized by condensation of these vortices,
which we may represent in the effective field theory language as the development of a
non-zero v.e.v. for ¢%. To discuss whether this phase transition is first- or second-order,
and whether the v.e.v.’s of other order parameters change at the same temperature, we
must construct an effective Lagrangian which takes other light degrees of freedom into
account as we did in the QCD case (1, 2, 4). This remark applies in particular to the
scalar component Sg = e’ of the dilaton supermultiplet, which is an inescapable feature
of the effective low energy field theory (9), and is not heavy in the limit T — Ty —,
where equations (14, 15, 16) tell us that Sgp = ¢ — oco?)

Noting that the couplings of the o field are completely dictated by the underlying
conformal invariance of the theory, it can be shown from general arguments that all
the potential terms in the effective Lagrangian description of string at the tree level
appear scaled by 1/Sg = €7, including mass terms for massive modes. Therefore the
finite-temperature effective potential for the vortex modes takes the form

2 2
Vi =e [(—6 + ﬁ-; + %) $to™ + §(¢+¢-)’} (25)
where the coefficient of the quartic interaction is the result of a simple conformal field
theory calculation. This potential exhibits a second-order Kosterlitz-Thouless [18] phase
transition due to vortex condensation at the heterotic string Hagedorn temperature Ty
(24) where M? (23) vanishes. The second-order nature of the phase transition is enforced
by the Z; symmetry of the order parameter (contrast the Zz QCD case (2)), and by
the positivity of the quartic term?. Minimization of the effective potential (25) for any
fixed value of the dilaton field o gives a negative contribution to the vacumn energy

(o+%+5)
6

Vi =€ [-— (26)

which depends non-trivially on the dilaton o.

To get the full dilaton-dependent potential at high temperature, we will add to
the above the finite-temperature effective potential terms due to the light degrees of
freedom (equations (14, 15, 16)), for which two remarks are in order. First, we note
that the form of AV from equation (16) does not exhibit the T « 1/T duality that
we expect in the full string theory. So, in addition to the term of equation (16) there
must be terms whose inclusion results in corrections to AV which provide the required
T & 1/T invariance. These extra terms must behave as (N./24) (?; - [—,1;) at T >» Tnu
and may not be negligible even for T ~ Ty. However, the argument that we make below
holds even if these terms are comparable to the Ni,/243? term that we retain. Secondly
we remark that before adding AV (16) to VMIN (26) we must correctly restore their
units, as they have been derived from calculations with different conventions. The string

1) On this point we differ from Atick and Witten [1].
2) We also differ from Atick and Witten [1] on this point. See also [19] for an alternative
discussion.




winding mode potential has been computed with a choice of units such that the string
tension was fixed: o/ = 1/2, whereas the contributions from the light modes have been
calculated in natural physical units where Newton’s constant is fixed and x = 1. Since
a' = 2x2Sg, we can only hold one of these variables fixed while studying functional
dependence on S. If we write the two contributions in string units, using k* = a' /2SR,
we get for the total effective potential governing the dilaton critical dynamics:

’ 2
_(_6+2af 2”2) Ny
V. ~e? 2T E
ff (U) € 6(20’)2 + 12ﬂ2a’ (27)

whereas if we convert it to natural units with x? = 1 fixed (and write Sp = ¢’ as before)
we get:

-1 B2 4r’k?Sg\*> 1 N
Vs (SR) ™ srmas| 6+ 1ot — & + e (28)
24k45% 472k2Sp B Sgr24k20

Because of the dilaton-dependent relation a’ = 2x2Sg, and because the Hagedorn

temperature (where the vortices become tachyonic) is fixed in terms of the string tension:

Ty = ﬁ,_; - 7%,, then in natural units where Newton’s constant is fixed (x = 1) the

Hagedorn temperature is a function of the dilaton v.e.v. Sk.

So, at any finite temperature there will be a region of (large) Sm space where the
Hagedorn temperature is less than our physical temperature (measured in gravitational
units with & = 1); in this region at large Sr, the full expression (28) for the effective
potential of Sg must be used, as in this region (T > Ty) the vortex mode carries its
v.e.v.. For smaller values of Sg, where T < Ty, the vortex mode no longer has a v.e.v.,
and we only retain from (28) the contribution due to the light modes (14, 15, 16). In the
figure we plot V.7 (S) for different temperatures (related to the Hagedorn temperature
at Sp = .25, where o/ = 2x2Sp implies o’ = ! and & = 1 so both systems of units agree).
We see that while the minimum occurs at large Sp at low temperature (Sg — oco as
T — 0 unless it is fixed by some nonperturbative potential), as we raise the temperature
through the Hagedorn temperature (at the comparison value Sp = .25) the minimum
shifts rapidly to small values of S where the string is strongly coupled. This rapid, but
continuous, transition to a strongly-coupled regime at T >> Ty eventually leads us to
a domain in which our methods of analysis are no longer reliable.

We conclude with a few comments on the high-temperature string phase, inspired
in part by our knowledge of the high-temperature phase of QCD. In that case, there
are solitons of the low-energy field theory that can be identified with baryons - the
Skyrmions [20]. They carry a topological quantum number that can be identified with
baryon number, and get larger and lighter as the QCD phase transition temperature is
approached from below. Baryon number is a precursor of the appearance of free quarks
in the high-temperature phase, and the increase in the Skyrmion size can be interpreted
as a precursor of deconfinement in the high-temperature phase. String theory also has
solitons, the five-branes of [11], which are in one sense dual to strings. The five-brane’s
mass per unit volume Mj; decreases as the string coupling increases: My < 1/ V8, 80
that the five-brane description becomes more relevant as the temperature approaches
Ty from below, just like Skyrmions in QCD. As in the case of the baryon number carried
by Skyrmions, the (from the point of view of the low-energy string theory) “topological”
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Figure 1: The Sy effective potential at different temperatures, in « = 1 Planck units,
when the number of light degrees of freedom is taken as N = 100. Curves shown are for
the range of S for which the temperatures plotted are beyond the Hagedorn temperature.

charge carried by the five-branes may become deconfined above Ty and play a key role
in characterizing the high-temperature phase, analogous to the presence and importance
of quarks in QCD. This uncanny resemblance between the phase structure of QCD and
string, coupled with an understanding of string /five-brane dynamics, and in particular
the role played by duality and its breaking, will surely be useful in future explorations
of the high-temperature phase of string theory.
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