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We report new constraints on flavor-changing non-standard neutrino interactions (NSI) using data
from the MINOS experiment. We analyzed a combined set of beam neutrino and antineutrino data,
and found no evidence for deviations from standard neutrino mixing. The observed energy spectra
constrain the NSI parameter to the range −0.20 < εµτ < 0.07 (90% C.L.).
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It is well established from solar, atmospheric, reactor
and accelerator experiments [1–7] that neutrinos undergo
flavor change as they propagate. This phenomenon can
be explained by the quantum mechanical mixing of neu-
trino flavor and mass eigenstates. The mixing can be
parametrized by three angles, θ12, θ13, θ23, and a CP-
violating phase, δ [8]. The standard neutrino oscillation
mechanism requires that at least two of the three ac-
tive neutrinos are massive. While the phenomenon of
oscillations can occur in vacuum, the presence of mat-
ter along the neutrino path allows for alternative fla-
vor changing mechanisms such as the Mikheyev-Smirnov-
Wolfenstein (MSW) matter effect [9]. This effect alters
the survival probability of electron neutrinos propagat-
ing through matter since electron neutrinos can have ad-
ditional interactions with electrons in the surrounding
medium, but does not affect the survival probability of
muon or tau neutrinos.

Non-standard interactions (NSI) [10] could occur be-
tween muon or tau neutrinos and matter, and could al-
ter the flavor content of a neutrino beam as it propagates
through the Earth’s crust in a manner similar to standard
matter effects. Searches for NSI have already been per-
formed with atmospheric neutrinos [11]. However, non-
standard matter effects are, in general, different for neu-
trinos and antineutrinos. Accelerator-based oscillation
experiments offer a powerful tool to search for NSI with
their ability to produce well-understood beams of neu-
trinos and antineutrinos separately. Furthermore, MSW
and NSI effects depend on the neutrino’s path length in
matter, and beam neutrinos travel a well defined distance
to the detector. Recent papers have discussed the com-
patibility of NSI with MINOS data [12, 13]. This Letter
describes the first direct search for NSI which simulta-
neously fits the separate energy spectra of neutrinos and
antineutrinos in a long-baseline experiment.

Short-baseline neutrino experiments have explored and
constrained non-standard interactions [14]. In such
experiments both charged-current (CC) and neutral-
current (NC) NSI can be studied. While long-baseline
experiments can also constrain interactions with matter
directly in either near or far detectors, their improved
sensitivity arises from using the Earth’s matter along the
long neutrino path as the interaction medium. Charged-
current NSI produce a final state charged-lepton which is
absorbed by the Earth’s matter and not observed. How-
ever, NC NSI that occur along the neutrino path will
produce a final state neutrino of a different flavor, alter-
ing the flavor content of the beam [13]. We consider only
NC NSI in this study.

The NSI Hamiltonian can be included as a perturba-
tion to standard oscillations. This Hamiltonian is propor-
tional to the matter potential V =

√
2GFNe, with GF ,

the Fermi coupling constant, andNe, the electron density
in matter, analogous to the MSW matter effect [9]. In
general, the Hamiltonian has both flavor-conserving and

flavor-changing components. In flavor-conserving NSI,
the NC scattering between the neutrino and matter does
not alter the neutrino flavor. Flavor-changing NSI, on
the other hand, do not conserve lepton flavor number;
the final state neutrino is in a different flavor eigenstate
from the initial neutrino. In a disappearance experi-
ment, flavor-changing NSI have a greater effect on the
flavor transition probability than flavor-conserving NSI
due to interference between amplitudes of standard and
non-standard matter interactions [15]. We consider here
only flavor-changing NSI and set to zero flavor-conserving
amplitudes to which MINOS has no sensitivity.
The resulting NSI Hamiltonian in the two-flavor ap-

proximation is

HNSI = V

(

0 εµτ
ε∗µτ 0

)

, (1)

where the coefficient εµτ gives the strength of the NSI ef-
fect on transitions between µ and τ flavors. We only con-
sider the real part of εµτ , which is sensitive to differences
between νµ and νµ survival. We define the vacuum oscil-
lation length for neutrinos of energy E as L0 ≡

