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We present a model for cosmological inflation based on a no-scale supergravity sector with an

SUð2; 1Þ=SUð2Þ � Uð1Þ Kähler potential, a single modulus T, and an inflaton superfield � described

by a Wess-Zumino model with superpotential parameters (�, �). When T is fixed, this model yields

a scalar spectral index ns and a tensor-to-scalar ratio r that are compatible with the Planck measurements

for values of � ’ �=3MP. For the specific choice � ¼ �=3MP, the model is a no-scale supergravity

realization of the Rþ R2 Starobinsky model.
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The initial release of cosmic microwave background
data from the Planck satellite [1] confronts theorists of
cosmological inflation [2,3] with a challenge. On the one
hand, the data have many important features that are
predicted qualitatively by the inflationary paradigm. For
example, there are no significant signs of non-Gaussian
fluctuations or hints of nontrivial topological features
such as cosmic strings, and the spectrum of scalar density
perturbations exhibits a significant tilt: ns’0:960�0:007,
as would be expected if the effective scalar energy
density decreased gradually during inflation. On the other
hand, many previously popular field-theoretical models
of inflation are ruled out by a combination of the con-
straint on ns and the tensor-to-scalar ratio r < 0:08 as
now imposed by Planck et al: see, e.g., Fig. 1 of [1]. The
only model with truly successful predictions displayed in
Fig. 1 of [1] is the R2 inflation model of Starobinsky [4],
though similar predictions are made in Higgs inflation [5]
and related models [6].

In the following paragraphs we motivate the approach to
inflation taken in this Letter, which casts a new light on the
Starobinsky model [4] and embeds it in a more general
theoretical context that connects with other ideas in parti-
cle physics. Specifically, the upper limit on r implies that
the energy scale during inflation must be much smaller
than the Planck energy, �1019 GeV. Such a hierarchy
of energy scales can be maintained naturally, without
fine-tuning, in a theory with supersymmetry [7]. As is
well known, (approximate) supersymmetry has many
attractive features, such as providing a natural candidate
for dark matter and facilitating grand unification, as well as
alleviating the fine-tuning of the electroweak scale. In the
context of early-universe cosmology, one must combine
supersymmetry with gravity via a suitable supergravity

theory [8], which should accommodate an effective infla-
tionary potential that varies slowly over a large range of
inflaton field values. This occurs naturally in a particular
class of supergravity models [9], which are called ‘‘no
scale’’ because the scale at which supersymmetry is broken
is undetermined in a first approximation, and the energy
scale of the effective potential can be naturally much
smaller than�1019 GeV, as required by the cosmic micro-
wave background data. No-scale models have the additional
attractive feature that they arise in generic four-dimensional
reductions of string theory [10], though this does not play
an essential role in our analysis. The attractive features of
this no-scale supergravity framework for inflation do not
depend sensitively on the supersymmetry-breaking scale,
which could be anywhere between the experimental lower
limit�1 TeV from the LHC [11] and�1010 TeV from the
tensor-to-scalar ratio.
We now discuss these motivations at greater length

before entering into the details of our inflationary model.
Since the energy scale during the inflationary epoch

is typically � MP, it is natural to study renormalizable
models, i.e., some combination of �2, �3, and �4 in the
single-field case. In this spirit, it was shown in [12,13] that
a single-field model with a potential of the form

V ¼ A�2ðv��Þ2 (1)

could easily produce Planck-compatible values of (ns, r)
for a suitable number of e-folds before the end of inflation
N � 50–60. This simple symmetry-breaking potential has
a long pedigree, having been proposed initially in [14]
(for a review, see [2]), where it was argued that successful
inflation would require a small value of A and v >MP.
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As we pointed out in [7], in addition to all the well-
known reasons for postulating low-scale supersymmetry,
the small values of the quartic and quadratic couplings that
would be required in a successful inflationary model, e.g.,
A in the above example, become technically natural in the
presence of low-scale supersymmetry. In particular, small
values of ��=� become technically natural if approximate
supersymmetry is invoked [7], and if the grand unified
theory Higgs boson is distinguished from the singlet field
that produces inflation, that later became known as the
inflaton [15].

