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No-Scale Supergravity Realization of the Starobinsky Model of Inflation

John Ellisa,∗ Dimitri V. Nanopoulosb,† and Keith A. Olivec‡
a Theoretical Particle Physics and Cosmology Group, Department of Physics,

King’s College London, London WC2R 2LS, United Kingdom;
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

b George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,
Texas A&M University, College Station, TX 77843, USA;

Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381, USA;
Academy of Athens, Division of Natural Sciences,

28 Panepistimiou Avenue, Athens 10679, Greece, and
c William I. Fine Theoretical Physics Institute, School of Physics and Astronomy,

University of Minnesota, Minneapolis, MN 55455, USA

We present a model for cosmological inflation based on a no-scale supergravity sector with an
SU(2,1)/SU(2) × U(1) Kähler potential, a single modulus T and an inflaton superfield Φ described
by a Wess-Zumino model with superpotential parameters (µ, λ). When T is fixed, this model
yields a scalar spectral index ns and a tensor-to-scalar ratio r that are compatible with the Planck
measurements for values of λ ' µ/3MP . For the specific choice λ = µ/3MP , the model is a no-scale
supergravity realization of the R+R2 Starobinsky model.

The initial release of cosmic microwave background
(CMB) data from the Planck satellite [1] confront the-
orists of cosmological inflation [2, 3] with a challenge.
On the one hand, the data have many important fea-
tures that are predicted qualitatively by the inflationary
paradigm. For example, there are no significant signs
of non-Gaussian fluctuations or hints of non-trivial topo-
logical features such as cosmic strings, and the spectrum
of scalar density perturbations exhibits a significant tilt:
ns ' 0.960± 0.007, as would be expected if the effective
scalar energy density decreased gradually during infla-
tion. On the other hand, many previously popular field-
theoretical models of inflation are ruled out by a com-
bination of the constraint on ns and the tensor-to-scalar
ratio r < 0.08 as now imposed by Planck et al: see, e.g.,
Fig. 1 of [1]. The only model with truly successful predic-
tions displayed in Fig. 1 of [1] is the R2 inflation model
of Starobinsky [4], though similar predictions are made
in Higgs inflation [5] and related models [6].

In the following paragraphs we provide the approach to
inflation taken in this paper, which casts a new light on
the Starobinsky model [4] and embeds it in a more gen-
eral theoretical context that connects with other ideas in
particle physics. Specifically, the upper limit on r im-
plies that the energy scale during inflation must be much
smaller than the Planck energy ∼ 1019 GeV. Such a hier-
archy of energy scales can be maintained naturally, with-
out fine-tuning, in a theory with supersymmetry [7]. As
is well known, (approximate) supersymmetry has many
attractive features, such as providing a natural candi-
date for dark matter and facilitating grand unification,
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as well as alleviating the fine-tuning of the electroweak
scale. In the context of early-Universe cosmology, one
must combine supersymmetry with gravity via a suitable
supergravity theory [8], which should accommodate an
effective inflationary potential that varies slowly over a
large range of inflaton field values. This occurs naturally
in a particular class of supergravity models [9], which are
called ‘no-scale’ because the scale at which supersymme-
try is broken is undetermined in a first approximation,
and the energy scale of the effective potential can be nat-
urally much smaller than ∼ 1019 GeV, as required by the
CMB data. No-scale models have the additional attrac-
tive feature that they arise in generic four-dimensional
reductions of string theory [10], though this does not play
an essential rôle in our analysis. The attractive features
of this no-scale supergravity framework for inflation do
not depend sensitively on the supersymmetry-breaking
scale, which could be anywhere between the experimental
lower limit ∼ 1 TeV from the LHC [11] and ∼ 1010 TeV
from the tensor-to-scalar ratio.

We now discuss these motivations at greater length
before entering into the details of our inflationary model.

