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ABSTRACT

We discuss D3-branes on cohomogeneity-three resolved Calabi-Yau cones over Labc

spaces, for which a 2-cycle or 4-cycle has been blown up. In terms of the dual quiver

gauge theory, this corresponds to motion along the non-mesonic, or baryonic, direc-

tions in the moduli space of vacua. In particular, a dimension-two and/or dimension-

six scalar operator gets a vacuum expectation value. These resolved cones support

various harmonic (2, 1)-forms which reduce the ranks of some of the gauge groups ei-

ther by a Seiberg duality cascade or by Higgsing. We also discuss higher-dimensional

resolved Calabi-Yau cones. In particular, we obtain square-integrable (2, 2)-forms for

eight-dimensional cohomogeneity-four Calabi-Yau metrics.
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1 Introduction

The AdS/CFT correspondence relates type IIB string theory on AdS5 × S5 to four-

dimensional N = 4 U(N) superconformal Yang-Mills theory [1, 2, 3]. More generally,

type IIB string theory on AdS5 ×X5, where X5 is an Einstein-Sasaki space such as

T 1,1, Y pq [4, 5] or Labc [6, 7], corresponds to an N = 1 superconformal quiver gauge

theory. The dual gauge theories have been identified in [8] for T 1,1, in [9, 10] for Y pq

and in [11, 12, 13] for Labc.

There is a prescription for mapping perturbations of the supergravity background

to operators in the dual gauge theory [2, 3]. In particular, motion in the Kähler

moduli space of the Calabi-Yau cone over the Einstein-Sasaki space corresponds to

giving vacuum expectation values (vevs) to the fundamental fields, such that only non-

mesonic operators get vevs. This is because the mesonic directions of the full moduli

space correspond to the motion of the D3-branes in the Calabi-Yau space whereas

the non-mesonic, or baryonic, directions are associated with either deformations of

the geometry or turning on B-fields. This has been studied for a blown-up 2-cycle in

the resolved conifold in [14], as well as for a blown-up 4-cycle in the resolved conifold

[15], Y pq cones [16], Labc cones [17] and general Calabi-Yau cones [18]. All of these

resolved Calabi-Yau cones with blown-up 4-cycles follow the general construction

given in [19, 20].

In this paper, we shall apply the state/operator correspondence to a general class

of resolved Calabi-Yau cones over Labc with a blown-up 2-cycle or 4-cycle. These met-

rics can be obtained from the Euclideanization of the BPS limit of the six-dimensional

Kerr-NUT-AdS solutions [21, 22].1 In particular, blowing up a 2-cycle or 4-cycle cor-

responds to giving a vev to a real dimension-two and/or six scalar operator. Although

cycles are being blown up, in all but two cases there remain singularities [24, 25]. How-

ever, there is a countably infinite subset of cases where there is an ALE singularity, on

which perturbative string dynamics is well-defined. Some of these cases were studied

in [18]. While adding a large number of D3-branes that are uniformly distributed, or

“smeared”, on the blown-up cycle ends up inducing a power-law singularity at short

1This is the even-dimensional analog of the relation between the Einstein-Sasaki spaces con-

structed in [23] and odd-dimensional BPS Kerr-NUT-AdS solutions.
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distance2, the resulting backgrounds can nevertheless be reliably used to describe per-

turbations around the UV conformal fixed point of the quiver gauge theories. Close

to the UV fixed point, blowing up a 2-cycle on the Labc cone corresponds to giving a

vev to an operator that is analogous to the case of the resolved conifold. Therefore,

we shall refer to these spaces as resolved cones, though it should be understood that

there are still orbifold-type singularities.

The supergravity background can also be perturbed by adding a harmonic 3-form

which lives on the Calabi-Yau metrics. If this is a pure (2, 1)-form then supersym-

metry will be preserved. Furthermore, if this form carries nontrivial flux then it

corresponds to D5-branes wrapped on a 2-cycle in the Calabi-Yau space. The intro-

duction of these fractional D3-branes eliminates the conformal fixed point in the UV

limit of the quiver gauge theory. The theory undergoes a Seiberg duality cascade

and the ranks of some of the gauge groups are reduced with decreasing energy scale.

