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Magnetic Field Effect in Josephson Tunneling between d-Wave Superconductors
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The magnetic field effect in the Josephson tunneling between two d-wave superconductors are
investigated. When the crystal orientation of one (or each) superconductor relative to the interface
normal is such that midgap states exist at the interface, there is a component of the tunneling
current due to the midgap states. For a junction with a flat {001}|{110} or {100}|{110} interface,
this component is the predominant contribution to the current. The predicted current-field de-
pendence differs entirely from the conventional Fraunhofer pattern, in agreement with a published
measurement. This is because, apart from the Fraunhofer factor, the critical current depends on
the magnetic field B through the current density also which is a linear function of B for weak B.
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Whether the magnetic-field dependence of the Joseph-
son tunneling current between two high-Tc superconduc-
tors (HTSC’s) should show the well-known Fraunhofer
pattern seen in junctions made of conventional supercon-
ductors is still an unsettled question. There seem to be no
theoretical discussions sheding light on this subject so far.
On the other hand, many measurements have been de-
voted to the investigation of this problem [1]. However, it
is not easy to fabricate high-quality junctions of HTSC’s
with good flat interfaces. Since the pairing order pa-
rameter in HTSC’s very likely has predominately d-wave
symmetry, the behavior of the Josephson tunneling cur-
rent is expected to depend strongly on the interface ori-
entations. Most of the Josephson junctions exhibit ran-
dom patterns in their current-field relations most-likely
because their interfaces are made of many facets with
a variety of orientations [1,2]. Recently, Ishimaru et al.

have successfully fabricated junctions with atomically flat
{001}|{110} interfaces [3]. Their measurements showed a
regular dependence of the Josephson critical current on
the applied magnetic field, which is fundamentally dif-
ferent from the Fraunhofer pattern. Such a seemingly
anomalous behavior of the Josephson current has not yet
been explained in an acceptable theory.
In this letter, we present a calculation of the Joseph-

son tunneling current between two d-wave superconduc-
tors (DWSC’s) with a {001}|{110} interface, as is inves-
tigated in that experiment. Our calculation shows that
the local Josephson-current density depends linearly on
the magnetic field when the field is weak. Therefore, the
current-field relation in such a Josephson tunneling junc-
tion is predicted to be different from the usual Fraunhofer
pattern. This behavior stems from the existence of the
midgap states (MS’s) at the junction interface [4-8].
It has been noted that the MS’s play a very impor-

tant role in Josephson tunneling processes between two
DWSC’s [9] (and also in quasi-particle tunneling in junc-
tions involving DWSC’s which does not concern us here).
Consider a SC with a {110} surface at x = 0, with the
x axis being defined perpendicular to this surface. Let a
magnetic field ~B be applied along the c-axis, so that there
is a vector potential ~A along [11̄0], which is designated
as the y axis. In the gauge in which the order parameter
is real, the vector potential vanishes in the interior of the
SC. We have A(~r) ≃ −Bλ exp(−x/λ), where λ ≃ 1500Å
is the magnetic-field penetration depth in the ab plane.
The perturbation to the motions of particles is described
by the Hamiltonian,

H ′ = −1

c

∫
d3r~j(r) · ~A(r). (1)

where c is the speed of light, and ~j(r) the current den-
sity. The particles in the continuum states should only be
perturbed very weakly by this magnetic field since their
wave functions extend far away from the surface where

B ≃ 0. In contrast, the perturbation to the MS’s is sig-
nificant because the MS’s are localized within roughly a
coherence length (ξ ∼ 15Å) from the surface, which is
much smaller than λ. From the Bogliubov-de Gennes
equations for quasi-particles which are coherent super-
positions of electrons and holes, the eigen-energies of the
perturbed MS’s can be obtained as

εk ≃ h̄e

mc
A(0)k = − h̄eλ

mc
Bk, (2)

where k is the wave number along y, and we have ne-
glected the Zeeman energy. [10] This energy expression
is an odd function of k. Thus at sufficiently low temper-
atures, an asymmetric distribution of quasi-particles in
the MS’s can be realized.
In the Josephson junction under consideration, the

wave functions of the MS’s are distributed predominately
in the side with a {110} surface, with only a small ampli-
tude tunnelling into the other side (assuming high tun-
neling barrier at the interface). These states are Andreev
bound states localized within roughly a coherence length
from either side of the interface. It is well known that
quasi-particles in such bound states can transport electric
current between two superconductors. In the elementary
charge-transport process in this problem, the direction
of the tunneling current mediated by such a state will
depend on the sign of its momentum k along y, since this
tunneling current is proportional to the wave-function
product u∗