Since the energy scale during the inflationary epoch is
typically � MP , it is natural to study renormalizable
models, i.e., some combination of φ2, φ3 and φ4 in the
single-field case. In this spirit, it was shown in [12, 13]
that a single-field model with a potential of the form

V = Aφ2(v − φ)2 (1)

could easily produce Planck-compatible values of (ns, r)
for a suitable number of e-folds before the end of inflation
N ∼ 50 to 60. This simple symmetry breaking potential
has a long pedigree, having been proposed initially in [14]
(for a review, see [2]) where it was argued that successful
inflation would require a small value of A and v > MP .
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As we pointed out in [7], in addition to all the well-
known reasons for postulating low-scale supersymmetry,
the small values of the quartic and quadratic couplings
that would be required in a successful inflationary model,
e.g., A in the above example, become technically natural
in the presence of low-scale supersymmetry. In particu-
lar, small values of δρ/ρ become technically natural if ap-
proximate supersymmetry is invoked [7], and if the GUT
Higgs is distinguished from the singlet field that produces
inflation, that later became known as the inflaton [15].

The simplest globally-supersymmetric model is the
Wess-Zumino model with a single chiral superfield Φ [16],
which is characterized by a mass term µ̂ and a trilinear
coupling λ, with the superpotential

W =
µ̂

2
Φ2 − λ

3
Φ3 . (2)

As was discussed in [13], the effective potential of the
Wess-Zumino model reduces to (1) when the imaginary
part of the scalar component of Φ vanishes, in which
case this model yields Planck-compatible inflation for a
suitable small value of λ.

However, global symmetry is not enough. As dis-
cussed above, in the context of early-Universe cosmol-
ogy one should certainly include gravity and hence con-
struct a locally-supersymmetric model, i.e., upgrade to
supergravity [8]. The first attempt at constructing an
inflationary model in N = 1 supergravity proposed a
generic form for the superpotential for a single inflaton
[17], the simplest form being W = m2(1− aΦ)2 [18]. As
discussed in [19], while this relatively simple model is ca-
pable of sufficient inflation, it is an example of accidental
inflation in the sense that the coefficient of the linear
term in the superpotential, a, must be extremely close
to unity. This model has also become one of Planck’s
casualties. The scalar-to-tensor ratio in this model is
very small, but the value of ns predicted in this model is
ns ' 1− 4/N = 0.933 for N = 60 [20], since the effective
potential varies insufficiently slowly.

In a supergravity model with a generic Kähler poten-
tial for the chiral supermultiplets there are quadratic
|φ|2 terms, which cause variations in the effective po-
tential that destroy its suitability for inflation, an ob-
stacle known as the η-problem [3]. As was pointed out
in [21], a natural solution to this problem is offered by
no-scale supergravity [9], whose motivations were sum-
marized earlier. In such a model, quadratic terms are
suppressed, and the effective scalar potential resembles
that in a globally-supersymmetric model, thanks to an
underlying non-compact SU(N,1)/SU(N) × U(1) symme-
try.

Other no-scale supergravity approaches have also been
proposed [22], as well as models based on a non-compact
Heisenberg symmetry [23], a shift symmetry [24–26], or
string theory [27]. The SU(N,1) model [21] was based on
the superpotential W = m2(φ − φ4/4) and gives similar
predictions for the inflationary parameters as the mini-

mal N = 1 model discussed above. This too is an exam-
ple of accidental inflation [19] and a small change in the
coefficient of the quartic term would lead to parameters
consistent with Planck data [1].

In this paper we show how one can elevate the sim-
plest globally-supersymmetric Wess-Zumino inflationary
model of [13] to a no-scale supergravity version (NSWZ).
Concretely, we study a model in which the inflaton su-
perfield is embedded in an SU(2,1)/SU(2) × U(1) no-
scale supergravity sector together with a modulus field
T (which we assume to be fixed by other dynamics [28])
and find a range of the parameters where it is compatible
with the Planck data [1]. Quite remarkably, as we show,
the NSWZ model is the conformal equivalent of an R+R2

model of gravity for one specific value of µ̂/λ, so that in
this case our realization of inflation in the NSWZ model
is equivalent to the Starobinsky model of inflation [4].
Thus we embed this model in a broader and attractive
theoretical framework.

We first recall the basic relevant formulae governing
the kinetic term and the effective potential of scalar fields
φ in N = 1 supergravity, specializing to the no-scale case
with non-compact SU(N, 1)/SU(N) × U(1) symmetry.
The scalar sector may be characterized in general by a
hermitian Kähler function K and a holomorphic super-
potential W via the combination G ≡ K+ lnW + lnW ∗.

