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A search is presented for the standard model Higgs boson produced in association with top quarks

using the full Run II proton-antiproton collision data set, corresponding to 9:45 fb�1, collected by the

Collider Detector at Fermilab. No significant excess over the expected background is observed,

and 95% credibility-level upper bounds are placed on the cross section �ðt�tH ! leptonþ
missing transverse energyþ jetsÞ. For a Higgs boson mass of 125 GeV=c2, we expect to set a limit of

12.6 and observe a limit of 20.5 times the standard model rate. This represents the most sensitive search for

a standard model Higgs boson in this channel to date.

DOI: 10.1103/PhysRevLett.109.181802 PACS numbers: 14.80.Bn, 13.85.Rm

The mechanism of electroweak symmetry breaking [1]
in the standard model (SM) [2] predicts the existence of a
massive particle called the Higgs boson. The CDF and D0
Collaborations have reported evidence for a particle con-
sistent with the SM Higgs boson with a mass between 120
and 135 GeV=c2 produced in association with a W or Z
boson with decays to two b quarks [3]. The CMS and
ATLAS Collaborations have reported the observation of a
particle consistent with the SM Higgs boson with a mass of
approximately 125 GeV=c2, which decays to two photons,
two W bosons, or two Z bosons [4]. Many other predicted
couplings of the SM Higgs boson are currently neither
observed nor excluded. In the SM, the fermion masses
are generated by Yukawa couplings between the Higgs and
the fermion fields with coupling strength proportional to the
fermionmasses. As themostmassive known fermion, the top
quark is predicted to couplemost strongly to theHiggs boson.
Higgs bosons may then be produced with a top-quark pair

(t�tH) via radiation or top-quark fusion [5,6]. Samples of top-
quark pair events with a few percent-level contamination
fromother processes can be selected atCDF, offering smaller
background uncertainties than in searches for the SM Higgs
boson produced in association with a vector boson [7].
Hence, the top-quark pair associated production channel
provides an important contribution to SM Higgs boson
physics. Furthermore, proposed extensions to the SM could
significantly enhance the rate of t�tH production [8]. This
enhancementmight allow the observationof a non-SMHiggs
boson in this searchbefore reaching sensitivity to a SMHiggs
boson and could help to distinguish a candidate Higgs boson
in other searches from the SM Higgs boson.
This Letter reports a search for the SM Higgs boson

produced in association with top quarks. We utilize the full
data set recorded with the CDF II detector. The data set
consists of proton-antiproton collisions at a center-of-mass
energy of

ffiffiffi
s

p ¼ 1:96 TeV and corresponds to an integrated
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luminosity of 9:45 fb�1. The analysis described in this Letter
extends and enhances a previous CDF search which used
319 pb�1 [9], through a vastly increased data set, greater
signal acceptance, and improved background discrimination.

The CDF II detector is a general-purpose particle detec-
tor described in Ref. [10]. It consists of a combined silicon
and drift chamber tracking system with a large volume
immersed in the 1.4 T field of a solenoid magnet [11,12],
lead- and iron-scintillator sampling calorimeters [13,14],
and charged particle detectors outside the calorimeter,
which are used to identify muons [15]. A right-handed
cylindrical coordinate system is used with the origin in
the center of the detector, with � and � denoting the polar
and azimuthal angles, respectively. Pseudorapidity is
defined as � � � lntanð�=2Þ, and transverse energy and
momentum are ET � E sin� and pT � p sin�, where E
and p are the energy and momentum, respectively.