kvk which is proportional to the order param-
eter of this SC at its surface, the sign of which depends
on the sign of k. At zero magnetic field two states of
momentum k and −k, respectively, have the same en-
ergy E(k) = E(−k). They are thus equally occupied, so
that their contributions to the Josephson current cancel
each other. Under a small non-vanishing magnetic field,
the energies of two MS’s of such a pair of k values as
given by Eq. (2) are opposite in sign. Their occupa-
tions at low temperatures will no longer be equal. With
cancellation no longer complete, a net current can now
be transferred across the Junction via this pair of MS’s
which is proportional to the difference of their occupation
f(εk) − f(ε−k) = tanh(ε−k/2kBT ), where f(εk) is the
Fermi distribution function at temperature T and kB is
the Boltzmann constant. If the magnetic field applied in
the tunneling experiment is so weak that |εk| ≪ 2kBT —
roughly, the ratio |εk|/2kBT is less than 0.05B/T where
B and T are in units of Gauss and Kelvin, respectively,
— the current density J(B) is then a linear function of
B. The total critical current Ic(B) of a Josephson junc-
tion is determined by this current density times a factor
describing a Fraunhofer-like pattern. As the final result,
at weak magnetic field, Ic(B) is totally different from the
usual Fraunhofer pattern.
To quantitatively study this problem, we use the

tunneling-Hamiltonian approach in a tight-binding
model. For the sake of description, the SC side with
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a {110} ({001}) surface is referred to as the ridgt (left)
side of the junction. The bridge width of the junction is
denoted as L. As is the situaton in the experiment, we
assume that the barrier thickness and the length of the
left SC in the direction perpendicular to the interface are
both much less than λ. Then the effects of the magnetic
field in this side of the junction and in the barrier region
can be neglected. Note that the external magnetic field
Bext applied to the junction can induce a paramagnetic
field Bpara to the right of the surface region occupied by
the MS’s in the right SC, so that the total magnetic field
applied to the right SC is practically B = Bext +Bpara,
which is then screened in a distance ∼ λ in the right SC.
According to the tight-binding model adopted here, the
electrons are supposed to tunnel from the surface atoms
of one SC to the neighboring atoms on the surface of the
other, through the interface. The Hamiltonian describing
this tunneling process is given by

HT =
∑
ijα

(Tijd
†
iαcjα +H.c.) (3)

where d†iα (cjα) is the creation (annihilation) operator
for electrons with spin-α in the right (left) SC, the i
and j summations run over the surface sites on the two
sides of the junction, respectively. (In the actual cal-
culation, each sum is over one infinite chain of atomic
sites only, since for the right side we need only consider
one CuO2 plane with one linear {11} edge, which practi-
cally only interacts with one linear {10} chain of atoms
on the left side.) The tunneling matrix element is then
Tij = |Tij | exp[i(φ0/2+ k0yi)], with k0 = eBλ/h̄c and φ0

is the initial phase difference between the two SC’s. The
magnitude of the tunneling matrix element |Tij | is con-
sidered as a function of the distance |yi − yj | (where yi
and yj are respectively the coordinates of the sites i and
j along the interface). Here, we suppose a simple func-
tional form |Tij | ≡ T (yi − yj) = T0 exp(−(yi − yj)

2/r20)
with the parameter r0 describing the effective tunneling
range. (The precise functional form is not important as
long as it is short-ranged. The chosen form is for con-
venience only.) By the standard perturbation treatment,
the Josephson tunneling current can be expressed as

I = 2eImΦr(ω)|ω=0 (4)

with Φr(ω) the analytical continuation iωn (= i2nπkBT )
→ ω + i0+ of the correlation function Φr(iωn). In terms
of the one-particle Green functions,

Φr(iωn) = −2kBT
∑
ii′jj′

∑
ℓ

TijTi′j′F
r
i′i(Ωℓ)F

l
jj′ (Ωℓ + ωn)