(

4E
∆m2

)

.
The difference between the squares of the second and
third neutrino masses, ∆m2 = ∆m2

32 ≡ m2
3 − m2

2, is
the same parameter that governs standard neutrino os-
cillations [16, 17]. The NSI matter oscillation length is
defined as

Lm ≡ L0

[1± 2 sin(2θ)L0εµτ |V |+ (L0εµτ |V |)2]
1

2

. (2)

The survival probability can then be written as

P (νµ → νµ) = 1−
[

1− cos2(2θ)
L2
m

L2
0

]

sin2
(

L

Lm

)

, (3)

with mixing angle θ = θ23, and neutrino path length L.
Standard oscillation parameters θ and ∆m2 are taken
to be the same for neutrinos and antineutrinos. The ±
signs in Eq. (2) arise from the matter potential, V , which
is positive for neutrinos and negative for antineutrinos.
The parameter εµτ is real-valued and carries its own sign.
A positive value of εµτ implies that the neutrino disap-
pearance probability is greater than the antineutrino dis-
appearance probability, and vice versa.
The MINOS experiment measures disappearance of

muon neutrinos and antineutrinos in the NuMI beam [18]
using two detectors. The event energy spectrum of the
low energy NuMI beam, used in this measurement, peaks
at approximately 3 GeV [19]. Its focusing components
can be tuned to produce a beam with an event composi-
tion of 91.7% νµ, 7% νµ, and 1.3% (νe + νe) in neutrino
mode, or of 58% νµ, 40% νµ, and 2% (νe + νe) in an-
tineutrino mode [20]. The Near Detector (ND), with a
fiducial mass of 23.7 tons, measures the neutrino and
antineutrino energy spectra 1.04 km downstream of the
production target. The Far Detector (FD) is located in
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the Soudan Underground Laboratory and has a 4.2 kilo-
ton fiducial mass. It measures the energy spectra 735 km
downstream of the production target. Both detectors are
magnetized steel-scintillator tracking-sampling calorime-
ters designed to measure the energy and the sign of the
charge of muons produced by νµ and νµ interactions. In
each detector, muon neutrino and antineutrino CC in-
teractions are separated event-by-event using the sign of
muon track curvature.
The results presented here are based on an exposure of

7.09 × 1020 protons on target (POT) in neutrino mode,
combined with a 2.95 × 1020 POT exposure in antineu-
trino mode. MINOS previously reported a two-flavor os-
cillation analysis on this neutrino dataset [16, 17] and
the first direct measurement of antineutrino oscillation
parameters from the antineutrino sample [20]. Due to
the opposite sign of the matter potential in Eq. (3) for
neutrinos and antineutrinos, NSI, if present, will alter
the survival probability of neutrinos and antineutrinos
in opposite directions. The magnitude of εµτ is propor-
tional to the difference in probability between neutrinos
and antineutrinos, and the sign of εµτ is determined by
the sign of the probability difference.
We select νµ and νµ CC events inside the fiducial vol-

ume by identifying interaction vertices with a muon track
and possible hadronic activity. The neutrino energy is
reconstructed by summing the muon track and hadronic
shower energies. Muon energy is measured using range
for muons that stop in the detector and curvature for
muons that exit. The hadronic energy is determined us-
ing a k-Nearest Neighbor (kNN) technique [21]. We re-
quire the muon charge be negative for νµ and positive for
νµ events.
To reject NC interactions we use a discriminant ob-

tained by combining four event characteristics into a kNN
variable [22]. The selection criteria optimize selection ef-
ficiency and sample purity to obtain maximum sensitivity
to oscillations [21, 23]. Far Detector selection efficiencies
for neutrino and antineutrino samples are 93% and 97%,
with purities of 99% and 94%, respectively. Because the
neutrino sample has a larger component of highly inelas-
tic events, this optimization process reduces the optimal
neutrino selection efficiency in favor of lower NC back-
ground. The lower overall purity of the antineutrino sam-
ple results from the much larger neutrino contamination
at higher energies in the antineutrino mode; however, in
the region of interest to oscillations and NSI the contam-
ination is smaller.
The FD neutrino and antineutrino spectra in the ab-