The decay of a pair of top quarks is expected to generate
almost exclusively two W bosons and two b quarks. The W
bosons may then decay to lepton-neutrino pairs or pairs of
quarks. We select events consistent with one leptonic and one
hadronicW boson decay by requiring the presence of a single
reconstructed lepton (electron or muon), missing transverse
energy ( 6ET) [16], and four or more calorimeter energy
clusters (jets). The details of the online selection, lepton
identification, and jet identification are identical to those
described in Ref. [7]. At least two of the jets in each
event are required to be consistent with the fragmentation
of a b quark (b-tagged) [7]. Because a low-mass (mH �
135 GeV=c2) SM Higgs boson is expected to decay mostly
to pairs of b quarks, or pairs of W bosons, that will decay
predominantly to pairs of u, d, s, or c quarks, large b-tag
and jet multiplicities are requested by the selection.
Approximately 90% of the selected search sample is com-
posed of top-quark pairs, with the remainder consisting ofW

or Z bosons accompanied by jets (W=Zþ jets), single-top
quarks, dibosons, and strong forcemediated (QCD)multijets.
Table I shows the expected composition of the data sample.
To select events during data taking, we require the

presence of a charged lepton (electron e or muon �)
candidate with transverse momentum pT � 18 GeV=c.
We further require that the lepton candidate satisfies iden-
tification quality requirements, as in Ref. [17]. We require
that 6ET be greater than 10, 20, or 25 GeV in events con-
taining a muon candidate, an electron candidate satisfying
j�j � 1:1, and an electron candidate satisfying j�j> 1:1,
respectively. These 6ET requirements are chosen to opti-
mize the signal selection efficiency and the rejection of
instrumental backgrounds, which differ in the three
samples. Jets are reconstructed using a cone-based cluster-

ing algorithm, with a cone radius [R ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið��Þ2 þ ð��Þ2p
]

of 0.4 [18]. Jet energies are corrected for instrumental
effects [19], and the corrected jets are required to have
ET > 20 GeV and j�j< 2:0. We also reconstruct lower
energy clusters (12< ET < 20 GeV) but do not define
them as jets. We use two different algorithms to tag b
jets, as in Ref. [7]. One algorithm relies on the reconstruc-
tion of secondary decay vertices from long-lived hadrons
within the jet cone [20], while the other estimates the
likelihood that not all tracks in the jet cone intersect the
beam line [21]. Jets identified by either algorithm are
considered as tagged, offering higher tagging efficiency
than obtained by the use of one algorithm alone.
We model the various backgrounds using a combination

of Monte Carlo simulation and data. We simulate the
t�t, diboson, W=Zþ jets, and single-top backgrounds
using the POWHEG [22], PYTHIA [23], ALPGEN [24], and
MADEVENT [25] generators, respectively. We model the

QCD multijet background using a data-driven model
[17]. For backgrounds involving top quarks, we have

TABLE I. Expected number of events from the various processes composing our data sample,
requiring two or more b tags, with background rates and uncertainties taken from the posterior
likelihoods. N.B., all uncertainties are correlated. Signal yields are quoted assuming mH ¼
125 GeV=c2. The corresponding theoretical uncertainties are taken as 10%, derived from that
computed in Ref. [5], accounting for the updated uncertainty due to the measurement of the top-
quark mass [17].

Process 4 jets 5 jets � 6 jets

t�tþ jets 962� 89 294� 27 77� 7:1
t�tþ b �b 32� 27 17� 14 8:2� 6:9
W=Zþ jets 105� 32 26� 8:0 7:1� 2:2
Multijet 31� 16 0:0� 1:0 0:0� 1:0
Single top 19� 2:2 3:7� 0:43 0:61� 0:070
Diboson 5:2� 0:44 1:2� 0:11 0:25� 0:025
Total background 1150� 106 340� 33 93� 11
Observed 1133 368 114

t�tH 0:65� 0:075 1:1� 0:13 1:2� 0:14
WH 0:52� 0:061 0:07� 0:008 Negligible

ZH 0:09� 0:011 0:02� 0:002 Negligible
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used mt ¼ 172:5 GeV=c2. Signal models are generated
by PYTHIA, with Higgs boson masses in 5 GeV=c2 incre-
ments in the range 100 � mH � 150 GeV=c2. The signal
samples are normalized to their next-to-leading-order cross
section, as described in Ref. [5]. The CTEQ5L parton-
distribution functions [26] and a detailed simulation of
the response of the CDF II detector using GEANT3 [27]
are employed in all Monte Carlo samples.

