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Torsional oscillations of a freestanding semiconductor beam are shown to cause spin-dependent
oscillating potentials that spin polarize an applied charge current in the presence of intentional or disorder
scattering potentials. We propose several realizations of mechanical spin generators and manipulators
based on this piezospintronic effect.
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Spintronics comprises the search for novel logic and
sensing devices that employ the electron spin degree of
freedom by (excess) spin generation and manipulation [1].
In the conventional approach, spins are injected into nor-
mal conductors by ferromagnetic metals using an applied
electrical bias. Another method is the spin-pumping by a
moving magnetization [2,3]. A net-spin generation is pos-
sible without involving ferromagnets by the spin-orbit
interaction (SOI) [4,5]. Other proposals involve a time-
dependent gate [6,7], and the spin Hall effect [8].

Spin-transfer by spin-flip scattering in metal structures
causes mechanical torques [9–11]. Mal’shukov et. al. [12]
predict that a spin-polarized current can induce torsional
vibrations in a semiconductor beam by strain-induced SOI
and speculate about a possible reverse effect.

In this Letter, we propose a nano-electro-mechanical
system (NEMS) that generates spins by the coupling to
torsional oscillations of a freestanding semiconductor
bridge, beam, or rod that is actuated, e.g., by magnetomo-
tive [9,13], electrostatic [14] or piezoelectric [15] forces.
Subject to an oscillating strain, the SOI in the semicon-
ductor generates a spin splitting which, in the presence of a
bias and impurity scattering, leads to a spin current. In
analogy with piezoelectricity, in which elastic strain indu-
ces free charges, this can be called a piezospintronic effect.
We illustrate the physical principle by a conducting wire in
the electric quantum limit in which only a single quantized
subband is occupied. Subsequently, we generalize the re-
sults to the multichannel case. We also demonstrate by
numerical simulations that the effect survives the disorder
expected in real systems and discuss the conditions under
which it can be observed.

Let us consider a beam with length L and rectangular
cross section of width d and thickness a (L� d; a) (see
Fig. 1) that connects two semi-infinite conducting reser-
voirs. Results can be easily generalized to axially symmet-
ric rods such as catalytically grown nanowires [16]. The
conducting material is a semiconductor that is grown on
top of a dielectric (the semiconductor part can also be
sandwiched between two identical materials of different
width to eliminate the effects of structural asymmetry).

Without loss of generality, we assume here a structure
consisting of a conducting medium on top of an insulator
both being a=2 thick. The leading modification of the
conduction band Hamiltonian of a semiconductor due to
lattice strain reads [17]

 Ĥ SO �
@

2

2m�
f���̂y�uxykx � uyzkz� � �̂z�uyzky � uzxkx�

� �̂x�uzxkz � uxyky�	 � ���̂yky�uzz � uxx�

� �̂zkz�uxx � uyy� � �̂xkx�uyy � uzz�	 � H:c:g;

(1)

where m� is the effective mass, uij are elements of the
strain tensor, and �̂i are Pauli matrices. By focusing on
narrow-gap semiconductors, we may disregard the terms
proportional to the small parameter � [17].

We are interested in the lowest energy vibrations of the
beam that can be described by an isotropic elastic contin-
uum model [18]. Elastic flexural (bending) modes cause
only diagonal uii strains that couple to the electrons only
via the small � term [see Eq. (1)] [12]. The strain due to
torsional (twisting) vibrations is [18]

 uzy � ��y; t�
@�
@x

; uxy � ���y; t�
@�
@z

; uzx � 0;

(2)

FIG. 1 (color online). A beam consisting of a semiconductor
and insulator parts (semiconductor layer of thickness a=2 is on
top of insulator layer of the same thickness) is excited by an
external source into torsional oscillations. A voltage is applied
over the device to detect the mechanically induced spin splitting.
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where ��y; t� � @’=@y is the derivative of the torsion
angle ’ with respect to y. The function � characterizes
the cross-section geometry of the beam and depends here
only on x and z. It satisfies the equation �� � �1 with
vanishing boundary conditions [18]. We adopt the thin
plate geometry a
 d which leads to ��x; z� � ��x2 �
a2=4�=2 and the Hamiltonian

 Ĥ SO �
@

2

2m�
��x��y; t���̂ykz � �̂zky� � H:c:	: (3)

Equation (3) is similar to a Rashba spin-orbit Hamiltonian;
however, electrons are not confined to the lowest subband
in the transverse to the plane direction and the coupling
strength is time and position dependent.