The supergravity solutions corresponding to fractional branes have been constructed

for the cones over T 11 [27, 28], Y pq [29] and Labc spaces [30, 31]. Fractional branes

have also been considered for Calabi-Yau spaces with blown-up cycles, such as the

deformed conifold [32], resolved conifold [33] and regularized conifold [15], as well as

the resolved Y pq cones with blown-up 4-cycles [18]. We shall also consider continuous

families of 3-forms that do not have nontrivial flux. In this case, there remains a

conformal fixed point in the UV limit of the field theory. It has been proposed that

the ranks of some of the gauge groups are reduced with decreasing energy scale via

the Higgs mechanism [34].

Since the Labc spaces have cohomogeneity two, the form fields constructed on the

corresponding Calabi-Yau spaces will generally have nontrivial dependence on the

radial direction as well as the two non-azimuthal coordinates of Labc. In addition,

these forms generally break the U(1)R × U(1) × U(1) global symmetry group of the

theory down to a U(1) × U(1) symmetry group which, in particular, breaks the R-

symmetry. However, this is done in such a way that the theory preserves N = 1

supersymmetry.

2This singularity is due to the smearing of the D3-brane charge on the blown-up cycle. A

completely non-singular solution with D3-branes stacked at a single point on the resolved conifold

has been constructed [26].
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The various perturbations of the AdS5 × Labc supergravity background that will

be discussed are shown in Figure 1. These perturbations, which can be superimposed

with one another, correspond to continuous families of Renormalization Group (RG)

flows from the UV superconformal fixed point of the quiver gauge theory.

Lpqr 

Superconformal 

Field Theory

Blown-up
2-cycle

Blown-up
4-cycle

3-form
field

Figure 1: RG flows from the superconformal fixed point of the Labc quiver gauge theory correspond

to various deformations of the supergravity background.

The paper is organized as follows. In section 2, we discuss the geometry of the

resolved Calabi-Yau cones over the Labc spaces. A subset of these are the resolved

cones over Y pq and their various limits. We find various harmonic (2, 1)-forms on these

metrics, some of which carry nontrivial flux and some of which do not. In section

3, we apply some of our results to the AdS/CFT correspondence. In particular, we

relate the perturbations of the AdS5 ×Labc background to various flows from the UV

conformal fixed point of the dual quiver gauge theory. In section 4, we consider eight-

dimensional resolved cones over Lpqrs and the various harmonic forms that live on

them. In section 5, we carry out the corresponding analysis for the higher-dimensional

resolved cones. Lastly, conclusions are presented in section 6.

2 Six-dimensional resolved Calabi-Yau cones

Although the Labc spaces themselves are non-singular for appropriately chosen inte-

gers p, q, r [6, 7], the cones over these spaces have a power-law singularity at their

apex. In the case of the cone over T 1,1, this singularity can be smoothed out in two

different ways [35]. Firstly, one can blow up a 3-cycle, which corresponds to a complex
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deformation. The resulting deformed conifold has been crucial for the construction

of a well-behaved supergravity dual of the IR region of the gauge theory, providing a

geometrical description of confinement [32].

One might hope that a similar resolution procedure could be performed on other

Labc cones. Although a first-order deformation of the complex structure of Y pq cones

has been found in [36], there exists an obstruction to finding the complex deformations

beyond first order [37, 38]. There is also evidence from the field theory side that

such deformations will break supersymmetry for the Y pq cones [39, 40, 41, 42] as

well as for a large class of Labc cones [42]. Nevertheless, there are Labc cones which

allow for complex structure deformations [37, 38], which can be understood from the

corresponding toric diagrams [12].3 However, the explicit metrics for these deformed

Labc cones, let alone the solutions for D3-branes on these cones, are not known.

2-cycle

4-cycle

Figure 2: A 4-cycle within the base space of a cone over Labc can be blown up. Within this 4-cycle

lies a 2-cycle. The volumes of these two cycles correspond to two independent Kähler moduli.