(5)
where Ωℓ = (2ℓ + 1)πkBT is the Matsubara frequency,
and F r

i′i(Ωℓ) and F l
jj′ (Ωℓ) are the Fourier transforms

of the imaginary-time (τ) anomalous Green functions

F r
i′i(τ) = − < Tτd

†
i′↓(τ)d

†
i↑(0) > and F l

jj′ (τ) = − <

Tτcj↑(τ)cj′↓(0) >, respectively. Along the interface of
the junction, the anomalous Green functions depend on
the relative distance of two y-coordinates only. Ac-
cordingly, we factorize TijTi′j′ to |TijTi′j′ | exp[ik0(yi′ −
yi)]exp[i(φ0 + 2k0yi)]. The factor exp[ik0(yi′ − yi)] may
be approximated by unity, since it leads to a negligi-
ble correction to a momentum conservation relation ob-
tained later when Fourier transform is employed. (k0 is
estimated to be ≃228 cm−1 at B = 1G, whereas the
important momenta are all of order kF .) The summa-
tion over i which can be performed immediately then
produces the factor describing a Fraunhofer-like pattern:
j0(k0L) = sin(k0L)/k0L.
To illustrate the physics, we neglect the space varia-

tion of the order parameter near the interface since the
existence of MS’s is invariant with respect to such vari-
ations. With this simplification, the wave functions of
the MS’s and also the Green’s functions can be obtained
analytically within the tight-binding model defined in a
square lattice [8,11]. In momentum space, the anomalous
Green’s function F l is given by

F l(k,Ωℓ) = −a

∫ π/a

−π/a

dqx
2π

∆q

Ω2
ℓ + E2

q

, (6)

where a is the lattice constant, ∆q = 2∆[cos(qxa) −
cos(ka)] and Eq [with q ≡ (qx, k)] are the order parameter
and the quasi-particle energy, respectively [8,10]. For the
problem under consideration, we need only consider the
current transferred via the MS’s. Therefore, the anoma-
lous Green function F r is simply:

F r(k,Ωℓ) =
u∗
kvk

iΩℓ − εk
, (7)

where u∗
k and vk are the surface values of the wave

functions of the MS with momentum k. In the lat-
tice model, the eigen-energy of a MS is given by εk =
−(2

√
2ateBλ/h̄c) sin(ka/

√
2), and t is the hopping en-

ergy of electrons between nearest-neighbor sites. It is
worth noting that vk = iuksgnk for these MS’s, which
means that the tunneling-current direction depends on
the sign of k as mentioned above. Also, due to the phase
factor i, the phase dependence of the Josephson current
is cosφ0 rather than the usual sinφ0 . Substituting these
results into Eq. (4), we obtain

I = J(B)j0(k0L) cosφ0, (8)

J(B) = eNs

∞∑
n=−∞

∫ π/
√
2a

0

dk

π
T 2(k+Qn)χ(k,Qn), (9)

χ(k,Qn) = |uk|2
∫ π/a

−π/a

dqx
2π

∆q

Eq
[g(εk, Eq)− g(εk,−Eq)],

(10)
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where Ns is the number of total lattice sites on the {110}
surface of the right SC, T (k) is the Fourier transforma-
tion of T (y), q = (qx, k +Qn) with Qn = 2nπ/

√
2a, and

g(εk, Eq) = [tanh(εk/2kBT )−tanh(Eq/2kBT )]/(εk−Eq).
Apart from the factor j0(k0L), the Josephson current de-
pends on B through J(B) also. At weak B, J(B) ∝ B.
This is an unusual feature of the Josephson current be-
tween two DWSC’s when MS’s are present at the inter-
face and give the dominant contribution to the current.
In Fig. 1, we show the numerical results for J(B) nor-

malized by J0 = eNsT
2
0∆

2/t3 at T = 4.2K for a junction
with a {001}|{110} interface. The long-dashed, solid,
and short-dashed curves correspond to the parameters
q0 ≡ r−1

0 = 1.0a−1, 0.94a−1, and 0.9a−1, respectively.
Obviously, J(B) ∝ B at weak B. The slope of J(B)
at B = 0 depends sensitively on the parameter r0. For
a narrow region in the vicinity of q0 = 0.94a−1, J(B)
changes sign at a certain value of B of the order of B0.
This is because right at the interface, the pairing am-
plitude in the left SC is proportional to ∆ cos(ka). Its
sign and therefore the sign of the corresponding con-
tribution to the tunneling current density depend on
the magnitude of the momentum k of the quasi-particle:

cos(ka)
>
< 0 for ka

<
> π/2. Owing to the B-dependence

of the energy of a MS, |εk| ∝ B sin(ka/
√
2), changing

magnetic field is equivalent to modulating the distribu-
tion of the quasi-particles in the k space. Similarly, the
relative weights of positive and negative currents are also
controled by r0. These effects result in the delicate de-
pendence of J(B) on B and r0.
There is some subtlety in the factor j0(k0L) as well: In