The search sample is subdivided into independent catego-
ries of different expected signal-to-background ratio and
background composition to maximize the search sensitivity
[28]. Under the selection requirements described above, the
reconstructed jet-multiplicity spectrum in t�tH events peaks
at five jets, while the reconstructed jet-multiplicity spectrum
for t�t peaks at four jets. Hence, we separate events with four,
five, or six or more jets. The jet-multiplicity samples are then
separated by b-tag multiplicity. The events with six or more
jets, at least three of which are b-tagged, feature the largest
expected signal-to-background ratio and provide the most
sensitivity for a low-mass Higgs boson.

After defining our search sample, we enhance the isola-
tion of a SM Higgs signal using artificial neural networks
(NNs) [29]. Each neural network is trained to separate
simulated Higgs signal events from background, with indi-
vidual networks optimized for each Higgs boson mass
hypothesis in each of the previously described event cate-
gories. Each network uses 18 input variables to discriminate
the Higgs boson signal from the backgrounds. These varia-
bles are missing transverse energy, maximum jet ET ,
second-largest jet ET , third-largest jet ET , maximum ET

among b-tagged jets, mean jet ET , invariant mass of the
combination of all objects (jets, leptons, 6ET), vector sum of
the transverse energies of all objects, scalar sum of the
transverse energies of all objects, scalar sum of the trans-
verse energies of all jets, number of energy clusters with ET

between 12 and 20 GeV, minimum separation in �-� space
between b-tagged jets, separation in azimuth between the
lepton and the missing transverse energy, transverse mass
of the lepton and missing transverse energy [30], mass of
the vector sum of the lepton and nearest jet in �-� space,
minimummass of the vector sum of any pair of jets, mass of
the vector sum of the two non-b-tagged jets with the largest
ET , and mass of the vector sum of the two b-tagged jets with
the largest ET . The modeling of the input distributions has
been validated in the subset of the data with only four jets
and only two b tags, which is expected to contain a negli-
gible number of signal events relative to the background
yield. This region is used to constrain the various systematic
uncertainties in situ. Two of these distributions can be seen
in Figs. 1 and 2, and the output of the discriminant trained to
identify a Higgs boson of mass 125 GeV=c2 is shown in
Fig. 3. A more detailed presentation of the modeling of these
distributions is contained in Ref [28].

We consider several sources of systematic uncertainty
that affect the rate of the involved processes and the shape

of the discriminant distributions. Because of the high jet
and b-tag multiplicities considered, the dominant system-
atic uncertainties are associated with estimates of the b-tag
efficiency and the jet-energy scale. These affect both the
rates and the discriminant shapes, and we estimate the
effects by independently varying the estimated b-tag
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FIG. 1 (color online). Invariant mass of the two jets without b
tags, in events containing exactly four jets and exactly two b
tags. The peak of the distribution is consistent with hadronic
decays of the W boson. The effect of systematic uncertainties is
not shown. In the signal model shown, a Higgs boson of mH ¼
125 GeV=c2 is assumed.
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FIG. 2 (color online). The mass of the vector sum of the four-
momenta of the identified charged lepton, the neutrino, and all
reconstructed jets in events with exactly five jets and at least two
b tags. The effect of systematic uncertainties is not shown. In the
signal model shown, a Higgs boson of mH ¼ 125 GeV=c2 is
assumed.
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efficiency and the jet-energy scale within 1 standard de-
viation. These variations in jet-energy scale and tagging
efficiency alter the expected acceptance for signal and
background by between 1 and 20%, depending on the
selection category. In addition, to account for uncertainties
on the theoretical cross sections of background processes,
we assume the following systematic uncertainties on the
normalization of simulated backgrounds: 6% for diboson
production, 6% for single-top-quark production, 10% for
inclusive t�t production, and 40% for W=Zþ jets [31–34].
Smaller uncertainties include those on the amount of ini-
tial- and final-state radiation, parton-distribution function
choice, the probability to b-tag light-quark jets, and a 6%
uncertainty on the measurement of the integrated luminos-
ity [28,35]. The total theoretical uncertainty on the signal
samples is estimated to be 10%, as derived from that
computed in Ref. [5], but accounting for a reduced uncer-
tainty due to the measurement of the top-quark mass [17].