The second way in which the T 1,1 cone can be rendered regular is by blowing up a

2-cycle [35]. Also, for the case of a cone over T 1,1/Z2, the singularity can be resolved by

blowing up a 4-cycle. Both of these resolutions are examples of Kähler deformations

which, as we shall see shortly, can also be performed on the Labc cones C(Labc).

Moreover, the 2-cycle actually lives within the 4-cycle, as illustrated in Figure 2.

This means that there are two Kähler moduli associated with the 4-cycle. For certain

parameter choices, we can have the 4-cycle corresponds to the Einstein-Kähler base

space of Labc, whose metric can be obtained by taking a certain scaling limit of a

3We thank Angel Uranga for discussions on this point.
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Euclideanized form of the Plebanski-Demianski metric [30]. It is also possible to have

the volume of the 4-cycle vanishes, whilst keeping a 2-cycle blown up.

It has been found that the cone over Y 2,1 can be rendered completely regular

by blowing up an appropriate 4-cycle [24]. However this, together with the resolved

cones over T 1,1 and T 1,1/Z2, constitute the only examples of non-singular resolved

cones over the Labc spaces [25]. Although we shall refer to these spaces as “resolved”

Labc cones, there are generally orbifold-type singularities remaining. In the limit of

a vanishing 2-cycle, this can be seen simply because at short distance the geometry

becomes a direct product of R2 and the four-dimensional Einstein-Kähler base space

of Labc, which is itself an orbifold. Nevertheless, the resolved cones over Labc can be

embedded in ten dimensions to give Ricci-flat backgrounds Mink4×C(Labc), on which

perturbative string dynamics is well-defined. However, as we shall see in section 3, the

back-reaction of D3-branes leads to a power-law singularity at short distance. This

singularity is due to the fact that we are smearing the D3-branes on the blown-up

cycle. For the case of the resolved conifold, it has been shown that if the D3-branes

are stacked at a single point then the supergravity solution is completely regular [26].

2.1 Resolved cones over Y pq

Before turning to resolved cones over the general cohomogeneity-two Labc spaces, it

is instructive first to consider the subset involving the cohomogeneity-one Y pq spaces.

The resolved cone over Y pq has the metric [21]

ds26 =
x+ y

4X
dx2+

X

x+ y
(dτ+

y

2α
σ3)

2+
x+ y

4Y
dy2+

Y

x+ y
(dτ− x

2α
σ3)

2+
x y

4α
(σ2

1+σ
2
2) .

(2.1)

where

X = x(x+ α)− 2µ

x
, Y = y(α− y) +

2ν

y
, (2.2)

and that

σ3 = dψ + cos θ dφ , σ2
1 + σ2

2 = dθ2 + sin2 θ dφ2 . (2.3)

It has been shown that the only completely regular examples are the resolved cones

over T 1,1, T 1,1/Z2 and Y
2,1 [24, 25]. We shall now consider various limits of the metric

(2.1).
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Resolved conifold

In order to reduce to a resolved cone over T 11 (or T 11/Z2), we need to select ν such

that Y (y) has a double root. This happens when ν = − 2
27
α3. Making the coordinate

redefinition

y = 2
3
α+ǫ cos θ̃ , ν = − 2

27
α3+ 1

2
αǫ2 , τ = − 2

9ǫ
φ̃ , σ3 → σ3+

2α

3ǫ
dτ , (2.4)

and setting the parameter ǫ to zero, we find that the metric becomes

ds26 =
x+ 2

3
α

4X
dx2+

X

9(x+ 2
3
α)

(σ3+cos θ̃ dφ̃)2+ 1
6
(x+ 2

3
α)(dθ̃2+sin2 θ̃ dφ̃2)+ 1

6
x (σ2

1+σ
2
2) .

(2.5)

If µ = 0, there is a blown-up S2 and the solution describes the resolved conifold [35].

If, on the other hand, α = 0, then there is a blown-up S2 × S2 and the solution

describes the regularized conifold [15]. In fact, it has been shown that one can always

blow up a 4-cycle on any cone over an Einstein-Sasaki space [19, 20]. We shall now

take a look at the analogous limits for the resolved cones over the Y pq spaces.