We now turn to the lowest electronic subband limit,
disregarding intrinsic SOI, e.g., Rashba type, and assum-
ing that the strain-induced perturbation is weak. The
free-electron lowest energy states read ��x; y; z� �
R0�x; z���y�, where R0�x; z� � sin��z=d� sin�2�x=a� is
the lowest subband and ��y� is a spinor function. The
projected one-dimensional Hamiltonian then reads

 Ĥ 1D�y� �
@

2

2m�

�
ky �

���y; t�a
4

�̂z

�
2
� V�y�; (4)

where V�y� is the potential due to impurities and we
disregarded terms �����2. Electrons with up and down
spins turn out to be uncoupled and subject to effective
vector potentials of opposite sign, A � @ ���y;t�a4 y.
Since r�A � 0, this vector potential does not describe
an effective magnetic but a spin-dependent electric field

 E � ��̂z
@�a

4

@�
@t

y: (5)

The equation of motion for the torsional angle reads

 C
@2’

@y2 � �I
@2’

@t2
� 0; (6)

where I �
R
�z2 � x2�dzdx ’ ad3=12 is the moment of

inertia of the cross-section about its center of mass, � the
mass density and C is an elastic constant defined by the
shape and material of the cantilever.C � 1

3�da
3 for a plate

with a
 d, and � is the Lamé constant. The general
solution of Eq. (6) is a plane wave ’ � ’0ei!tiky, where
k � !=c is the wave number, c � 2cta=d �

���������������
C=��I�

p
,

and ct �
����������
�=�

p
is the sound velocity. Throughout this

paper, we consider a doubly clamped beam in which the
lowest harmonic ’ � ’0 sin�ky� sin�!t� is excited, where
! � ck and k � �=L is the wave number (see Fig. 1). The
standing mechanical wave creates an oscillating electric
field E � @A=@t that is exactly out of phase for spin-up
and spin-down electrons. In the Born-Oppenheimer ap-
proximation, the strain induces a parametric potential
U�y� � �@�a!’0=4� sin�y�=L� cos�!t� [cf. Eq. (5)] that
is adiabatically followed by the electrons. The strain-
induced potentials U�y� vary only slowly and do not

yet spin-polarize a charge current significantly. However,
defect scattering strongly amplifies the piezospintronic
effect, as illustrated now by a single short-range potential
scatterer V�y� � 	
�y� L=2� located in the middle of the
beam. Disregarding the small intrinsic effect caused by
U�y�, the probability that an electron with Fermi wave
number kF is transmitted reads [19]

 T"�#��kF� �
2�@2k2

F=2m� U0 cos�!t��

2�@2k2
F=2m� U0 cos�!t��� 	2m�=@2 ; (7)

where U0 � @�a!’0=4. From the Landauer conductance
formula, the spin polarization of a charge current is

 P�
T"�T#
T"�T#

�
U0�	

2m�=@2�cos�!t�

EF�2EF�	
2m�=@2��2U2

0cos2�!t�
; (8)

where the Fermi energy EF � @
2k2
F=2m�. The spin polar-

ization oscillates in time with the beam frequency.
Generalization to a multichannel wire is facilitated by

the local gauge transformation [20]

  � eif�x;y;t��̂z 0 (9)

with eif�x;y;t��̂z � 1̂ cos�f� � i�̂z sin�f�, which leads to the
transformed Hamiltonian:
 

Ĥ�@
@f�x;y;t�

@t
�̂z�

@
2

2m�

�
kx�

@f�x;y;t�
@x

�̂z

�
2

�
@

2

2m�

�
ky����y;t�x�̂z�

@f�x;y;t�
@y

�̂z

�
2

�
@

2

2m�
�kz����y;t�x��sin�2f��̂y�cos�2f��̂x	�

2:

(10)

It is convenient to choose @f�x;y;t�
@y � ���y; t�a=4. We allow

many occupied subbands along the z axis but restrict
considerations to the lowest subband along the x axis,
which is the case for a laterally weakly confined two-
dimensional electron gas. After projecting Eq. (10) to the
lowest mode in the x direction, we obtain the following
two-dimensional Hamiltonian

 Ĥ 2D�
@

2k2
y

2m�
�

@
2

2m�

�
kz�

���y;t�a
4

��sin�2f��̂y

�cos�2f��̂x�
�

2
�U�y��̂z�V�y;z�; (11)

where U�y� � @�@f�y; t�=@t� � �@!L=lso� sin�y�=L��
cos�!t�, ����y; t�a=4� � ��=lso� cos�y�=L� sin�!t�, lso �
�4L=�’0a� can be interpreted as spin precession length,
and V�y; z� describes two-dimensional disorder scattering,
��y; t� is here still arbitrary, but we limit our attention to the
lowest vibrational mode as before.

The terms proportional to �̂x�y�kz in Eq. (11) induce
subband transitions; however, these do not affect transport
when the precession length lso is larger than the width of
the channel. In the limit of a long and narrow beam, we
may again treat the time dependence of the Hamiltonian
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Eq. (11) parametrically in terms of the frequency !. A
simple short-range wall potential V�y; z� � 	
�y� L=2�
does not lead to subband transitions and we can further
simplify Eq. (11) by disregarding subband transitions. Our
system then reduces to a collection of independent chan-
nels, which lead to a total spin-current polarization

 P �
XM
m

�T"�km� � T#�km��
�XM

m

�T"�km� � T#�km��; (12)

where m is the channel index, M is the total number of
transport channels, km is the wave number of an electron in
the channel m at the Fermi energy and T"�#��km� is given by
Eq. (7). In Fig. 2, we present results of Eq. (12) for the
maximum mechanically induced spin-current polarization
as a function of the beam width. The sharp peaks in the
polarization are due to an opening of a new channel and a
van Hove singularity. The dashed line in Fig. 3 are the
results of Eq. (12) for the spin-polarization as a function of
time.

The idealized model above allowed us to illustrate the
physics of piezo-spintronics. We now consider a more
realistic model, including many electron modes, subband
mixing and arbitrary forms of the potential V�y; z�. We
numerically calculate the scattering matrix using the re-
cursive Green’s function technique and the tight-binding
representation of the Hamiltonian (11)

 H �
X
ij�

�ij�c
y
ij�cij� � t

X
ij�

�cyi�1j�cij� � c
y
ij�1�cij��

� itso

X
ij��0
�cyi�1j�cij�0 �� sin�2f��̂y	��

0

� cyi�1j�cij�0 �cos�2f��̂x	
��0�� H:c:; (13)

where �ij� is the on-site energy that includes V and U, t �
@

2=�2m�b2) is the hopping energy and tso � @
2=�2lsom

�b�
is the hopping energy due to the SOI, in terms of the tight-
binding lattice spacing b. The bold lines in Fig. 3 display

our numerical results for the polarization as a function of
time for the short-range wall potential used above. We find
good agreement with the analytical results for large aspect
ratios of the beam, as expected. Unlike the spin splitting,
the subband transitions are defined by the function f�y; t�
that is quarter of a period shifted from U. Therefore, the
additional spin polarization due to subband transitions also
has a quarter shift in Fig. 3. We also included Rashba type
SOI into our numerical model and found no qualitative
difference with the results in Fig. 3 when lso 
 lRashba

where lRashba is the precession length due to the Rashba
SOI.