No measurement is available of the cross section for top-
quark production with additional b quarks generated from
QCD radiation. The next-to-leading-order corrections to
leading-order calculations of the production rate of top-
quark pairs with additional b quarks have been estimated to
be on the order of a factor of 2 in some regions of phase
space [36]. To account for this unknown and potentially
large systematic uncertainty, inclusive t�t simulated events
were separated into subsamples with additional b quarks
generated from QCD radiation (t�tþ b �b) and without
(t�tþ jets). We assume an uncertainty of 10% on the nor-
malization of the t�tþ jets component and assume an un-
certainty of 100% on the normalization of the t�tþ b �b
component. We estimate the effect of individual systematic

uncertainties by calculating the expected exclusion sensi-
tivity considering all uncertainties and then comparing
this value to that derived by considering all but one uncer-
tainty. The uncertainty due to the jet-energy scale, b-tag
efficiency, inclusive top pair cross section, and potential
next-to-leading-order effects for t�tþ b �b individually
degrade the expected exclusion sensitivity of the analysis
by 7:8%, 5:4%, 6:9%, and 9:0%, respectively.
We compare the distribution of discriminant output

observed in data to that of the expected background model.
Observing no evidence for Higgs boson production in the
discriminant distributions, we calculate a Bayesian 95%
credibility-level (C.L.) limit for each mass hypothesis using
the combined binned likelihood of the NN output distribu-
tions. Each of the three jet-multiplicity categories is sub-
divided into five independent tagging categories. A posterior
density is obtained by multiplying this likelihood by
Gaussian prior densities for the background normalizations
and systematic uncertainties, leaving the cross section
�ðt�tH ! ‘þ 6ET þ jetsÞ with a uniform prior density,
with priors truncated to prevent negative predictions. A
95% C.L. limit is determined such that 95% of the posterior
density for the cross section accumulates below the limit
[37]. The expected limits with one and two standard devia-
tion uncertainty bands and the observed limits are shown as
a function of assumed Higgs boson mass in Fig. 4. Because
none of the discriminant function input variables act as
an estimator for the reconstructed Higgs boson mass, the
upper limits at different candidate Higgs boson masses are
strongly correlated. An excess in the data produces an
observed limit that exceeds the expected limit at all masses,
at a level of approximately 1 standard deviation compared to
the background-only hypotheses.
In conclusion, we have presented a search for a SM
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FIG. 3 (color online). The output distribution for the discrimi-
nant optimized for the mH ¼ 125 GeV=c2 hypothesis, for events
with six or more jets and three or more b tags. The effect of
systematic uncertainties is not shown. In the signal model shown,
a Higgs boson of mH ¼ 125 GeV=c2 is assumed.
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quarks, in a final state involving a lepton, missing trans-
verse energy, jets, and b-tagged jets. For a Higgs boson
mass of 125 GeV=c2, we expect a limit of 12.6 and observe
a limit of 20.5 times the SM rate, which represents agree-
ment with the background-only prediction at the level of
approximately 1 standard deviation. The introduction of
neural networks and other improvements to the techniques
employed in this analysis produce a factor of 17 improve-
ment in sensitivity over the previous search in this channel
at CDF [9] and make this analysis the most sensitive search
for t�tH to date.
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