The α = 0 limit

If we let y → αy, ν → α3ν and then take α → 0, we obtain the limit

ds2 =
x

4X
dx2 +

X

x
(dτ + 1

2
yσ3)

2 + x
[dy2
4Y

+ Y σ2
3 +

1
4
y(σ2

1 + σ2
2)
]
, (2.6)

where

X = x2 − 2µ

x
, Y = y(1− y) +

2ν

y
. (2.7)

There is a single Kähler modulus, which corresponds to a blown-up 4-cycle with a

volume parameterized by µ. This is the analog of the resolved cone for general Y pq

spaces. However, unlike the T 1,1/Z2 case, this metric has an orbifold-type singularity

at its apex, since the geometry reduces to the direct product of R2 and an Einstein-

Kähler orbifold.

The µ = 0 limit: blowing up 2-cycles

One can also consider the limit in which µ vanishes, in which case x runs from 0

to asymptotic ∞. Near x = 0, we can express the metric as

ds2 = y
(
dr2 + 1

4
r2(σ3 +

2

y
dτ)2 + 1

4
r2(σ2

1 + σ2
2) +

dy2

4Y

)
+ Y (dτ − 1

2
r2σ3)

2 , (2.8)
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where x = r2. At r = 0 there is a collapsing 3-sphere, instead of a circle as in

the previous limit. There is a single Kähler modulus corresponding to the volume

of a blown-up 2-cycle, which is parameterized by α. However, unlike the analogous

resolved conifold for which there is a smooth 2-sphere, in general this 2-cycle is a

“tear-drop” with a conical singularity.

Calabi-Yau structure

The Calabi-Yau structure on the metric (2.1) is given by a Kähler form J and a

holomorphic (3, 0)-form G(3). These can be expressed in the complex vielbein basis

ǫ1 = e1 + i e2 , ǫ2 = e3 + i e4 , ǫ3 = e5 + i e6 , (2.9)

where the vielbein is conveniently chosen to be

e1 =

√
x+ y

4X
dx , e2 =

√
X

x+ y

(
dτ +

y

2α
σ3

)
, e3 =

√
x+ y

4Y
dy ,

e4 =

√
Y

x+ y

(
dτ − x

2α
σ3

)
, e5 =

√
xy

4α
σ1 , e6 =

√
xy

4α
σ2 . (2.10)

The Kähler 2-form is then given by

J = i
2
ǫi ∧ ǭi , (2.11)

and the complex self-dual harmonic (3, 0)-form is given by

G(3) = e−3iτ ǫ1 ∧ ǫ2 ∧ ǫ3 ≡ W(3) + i ∗W(3) . (2.12)

Harmonic (2, 1)-forms

We are interested in harmonic (2, 1)-forms that live on the resolved Y pq cones,

since their presence preserves the minimal supersymmetry of the theory. We find

there exist the following five such (2, 1)-forms:

Φ1 =
e−3iτ

xX
ǭ1∧ǫ2∧ǫ3 , Φ2 =

e−3iτ

y Y
ǭ2∧ǫ1∧ǫ3 , Φ3 =

e3iτ

x y X Y
ǭ3∧ǫ1∧ǫ2 ,

Φ4 =
1

x y
√
x+y

( 1

x
√
Y
ǫ2∧(ǭ3∧ǫ3−ǭ1∧ǫ1)−

1

y
√
X
ǫ1∧(ǭ3∧ǫ3−ǭ2∧ǫ2)

)
,

Φ5 =
1√
x+y

( 1

x2
√
Y
ǫ2∧(ǭ3∧ǫ3−ǭ1∧ǫ1)+

1

y2
√
X
ǫ1∧(ǭ3∧ǫ3−ǭ2∧ǫ2)

)
. (2.13)
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All of these forms have singularities at all distances x, for certain values of y, except

for Φ1, which has a singularity only at small distance. Φ1 has a rapid fall off at large

distance, such that it does not support nontrivial flux. On the other hand, in the

large-x limit the last harmonic form behaves like

Φ5 = 1
4
σ1∧σ2∧(σ3+

2

y
dτ)+

1

2y2
σ3∧dτ∧dy+

1

4x

(
−2σ1∧σ2∧dτ

+i
[
(
1

y
σ1∧σ2−

1

y2
σ3∧dy)∧dx+

y

Y
σ1∧σ2∧dy

])
+O(

1

x2
). (2.14)

This indicates that this form does support nontrivial flux. In the α = 0 limit, in

which we have first rescaled y → αy, Φ4 and Φ5 reduce to the same form. This form

has a singularity that is confined to small distance.