The simplest globally supersymmetric model is the
Wess-Zumino model with a single chiral superfield �
[16], which is characterized by a mass term �̂ and a
trilinear coupling �, with the superpotential

W ¼ �̂

2
�2 � �

3
�3: (2)

As was discussed in [13], the effective potential of the
Wess-Zumino model reduces to (1) when the imaginary
part of the scalar component of � vanishes, in which case
this model yields Planck-compatible inflation for a suitable
small value of �.

However, global symmetry is not enough. As discussed
above, in the context of early-universe cosmology one
should certainly include gravity and hence construct a
locally supersymmetric model, i.e., upgrade to supergrav-
ity [8]. The first attempt at constructing an inflationary
model in N ¼ 1 supergravity proposed a generic form for
the superpotential for a single inflaton [17], the simplest
form being W ¼ m2ð1� a�Þ2 [18]. As discussed in [19],
while this relatively simple model is capable of sufficient
inflation, it is an example of accidental inflation in the
sense that the coefficient of the linear term in the super-
potential a must be extremely close to unity. This model
has also become one of Planck’s casualties. The scalar-to-
tensor ratio in this model is very small, but the value
of ns predicted in this model is ns ’ 1–4=N ¼ 0:933 for
N ¼ 60 [20], since the effective potential varies insuffi-
ciently slowly.

In a supergravity model with a generic Kähler potential
for the chiral supermultiplets there are quadratic j�j2
terms, which cause variations in the effective potential
that destroy its suitability for inflation, an obstacle known
as the � problem [3]. As was pointed out in [21], a natural
solution to this problem is offered by no-scale supergravity
[9], whose motivations were summarized earlier. In such
a model, quadratic terms are suppressed, and the effec-
tive scalar potential resembles that in a globally super-
symmetric model, thanks to an underlying noncompact
SUðN; 1Þ=SUðNÞ � Uð1Þ symmetry.

Other no-scale supergravity approaches have also been
proposed [22], as well as models based on a noncompact
Heisenberg symmetry [23], a shift symmetry [24–26], or
string theory [27]. The SUðN; 1Þ model [21] was based on
the superpotential W ¼ m2ð���4=4Þ and gives similar

predictions for the inflationary parameters as the minimal
N ¼ 1 model discussed above. This too is an example of
accidental inflation [19], and a small change in the coeffi-
cient of the quartic term would lead to parameters consis-
tent with Planck data [1].
In this Letter we show how one can elevate the simplest

globally supersymmetric Wess-Zumino inflationary model
of [13] to a no-scale supergravity version (NSWZ).
Concretely, we study a model in which the inflaton super-
field is embedded in an SUð2; 1Þ=SUð2Þ � Uð1Þ no-scale
supergravity sector together with a modulus field T (which
we assume to be fixed by other dynamics [28]) and find a
range of the parameters where it is compatible with the
Planck data [1]. Quite remarkably, as we show, the NSWZ
model is the conformal equivalent of an Rþ R2 model of
gravity for one specific value of �̂=�, so that in this case
our realization of inflation in the NSWZ model is equiva-
lent to the Starobinsky model of inflation [4]. Thus, we
embed this model in a broader and attractive theoretical
framework.
We first recall the basic relevant formulas governing the

kinetic term and the effective potential of scalar fields� in
N ¼ 1 supergravity, specializing to the no-scale case with
noncompact SUðN; 1Þ=SUðNÞ � Uð1Þ symmetry. The sca-
lar sector may be characterized in general by a Hermitian
Kähler function K and a holomorphic superpotentialW via
the combination G � K þ lnW þ lnW�. The kinetic term

is then given by Kj�
i @��

i@��
j , where the Kähler metric

Kj�
i � @2K=@�i@��

j , and the effective potential is

V ¼ eG
�
@G

@�i K
i
j�

@G

@��
j

� 3

�
; (3)

where Ki
j� is the inverse of the Kähler metric Kj�

i .