sence of flavor change are predicted using the ND data by
first correcting the ND spectra for inefficiency and back-
grounds and then extrapolating to the FD by a trans-
fer matrix obtained from simulation [3, 24]. We predict
2073 neutrino and 273 antineutrino events without oscil-
lations, and observe 1654 and 193 events, respectively.
The neutrino and antineutrino energy spectra are fit
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FIG. 1: Far Detector distributions of selected neutrino (top)
and antineutrino (bottom) events. Black dots represent data,
the dashed histogram shows the prediction in the absence of
oscillations and the solid histogram shows the prediction for
the model in Eq. (3) at the values obtained in our fit to the
oscillation and NSI model.

simultaneously to three parameters, |∆m2|, sin2 2θ, and
εµτ , in the combined oscillation and NSI model in Eq. (3),
using a binned log-likelihood. The value of the mix-
ing angle is constrained to be physical by asserting
0 ≤ sin2(2θ) ≤ 1. The resulting simulated energy spec-
tra, obtained by using the best fit values, are shown in
Fig. 1 superimposed on the full neutrino and antineutrino
spectra.

The overall systematic uncertainty in the measurement
is much smaller than the statistical uncertainty. How-
ever, the difference in the relative sizes of the neutrino
and antineutrino event samples results in a large differ-
ence in their statistical uncertainties, while the system-
atic uncertainties are comparable. Systematic uncertain-
ties are included in the fit to ensure that the neutrino
sample does not have a disproportionate impact. The
largest sources of systematic uncertainty are the muon
energy scale, the hadronic energy scale, the NC back-
ground, and the relative normalization between the Near
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and Far detectors. The muon energy scale uncertainty
is 2% for events where muon energy is determined from
range and 3% where the energy is obtained by measuring
the curvature in the magnetic field.
The uncertainty on the measurement from range is

based on a comparison of tabulated muon spectrum
power in MINOS detectors with tables in [25], and in-
cludes our uncertainty in the material composition of
the detectors. The curvature uncertainty was found
by comparing the curvature measurement to that from
range for stopping muons [16]. The hadronic energy
scale uncertainty is energy-dependent and smaller than
10% integrated over all hadronic energies. Its multiple
components arise from uncertainties in hadron produc-
tion modeling and from the uncertainty in detector re-
sponse [16]. The NC background is less than 2% of
both the neutrino and antineutrino samples integrated
across all energies. The size of its uncertainty, which is
dominated by hadronic shower modeling, is estimated to
be 20% by comparing experimental data to simulation.
The 1.6% normalization uncertainty at all energies arises
from modeling reconstruction differences between Near
and Far detectors, and the uncertainty in the number of
protons on target [16].
These four sources of systematic uncertainty are in-

cluded in the fit using penalty terms. The best fit pa-
rameters from this procedure are found to be

∆m2 = 2.39+0.14
−0.11 × 10−3eV2,

sin2(2θ) = 1.00+0.00
−0.06,

εµτ = −0.07+0.08
−0.08,

with the allowed region −0.20 < εµτ < 0.07 (90% C.L.).
The penalty terms from systematic uncertainties have

a negligible effect on the fit; each penalty term pulls
the best fit point by much less than one standard de-
viation. The allowed regions of fit parameters are shown
in Fig. 2, where three two-dimensional slices from a 3D
likelihood surface are chosen by marginalizing over the
third parameter. The obtained oscillation parameter val-
ues are in good agreement with previously published re-
sults in [16, 20]. Within errors the fit is consistent with
no contribution to flavor change from NSI. This conclu-
sion is in agreement with recent results from the Super-
Kamiokande collaboration [11], as well as with values of
εµτ extracted from global fits to data from multiple ex-
periments [26–29].
In summary, this is the first direct search for non-

standard interactions with high-purity samples of both
neutrinos and antineutrinos. We conducted a simulta-
neous fit to neutrino and antineutrino energy spectra of
conventional νµ → ντ oscillations with an additional NSI
matter effect. We found no evidence for non-standard
neutrino interactions.
This work was supported by the U.S. DOE; the United
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