2.2 Resolved cones over Labc

We now turn to the resolved cones over the general cohomogeneity-two Labc spaces.

The metric is given by [22]

ds2 = 1
4
(u2dx2+v2dy2+w2dz2)+

1

u2
(dτ+(y+z)dφ+yz dψ)2

+
1

v2
(dτ+(x+z)dφ+xz dψ)2+

1

w2
(dτ+(x+y)dφ+xy dψ)2, (2.15)

where the functions u, v, w are given by

u2 =
(y−x)(z−x)

X
, v2 =

(x−y)(z−y)
Y

, w2 =
(x−z)(y−z)

Z
,

X = x(α−x)(β−x)−2M , Y = y(α−y)(β−y)−2L1 ,

Z = z(α−z)(β−z)−2L2 . (2.16)

Notice that the coordinates x, y and z appear in the metric on a symmetrical footing.

We shall choose x to be the radial direction, and y and z to be the non-azimuthal

coordinates on the Labc level sets. This reduces to the Y pq subset when a = p−q,
b = p+q and c = d = p.

Calabi-Yau structure

The complex vielbein can be written as

ǫ1 = e1+i e2 , ǫ2 = e3+i e4 , ǫ3 = e5+i e6 , (2.17)
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in the vielbein basis

e1 = 1
2
u dx , e2 =

1

u
(dτ+(y+z)dφ+yz dψ) ,

e3 = 1
2
v dy , e4 =

1

v
(dτ+(x+z)dφ+xz dψ) ,

e5 = 1
2
w dz , e6 =

1

w
(dτ+(x+y)dφ+xy dψ) . (2.18)

Then the Kähler 2-form and complex self-dual harmonic (3, 0)-form are given by

J =
i

2
ǭi∧ǫi , G(3) = ei ν ǫ1∧ǫ2∧ǫ3 , (2.19)

where

ν = 3τ+2(α+β)φ+αβψ . (2.20)

Harmonic (2, 1)-forms

There is a harmonic (2, 1)-form given by

Ψ1 =
ei ν

X
ǭ1∧ǫ2∧ǫ3 . (2.21)

Using this, one can then construct a general class of harmonic (2, 1)-forms

Φ1 = f(γ) Ψ1 , (2.22)

for any function f so long as dγ∧Ψ1 = 0. This orthogonality condition is obeyed by

γ =
Y Z

X
ei 2ν , (2.23)

as can be seen by calculating its exterior derivative:

dγ =
2γ

(x−y)(y−z)(z−x)
(
u(y−z)X ′ ǭ1−v(z−x)Y ′ ǫ2−w(x−y)Z ′ ǫ3

)
. (2.24)

We can consider the special case for which

Φ1 =
(Y Z)δ

Xδ+1
ei(2δ+1)ν ǭ1∧ǫ2∧ǫ3 , (2.25)

where δ is a continuous parameter. Due to the ν dependence, this field only preserves

U(1)2 of the U(1)3 isometry of the six-dimensional space. Although the full U(1)3

is preserved for δ = −1/2, the form field would blow up at the degeneracies of X ,
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Y and Z, which would lead to a singular surface in the ten-dimensional geometry.

In order for the singularity to be confined to X = 0, so that we have a reasonable

gravity description near the UV region of the dual field theory, we require that δ ≥ 0.