In the minimal no-scale SUð2; 1Þ=SUð2Þ � Uð1Þ case,
there are two complex scalar fields: T, a modulus field,
and �, which we identify as the inflaton field, with the
Kähler function K ¼ �3 lnðT þ T� � j�j2=3Þ. In this
case, the kinetic terms for the scalar fields T and� become

L KE ¼ ð@���; @�T�Þ
�

3

ðT þ T� � j�j2=3Þ2
�

� ðT þ T�Þ=3 ��=3
���=3 1

� �
@��
@�T

� �
; (4)

and the effective potential becomes

V ¼ V̂

ðT þ T� � j�j2=3Þ2 : V̂ �
��������
@W

@�

��������
2

: (5)

In early no-scale models [21,23] it was assumed thatK was

fixed so that the potential up to a rescaling was simply V̂.
Here we assume that the T field has a vacuum expectation
value (VEV) 2hReTi ¼ c and hImTi ¼ 0 that is deter-
mined by nonperturbative high-scale dynamics [28], as in
the Kähler correction provided in [29]. In this case, we may
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neglect the kinetic mixing between the T and� fields in (4),
and are left with the following effective Lagrangian for the
inflaton field �:

L eff ¼ c

ðc� j�j2=3Þ2 j@��j2 � V̂

ðc� j�j2=3Þ2 : (6)

We assume as in [13] the minimal Wess-Zumino super-
potential (2) for the inflaton field.

To better study the potential for the inflaton, we first
transform � to the field �:

� ¼ ffiffiffiffiffi
3c

p
tanh

�
�ffiffiffi
3

p
�
: (7)

With this field redefinition, the Lagrangian becomes

Leff ¼ sech2½ð�� ��Þ= ffiffiffi
3

p �
�
j@��j2 �

�
3

c

�
j sinhð�= ffiffiffi

3
p Þ

� ½�̂ coshð�= ffiffiffi
3

p Þ � ffiffiffiffiffi
3c

p
� sinhð�= ffiffiffi

3
p Þ�j2

�
: (8)

Clearly the VEV of the T field can be absorbed into the

definition of the mass and, writing �̂ ¼ �
ffiffiffiffiffiffiffiffi
c=3

p
, the po-

tential becomes

V ¼ �2

��������sinhð�=
ffiffiffi
3

p Þ
�
coshð�= ffiffiffi

3
p Þ � 3�

�
sinhð�= ffiffiffi

3
p Þ

���������
2

:

(9)

Writing � in terms of its real and imaginary parts: � ¼
ðxþ iyÞ= ffiffiffi

2
p

, and, for reasons which will become clear,
considering the specific case where the quartic coupling
� ¼ �=3 (in Planck units), we have

L eff ¼ 1

2
sec2ð

ffiffiffiffiffiffiffiffi
2=3

p
yÞ½ð@�xÞ2 þ ð@�yÞ2�

��2 e
�

ffiffiffiffiffiffi
2=3

p
x

2
sec2ð

ffiffiffiffiffiffiffiffi
2=3

p
yÞðcosh

ffiffiffiffiffiffiffiffi
2=3

p
x

� cos
ffiffiffiffiffiffiffiffi
2=3

p
yÞ: (10)

The imaginary part of the inflaton is fixed to y ¼ 0 by the

potential, having a mass my ¼ �=
ffiffiffi
3

p
during inflation

when x is large and my ¼ �=
ffiffiffi
6

p
at the end of inflation

when x ¼ 0. Thus we expand the Lagrangian about y ¼ 0,
in which case we have minimal kinetic terms for x and y,
accompanied by derivative interaction terms. The potential
for the real part of the inflaton now takes the form

V ¼ �2e�
ffiffiffiffiffiffi
2=3

p
xsinh2ðx= ffiffiffi

6
p Þ: (11)

This potential is depicted in Fig. 1, where we also display
the potential for values of � slightly perturbed from the
nominal value of �=3.

We use the standard slow-roll expressions for the tensor-
to-scalar ratio r and the spectral index ns for the scalar
perturbations in terms of the slow-roll inflation parameters
�, � [3], which we evaluate in terms of the canonically

normalized field x. In the NSWZ model described above,
the VEV of T is absorbed in the definition of the mass
parameter �, which is determined by the normalization of
the quadrupole. For the special case � ¼ �=3, we have

As ¼ V

24	2�
¼ �2

8	2
sinh4ðx= ffiffiffi

6
p Þ; (12)

implying a value � ¼ 2:2� 10�5 in Planck units for
N ¼ 55:� varies between ð1:8–3:4Þ � 10�5 over the range
of NSWZ models considered here. Setting the remaining
NSWZ parameter � ¼ �=3, we have