The kinetic term is then given by Kj∗

i ∂µφ
i∂φ∗j , where

the Kähler metric Kj∗

i ≡ ∂2K/∂φi∂φ∗j , and the effective
potential is

V = eG

[
∂G

∂φi
Ki
j∗
∂G

∂φ∗j
− 3

]
, (3)

where Ki
j∗ is the inverse of the Kähler metric Kj∗

i .

In the minimal no-scale SU(2, 1)/SU(2) × U(1) case,
there are two complex scalar fields: T , a modulus field,
and φ, which we identify as the inflaton field, with the
Kähler function K = −3 ln(T+T ∗−|φ|2/3). In this case,
the kinetic terms for the scalar fields T and φ become

LKE = (∂µφ
∗, ∂µT

∗)

(
3

(T + T ∗ − |φ|2/3)2

)
(

(T + T ∗)/3 −φ/3
−φ∗/3 1

)(
∂µφ
∂µT

)
, (4)

and the effective potential becomes

V =
V̂

(T + T ∗ − |φ|2/3)2
: V̂ ≡

∣∣∣∣∂W∂φ
∣∣∣∣2 . (5)

In early no-scale models [21, 23] it was assumed that K
was fixed so that the potential up to a re-scaling was
simply V̂ . Here we assume that the T field has a vac-
uum expectation value (vev) 2〈ReT 〉 = c and 〈ImT 〉 = 0
that is determined by non-perturbative high-scale dy-
namics [28], as in the Kähler correction provided in [29].
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In this case, we may neglect the kinetic mixing between
the T and φ fields in (4), and are left with the following
effective Lagrangian for the inflaton field φ:

Leff =
c

(c− |φ|2/3)2
|∂µφ|2 −

V̂

(c− |φ|2/3)2
. (6)

We assume as in [13] the minimal Wess-Zumino super-
potential (2) for the inflaton field.

To better study the potential for the inflaton, we first
transform φ to the field χ:

φ =
√

3c tanh

(
χ√
3

)
. (7)

With this field redefinition, the Lagrangian becomes

Leff = sech2((χ− χ∗)/
√

3)
[
|∂µχ|2 − (8)

(
3

c
)
∣∣∣sinh(χ/

√
3)
(
µ̂ cosh(χ/

√
3)−

√
3cλ sinh(χ/

√
3)
)∣∣∣2] .

Clearly the vev of the T field can be absorbed into the
definition of the mass and, writing µ̂ = µ

√
c/3, the po-

tential becomes

V = µ2

∣∣∣∣sinh(χ/
√

3)

(
cosh(χ/

√
3)− 3λ

µ
sinh(χ/

√
3)

)∣∣∣∣2 .
(9)

Writing χ in terms of its real and imaginary parts: χ =
(x + iy)/

√
2 and, for reasons which will become clear,

considering the specific case where the quartic coupling
λ = µ/3 (in Planck units), we have

Leff =
1

2
sec2(

√
2/3y)

(
(∂µx)2 + (∂µy)2

)
− (10)

µ2 e
−
√

2/3x

2
sec2(

√
2/3y)

(
cosh

√
2/3x)− cos

√
2/3y

)
.

The imaginary part of the inflaton is fixed to y = 0 by
the potential, having a mass my = µ/

√
3 during inflation

when x is large and my = µ/
√

6 at the end of inflation
when x = 0. Thus we expand the Lagrangian about
y = 0, in which case we have minimal kinetic terms for x
and y, accompanied by derivative interaction terms. The
potential for the real part of the inflaton now takes the
form

V = µ2e−
√

2/3x sinh2(x/
√

6) . (11)

This potential is depicted in Fig. 1, where we also display
the potential for values of λ slightly perturbed from the
nominal value of µ/3.