We find there exist the following (2, 1)-forms:

Φ1 = f
(Y Z
X

ei 2ν
) ei ν
X

ǭ1∧ǫ2∧ǫ3 ,

Φ2 = f
(XZ
Y

ei 2ν
) ei ν
Y
ǫ1∧ǭ2∧ǫ3 ,

Φ3 = f
(XY
Z

ei 2ν
) ei ν
Z
ǫ1∧ǫ2∧ǭ3 , (2.26)

Φ4 = a1A ǫ
1∧(ǭ2∧ǫ2−ǭ3∧ǫ3)+a2B ǫ2∧(ǭ3∧ǫ3−ǭ1∧ǫ1)

+ a3C ǫ
3∧(ǭ1∧ǫ1−ǭ2∧ǫ2) ,

Φ5 = b1Ax ǫ
1∧(ǭ2∧ǫ2−ǭ3∧ǫ3)+b2By ǫ2∧(ǭ3∧ǫ3−ǭ1∧ǫ1)

+ b3Cz ǫ
3∧(ǭ1∧ǫ1−ǭ2∧ǫ2) ,

where

A−1 = (y−z)2
√

(y−x)(z−x)X , B−1 = (x−z)2
√
(x−y)(z−y)Y ,

C−1 = (x−y)2
√

(x−z)(y−z)Z , (2.27)

and ai and bi are constants which satisfy the conditions a1+a2+a3 = 0 and b1+

b2+b3 = 0. Notice that the first three forms in (2.27) are related to each other by

interchanging the x, y and z coordinates, while the last two forms remain invariant.

This reflects the fact that the x, y and z coordinates appear in a completely symmetric

manner in the metric of the resolved cone over Labc. Φ1 has a singularity that is

confined to small distance, as do Φ4 and Φ5 if one performs the rescaling y → αy,

z → αz and then takes the limit α → 0. Φ4 and Φ5 have nontrivial flux, while Φ1

does not.

In the cohomogeneity-two limit, the resolved Labc cones reduce to the resolved Y pq

cones. In this limit, Φ4 and Φ5 reduce to the corresponding forms given in (2.13),

while the first three forms generalize those in (2.13) to include an arbitrary function

f . In particular, taking f = 1 reproduces the Φ1 and Φ2 in (2.13), whilst taking f to

be the inverse of its argument reproduces Φ3.
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3 D3-branes and the AdS/CFT correspondence

A supersymmetric D3-brane solution of the type IIB theory with six-dimensional

Calabi-Yau transverse space is given by

ds = H−
1
2 (−dt2+dx21+dx22+dx23)+H

1
2ds26 ,

F5 = G(5)+∗G(5) , G(5) = dt∧dx1∧dx2∧dx3∧dH−1 ,

F(3) = FRR
(3) +iFNS

(3) = mω(3) , (3.1)

with

6H = m2|ω(3)|2 . (3.2)

Here the 6 is a Laplacian of the Calabi-Yau metric ds26 and ω(3) is a harmonic

(2, 1)-form in ds26. We shall refer to this as a modified D3-brane solution, owing to

the inclusion of the additional 3-form. If this 3-form carries nontrivial flux, then it

corresponds to fractional a D3-brane.

We shall take the six-dimensional metric ds26 of the transverse space to be the

resolved cone over Labc. We first consider the case of vanishing m. It was shown in

[43, 44, 45] that the Klein-Gordon equation for the general AdS-Kerr-NUT solutions

constructed in [22] is separable. Since our metrics arise as the Euclideanization of the

supersymmetric limit of AdS-Kerr-NUT solutions, the corresponding equation for H

is hence also separable. To see this, we consider a real superposition of the ansatz

H = H1(x)H2(y)H3(z) e
2i(a0ψ−a1φ+a2 τ) . (3.3)

In general, this ansatz breaks the U(1)3 global symmetry.

The Laplace equation is then given by

0 =
1

(y−x)(z−x)
((X H ′

1)
′

H1
− (a0+a1x+a2x

2)2

X

)

+
1

(x−y)(z−y)
((Y H ′

2)
′

H2
− (a0+a1y+a2y

2)2

Y

)

+
1

(x−z)(y−z)
((Z H ′

3)
′

H3

− (a0+a1z+a2z
2)2

Z

)
, (3.4)

where a prime denotes a derivative with respect to the separated variable associated

with the function Hi. This equation can be expressed as three separate equations in
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x, y and z:

(XH ′
1)

′−
((a0+a1x+a2x2)2

X
+b0+b1x

)
H1 = 0 ,

(Y H ′
2)