� ¼ 1

3
csch2ðx= ffiffiffi

6
p Þe�

ffiffiffiffiffiffi
2=3

p
x; (13)

� ¼ 1

3
csch2ðx= ffiffiffi

6
p Þð2e�

ffiffiffiffiffiffi
2=3

p
x � 1Þ; (14)

which allows us to determine the quantities (ns, r), once
the value of the field x is fixed by requiring N ¼ 50–60
e-folds. The nominal choice of N ¼ 55 yields x ¼ 5:35,
ns ¼ 0:965, and r ¼ 0:0035.
Figure 2 displays the predictions for (ns, r) of the NSWZ

model for five choices of the coupling � that yield ns 2
½0:93; 1:00� and N 2 ½50; 60�. The last 50–60 e-folds of
inflation arise as x rolls to zero from �5:1–5:8, the exact
value depending on � and N. As one can see, the values of
� are constrained to be close to the critical value �=3, for
which we find extremely good agreement with the Planck
determination of ns. The values of r are rather small for
� ¼ �=3, varying over the range 0.0012–0.0084, in the
models considered.
At first sight, this success might appear to be another

example of accidental inflation [19], but, as we now show,
this choice of � has a more profound geometric interpre-
tation. The alert reader may have noticed resemblances of
both the potential shown in Fig. 1 and the values of (ns, r)
found for the � ¼ �=3 model with results for inflation in
the Rþ R2 model proposed by Starobinsky [4]. To further
probe this resemblance, we examine the generalization of
the Einstein-Hilbert action to contain an R2 contribution,
where R is the scalar curvature,

0 5 10
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1.0

λ/µ=.33340

λ/µ=.33336

λ/µ= 1/3

λ/µ=.33330

λ/µ=.33327

V/µ2

x

FIG. 1 (color online). The potential V in the NSWZ model for
choices of ���=3 in Planck units, as indicated.
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S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðRþ R2=6M2Þ; (15)

where M � MP is some mass scale. This theory is confor-
mally equivalent to canonical gravity plus a scalar field ’
[30]. Making the transformation ~g�
 ¼ ð1þ ’=3M2Þg�


and the field redefinition ’0 ¼ ffiffiffiffiffiffiffiffi
3=2

p
ln½1þ ð’=3M2Þ�, we

obtain the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�~g
p �

~Rþ ð@�’0Þ2 � 3

2
M2

�
1� e�

ffiffiffiffiffiffi
2=3

p
’0�2�

;

(16)

corresponding to a potential

V ¼ 3

4
M2ð1� e�

ffiffiffiffiffiffi
2=3

p
’0 Þ2: (17)

The potential (17) is identical with the potential (11) along
the real direction of the NSWZ model. Moreover, we have
the identification M2 ¼ �2=3, which equals �̂2 for
c¼hðTþT�Þi¼1. Thus the Starobinsky mass M is directly
related to the NSWZ mass �̂ in the superpotential (2).
We note that similar potentials are also obtained in Higgs
inflation and related models [5].

We have shown in this Letter that the simplest
SUð2; 1Þ=SUð2Þ � Uð1Þ no-scale supergravity model with
a single modulus field T and a single matter field � with
the simplest renormalizable Wess-Zumino superpotential,
identified with the inflaton, is capable of yielding cosmo-
logical inflation with values of the scalar spectral tilt ns and
the tensor-to-scalar ratio r within the region favored by
Planck and other data at the 68% C.L. Successful inflation
is obtained for � ’ �=3 in Planck units. This NSWZmodel
is a proof of the existence of acceptable models of inflation
based on no-scale supergravity, and normally we would not

advocate that its details should necessarily be taken liter-
ally. For example, a realistic no-scale model derived from a
generic compactification of string theory would have more
moduli fields, with many matter fields that could be the
inflaton, with a superpotential more complicated than
assumed here.
However, it is truly striking that the NSWZ model is

conformally equivalent to the Starobinsky R2 model [4] for
the specific choice � ¼ �=3 in Planck units. This corre-
spondence suggests that there is a profound geometric
interpretation of this model that remains to be understood.
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