an ideal system, there exists a spontaneous current near
the {110} surface of the right SC [10,12,13], so a Bext-
independent spontaneous paramagnetic field Bpara ≡
B0 = h̄c/2eλ2 (which is ∼146 Gauss as estimated by
using λ ≃ 1500 Å) is produced. The total magnetic
field B = Bext + B0 in the right SC is nonzero even at
Bext = 0. Therefore, the factor j0(k0L) alone can already
cause the Ic-Bext curve to not have the usual Fraunhofer
pattern. In particular, there may be no main peak at
Bext = 0 as in the usual Fraunhofer pattern. Generally,
there is no unique pattern if this spontaneous field exists:
At Bext = 0, there may be a dip or a cusp in Ic(Bext)
depending on the geometric ratio L/λ of the junction.
However, the existence of this spontaneous magnetic field
depends sensitively on the quality of the juction includ-
ing the flatness of the interface and the impurity content
of the SC which has the MS’s. We do not believe that
most of the HTSC’s can have this spontaneous current.
Even for a perfectly flat {110} interface, the existence of
impurity scatterings is unavoidable. In such a non-ideal
system, the particles in the MS’s have finite lifetimes
due to their scatterings off the impurities. Therefore,
the spontaneous surface current and thereby the sponta-
neous magnetic field cannot exist. The induced param-

agnetic field is no longer a constant but depends linearly
on the external field, Bpara ∝ Bext, for small field, when
the magnitude of the maximum shift of the MS’s is still
much smaller than the width of the midgap-state peak
in the density of states. Consequently, the dependence
of j0(k0L) on the external field in the weak field regime
is essentially the conventional Fraunhofer pattern except
for a scale factor (< 1) on Bext.
Shown in Fig. 2 is the result for Ic(B) normalized by

J0 for the junction with L/λ = 35 and q0 = 0.94a−1. To
compare with the experimental measurements, we need
to take into account a larger enhancement factor in the
effective magnetic field, which is mainly due to the flux
focusing effect in thin-film grain boundary junctions [14].
Due to this effect, the effective field B can be an order of
magnitude larger than the external field Bext. Under this
consideration, the experimental result of Ishimaru et al.

[3] can be explained by the present theory, as is shown
in Fig. 2. According to the present theory, the deep
dip in the measured I(B) curve at zero magnetic field is
a strong indication that the pairing has predominately
d-wave symmetry in the CuO2 planes of YBCO.
If the SC’s have the d+s symmetry, then the tunneling

current can also be transferred through the continuous
states. In this case, the Josephson critical current Ic(B)
does not vanish at B = 0. There may appear a dip or
a peak in the I − B curve at B = 0 depending on the
magnitude of the s-wave component. The fact that the
observed Ic(0) is small with no peak there should imply
that the s-wave component is small, though possibly not
zero in YBCO. The predicted features of the Ic−B curve
can also be observed in junctions with {100}|{110} inter-
faces if only they can be fabricated with flat interfaces.
The physics is essentially the same as for the case of a
{001}|{110} interface.
In summary, we have investigated the magnetic-field

dependence of the Josephson current in a junction made
of two DWSC’s with a {001}|{110} interface. In such a
junction the Josephson current is mainly mediated by the
MS’s on the side with a {110} surface. Under a magnetic
field, the eigen-energies of these states shift in direct re-
lation to their momenta along the interface, leading to
a skewed occupation of these states, which implies a B-
dependent current-density factor J(B) which is linear in
B for small B. When the particles in the MS’s have a fi-
nite life-time, the effective field B acting on the side with
a {110} surface should be a linear function of the external
field when the field is weak. Thus the usual Fraunhofer
factor is not modified qualitatively, but the critical cur-
rent Ic depends on B through a current-density factor
J(B) also which varies linearly with B at weak B. Thus
the Ic −Bext curve differs entirely from the conventional
Fraunhofer pattern, especially near zero field.
This work is supported by the Texas Higher Education

Coordinating Board under the grant No. 1997-010366-
029, and by the Texas Center for Superconductivity at
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Figure Captions

Fig. 1 The calculated current density J(B) of Joseph-
son tunneling between two d-wave superconductors
with a {001}|{110} interface as a function of the
magnetic field B at T = 4.2K. The long-dashed,
solid, and short-dashed lines correspond to the pa-
rameter q0 ≡ r−1

0 = 1.0a−1, 0.94a−1, and 0.9a−1,
respectively. The magnetic field is normalized by
B0 = h̄c/2eλ2.

Fig. 2 The calculated critical Josephson current Ic(B) as
a function of the magnetic field B for the junction
of two d-wave superconductors with a {001}|{110}
interface at T = 4.2K and q0 = 0.94a−1. The
ratio between the bridge width and magnetic field
penetration depth (in the ab plane) is L/λ = 35.
The black dots are data from Ref. 3.
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