′−
((a0+a1y+a2y2)2

Y
+b0+b1y

)
H2 = 0 ,

(Z H ′
3)

′−
((a0+a1z+a2z2)2

Z
+b0+b1z

)
H3 = 0 , (3.5)

where b0 and b1 are separation constants. These equations do not have explicit closed-

form solutions for general ai and bi. We shall consider the simplest solution obtained

by setting all of the ai and bi to zero and letting H depend on x only. The solution

is given by

H = c0−
c1 log(x−x1)

(x1−x2)(x1−x3)
+

c1 log(x−x2)
(x2−x1)(x2−x3)

+
c1 log(x−x3)

(x3−x1)(x3−x2)
. (3.6)

where x1, x2 and x3 are the three roots of X , satisfying

x1+x2+x3 = α+β , x1x2+x1x3+x2x3 = αβ , x1x2x3 = 2M . (3.7)

Consider the radial coordinate x with x1 ≤ x ≤ ∞. Then the function H has a

logarithmic divergence at x1.

We now consider solutions for which the 3-form ω(3) is turned on. A simple solution

can be obtained by rescaling y → αy, z → βz and then taking the limit α = β = 0.

The general construction of [19, 20] is recovered for the case of this class of resolved

Labc cones [17]. We can then take ω(3) to be the harmonic (2, 1)-form Ψ1 given by

(2.21). Then, for a certain choice of integration constants, the resulting H is given

by

H =
x

18M(x3−2M)
, (3.8)

which diverges at x3 = 2M .

The divergence of the H function in both (3.6) and (3.8) corresponds to a naked

singularity in the short-distance region of the geometry. This singularity of the D3-

brane solution arises even in the case of the resolved cone over Y 2,1, which itself is

completely regular [24]. This singularity is due to the fact that the D3-branes have

been smeared over the blown-up 4-cycle. A shell of uniformly distributed branes

tends to be singular at its surface. For the case of the resolved conifold, in which

there is a blown-up 2-cycle, a completely regular solution has been found for which
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the D3-branes are stacked at a single point [26]. This involves solving the equations

(3.5) for the case of T 1,1 for which there is a delta function source. The solution is

expressed as an expansion in terms of the angular harmonics. It would be interesting

to explore than analogous construction for the resolved Labc cones. All of these other

examples, with the sole exception of Y 2,1, will still have orbifold singularities.

Another possible way in which regular solutions can be obtained is to blow up a

3-cycle instead of a 4-cycle. Then an appropriate 3-form would prevent the 3-cycle

from collapsing, as in the case of the deformed conifold [32]. As already discussed in

the previous section, while there exists an obstruction to complex deformations of Y pq

cones there are other subsets of the Labc cones which do allow for complex structure

deformations [37, 38, 12]. However, the explicit metrics for these deformed Labc cones

are not known.

Although the solution describing D3-branes on a resolved Labc cone becomes sin-

gular at short distance, we can still use this background at large distance to study

various flows of the quiver gauge theory in the region of the UV conformal fixed point.

At large x, (3.2) becomes

4

x2
∂x

(
X∂xH

)
= m2|ω(3)|2 , (3.9)

where X is given by (2.16). Note that this equation applies for arbitrary α and β,

since for large x we can consistently neglect the dependence ofH on the non-azimuthal

“angular” coordinates y and z. Again considering the case of the self-dual harmonic

(2, 1)-form Ψ1 given by (2.21), the resulting asymptotic expansion of H is

H =
Q

x2

(
1+

c2
x
+
c4
x2

+
c6
x3

+· · ·
)
, (3.10)

where

c2 =
2

3
(α+β) ,

c4 =
1

2
(α2+αβ+β2) ,

c6 =
1

30

(m2

Q
+12(α2+β2)(α+β)+2M

)
. (3.11)

We have set an additive constant to zero so that the geometry is asymptotically

AdS5×Labc. This can be seen from the leading x−2 ∼ r−4 term in H (since x has
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dimension two, we can take x ∼ r2 for large x). The transformation properties and

dimensions of the operators being turned on in the dual field theory can be read off

from the linearized form of the supergravity solution (3.1). The metric perturbations

due to H have the same form as those within the metric ds26 itself. Therefore, from

the asymptotic expansion of H given in (3.10), we can read off that there are scalar

operators of dimension two, four and six with expectation values that go as c2, c4 and

c6, respectively. This is consistent with the perturbations of the 2-form and 4-form

potentials. We shall now discuss the gauge theory interpretation of the blown-up

2-cycles, as well as the 3-form, in more detail.