Finally, we model the potential V�y; z� by on-site
Anderson disorder with energies distributed over a band
width W. The beam is represented as a 150� 9 discrete
lattice and an ensemble averaging over 20 000 impurity
configurations is carried out. A single realization (without
averaging) behaves similar to our single defect result in
Fig. 3. Averaged results are presented in Fig. 4. The
Anderson disorder strength can be measured by an effec-
tive 2D mean free path [21] as l2D � �6�

3
FE

2
F�=��

3a2W2�.
Here we consider l2D � 8L; 3:6L and 2L (disorder scatter-
ing in 2DEGs is usually caused by surface roughness and
ionized donor impurities which can be controlled by crys-
tal growth techniques and sample design, e.g., remote
doping). When the Anderson disorder is weak, the spin
polarization is almost a harmonic function of time. We may
conclude that the piezospintronic effect is very robust,
persisting in a disordered system, confirming the qualita-
tive behavior of the analytical model with one dominating
defect scatterer. In fact, contrary to the earlier proposals
[6,7], our device can benefit from moderate disorder.

The choice of parameters above is motivated by the
following estimates made for a silicon cantilever of size

FIG. 2. Maximum spin polarization in units of the effective
splitting U0=EF as a function of the width of the single mode
(along the x axis) rod in Fig. 1. The frequency of the mechanical
oscillations ! � 10 GHz which corresponds to U0=EF � 2�
10�4 (length of the rod L � 1 �m, Fermi length �F � 30 nm,
the impurity scattering strength 	2m�=@2 � 0:4EF and m� �
0:06m).

FIG. 3. Spin-current polarization in units of the splitting pa-
rameter U0=EF as a function of time for the torsional oscil-
lations of the single mode (along the x axis) rod in Fig. 1. The
dashed line gives the results according to Eq. (12), whereas the
bold line represent the results of numerical simulations based on
the tight binding model. Parameters are the same as in Fig. 2.
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a� d� L � �0:05� 0:15� 1� �m. The resonant fre-
quency is ! � c�=L � 10 GHz, using the density of
silicon � � 2� 103 kg m�3 and the Lamé constant � �
100 GPa. The maximum angle of torsion ’0 can be esti-
mated by equating the energy dissipation during a cycle
2�’2

0C=�QL�, where Q is the mechanical quality factor,
with the energy input rate ’0T, where T is the actuating
torque applied at the center of the beam. Electrostatic
torques of T � 10�12–10�15 N m have been already real-
ized [14]. Taking Q � 500, T � 10�15 N m and C �
10�18 N m2, we find ’0 � 0:2 rad. The corresponding
spin-orbit precession length is lso � 1 �m (which is com-
parable to a typical semiconductor 2DEG) and the spin
splitting is U0 � @!L=lso � 6� 10�6 eV, using the bulk
strain-SOI parameter for GaAs � � 2� 108 m�1 [17]
which is not expected to be affected strongly by quantum
confinement [22]. This leads to polarizations of the order
of P� 10�4. Larger polarizations P� 10�3 and spin split-
tings U0 � 6� 10�5 eV are expected in InSb with the
narrower semiconductor gap Eg and larger spin-orbit split-
ting � (�� �

Eg
). Note that the finite temperature compa-

rable to the spin splitting should weaken the effect. In the
presence of an applied dc voltage, the mechanical motion
generates an ac spin current. Alternatively, one can apply
an ac voltage synchronized with the mechanical motion to
obtain a dc spin current. This ac voltage can be a result of
piezoelectric effect allowing pumping of spins by a me-
chanical oscillation in unbiased structures. The created
spin accumulation can be detected by ferromagnetic con-
tacts [23] or optical Kerr rotation [24].

By tuning the doping density and the width of the beam,
it is possible to take advantage of the resonant structure in
Fig. 2 to increase the spin signal. Rods with higher quality
factors can have larger amplitude of oscillations leading to
higher polarizations.

Summarizing, we propose a piezospintronic effect that is
based on strain-induced coupling of the electron spin de-
gree of freedom and mechanical vibrations in freestanding
semiconductor nanobeams. We show that time-dependent

strain due to torsional mechanical oscillations can lead to a
measurable spin polarization of an applied charge current.
Mechanically generated spin-dependent potentials (me-
chanically induced Zeeman splittings) can be also used
for the manipulation of an applied spin currents. We pro-
pose ways to measure and increase such mechanically
generated polarization that can be used for effective spin
injection in spintronic based devices.
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