We use the standard slow-roll expressions for the
tensor-to-scalar ratio r and the spectral index ns for the
scalar perturbations in terms of the slow-roll inflation
parameters ε, η [3], which we evaluate in terms of the
canonically-normalized field x. In the NSWZ model de-
scribed above the vev of T is absorbed in the definition
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FIG. 1. The potential V in the NSWZ model for choices of
λ ∼ µ/3 in Planck units, as indicated.

of the mass parameter µ, which is determined by the
normalization of the quadrupole. For the special case
λ = µ/3, we have

As =
V

24π2ε
=

µ2

8π2
sinh4(x/

√
6) , (12)

implying a value µ = 2.2× 10−5 in Planck units for N =
55: µ varies between 1.8 - 3.4 ×10−5 over the range of
NSWZ models considered here. Setting the remaining
NSWZ parameter λ = µ/3, we have

ε =
1

3
csch2(x/

√
6)e−
√

2/3x , (13)

η =
1

3
csch2(x/

√
6)
(

2e−
√

2/3x − 1
)
, (14)

which allows us to determine the quantities (ns, r), once
the value of the field x is fixed by requiring N = 50− 60
e-folds. The nominal choice of N = 55 yields x = 5.35,
ns = 0.965, and r = .0035.

Fig. 2 displays the predictions for (ns, r) of the NSWZ
model for five choices of the coupling λ that yield ns ∈
[0.93, 1.00] and N ∈ [50, 60]. The last 50-60 e-folds of
inflation arise as x rolls to zero from ∼ 5.1 − 5.8, the
exact value depending on λ and N . As one can see, the
values of λ are constrained to be close to the critical
value µ/3, for which we find extremely good agreement
with the Planck determination of ns. The values of r are
rather small for λ = µ/3, varying over the range 0.0012
– 0.0084, in the models considered.

At first sight, this success might appear to be another
example of accidental inflation [19] but, as we now show,
this choice of λ has a more profound geometric interpre-
tation. The alert reader may have noticed resemblances
of both the potential shown in Fig. 1 and the values of
(ns, r) found for the λ = µ/3 model with results for in-
flation in the R+R2 model proposed by Starobinsky [4].
To probe further this resemblance, we examine the gen-
eralization of the Einstein-Hilbert action to contain an
R2 contribution, where R is the scalar curvature,

S =
1

2

∫
d4x
√
−g(R+R2/6M2) , (15)
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FIG. 2. Predictions from the NSWZ model for the tilt ns in
the spectral index of scalar perturbations and for the tensor-
to-scalar ratio r, compared with the 68 and 95% CL regions
found in analyses of Planck and other data [1]. In the main
panel the lines are labelled by the values of λ/µ (in Planck
units) assumed in each case. In the inset, the same cases are
shown on a log scale to display better the values of r.

where M �MP is some mass scale. This theory is con-
formally equivalent to canonical gravity plus a scalar field
ϕ [30]. Making the transformation g̃µν = (1+ϕ/3M2)gµν

and the field redefinition ϕ′ =
√

3
2 ln

(
1 + ϕ

3M2

)
, we ob-

tain the action

S =
1

2

∫
d4x
√
−g̃
[
R̃+ (∂µϕ

′)2 − 3

2
M2(1− e−

√
2/3ϕ′)2

]
,

(16)
corresponding to a potential

V =
3

4
M2(1− e−

√
2/3ϕ′)2 . (17)

The potential (17) is identical with the potential (11)
along the real direction of the NSWZ model! [31] More-
over, we have the identification M2 = µ2/3, which = µ̂2

for c = 〈(T + T ∗)〉 = 1. Thus the Starobinsky mass M is
directly related to the NSWZ mass µ̂ in the superpoten-

tial (2). We note that similar potentials are also obtained
in Higgs Inflation and related models [5].

We have shown in this paper that the simplest
SU(2,1)/SU(2) × U(1) no-scale supergravity model with
a single modulus field T and a single matter field φ
with the simplest renormalizable Wess-Zumino superpo-
tential, identified with the inflaton, is capable of yield-
ing cosmological inflation with values of the scalar spec-
tral tilt ns and the tensor-to-scalar ratio r within the re-
gion favoured by Planck and other data at the 68% CL.
Successful inflation is obtained for λ ' µ/3 in Planck
units. This NSWZ model is a proof of the existence of
acceptable models of inflation based on no-scale super-
gravity, and normally we would not advocate that its de-
tails should necessarily be taken literally. For example, a
realistic no-scale model derived from a generic compact-
ification of string theory would have more moduli fields,
with many matter fields that could be the inflaton, with
a superpotential more complicated than assumed here.

However, it is truly striking that the NSWZ model is
conformally equivalent to the Starobinsky R2 model [4]
for the specific choice λ = µ/3 in Planck units. This cor-
respondence suggests that there is a profound geometric
interpretation of this model that remains to be under-
stood.
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