Blown-up 2-cycle

First, we consider the case with vanishing M , for which the six-dimensional space

is the Labc analog of the resolved conifold, in the sense that there is a blown-up 2-

cycle. The volume of the 2-cycle is characterized by the parameters α and β. This is

a global deformation, in that it changes the position of the branes at infinity [18].

The parameters α and β specify the expectation values of dimension n non-mesonic

scalar operators in the dual gauge theory. For the case β = −α, c2 and c6 vanish,

while c4 can only vanish for α = β = 0. To identify the specific dimension-two

operator whose expectation value goes as c2, it is helpful to consider the description

of the resolved cone over Labc in terms of four complex numbers zi which satisfy the

constraint
4∑

i=1

Qi |zi|2 = t , (3.12)

where one then takes the quotient by a U(1) action [9]. The parameter t is the area

of the blown-up CP 1 and corresponds to the coefficient of the Fayet-Iliopoulos term

in the Lagrangian of the field theory. The zi correspond to the lowest components of

chiral superfields. This can be described as a gauged linear sigma model with a U(1)

gauge group and 4 fields with charges Qi. Then the above constraint corresponds to

setting the D-terms of the gauged linear sigma model to zero to give the vacuum. For

the Labc spaces, the Qi are given by Qi = (a,−c, b,−d) where d = a+b−c [11]. The

requirement
∑4

i=1Qi = 0 guarantees that the 1-loop β-function vanishes, so that the

sigma model is Calabi-Yau.
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Since t acts as a natural order-parameter in the gauge theory, from (3.12) it is rea-

sonable to suppose that blowing up the 2-cycle corresponds to giving an expectation

value that goes as c2 to the dimension-two scalar operator4

K = aAαĀ
α̇−cBα̇B̄

α̇+bCαC̄
α−dDα̇D̄

α̇ . (3.13)

This operator lies within the U(1) baryonic current multiplet. Since this conserved

current has no anomalous dimension, the dimension of K is protected. K reduces to

the operator discussed in [18] for the case of a resolved cone over T 11/Z2, for which

a = b = c = d = 1.

Blown-up 4-cycle

For nonvanishing M in the function X , one generically blows up a 4-cycle. Unlike

the case of a blown-up 2-cycle, this is a local deformation since it does not change the

position of the branes at infinity [18]. In the limit of vanishing α and β, one recovers

the general construction obtained in [19, 20] that has been recently discussed in

[16, 17, 18]. Also note that c6 vanishes for the appropriate values of M , α and β.

It has been shown that the number of formal Fayet-Iliopoulos parameters can be

matched with the possible deformations, which is suggestive that the dimension-six

operator that is turned on is associated with the gauge groups in the quiver. Although

the specific operator has not been identified, it has been proposed that they are of

the schematic form [18]

Oi =
∑

g

ci,gWgW̄g , (3.14)

where the gauge groups in the quiver have been summed over, Wg is an operator

associated with the field strength for the gauge group g, and ci,g are constants. The

dimension-six operator might also have contributions from the bifundamental fields

of the form

a1AαĀ
αBα̇B̄

α̇CβC̄
β+a2AαĀ

αBα̇B̄
α̇Dβ̇D̄

β̇+a3AαĀ
αCβC̄

βDβ̇D̄
β̇+a4Bα̇B̄

α̇CβC̄
βDβ̇D̄

β̇,

(3.15)

where the ai are constants. It is proposed that a particular combination of all of

these terms in (3.14) and (3.15) correspond to the blown-up 4-cycle5. One possibility

4We thank Amihay Hanany and Igor Klebanov for correspondence on this point.
5We thank Sergio Benvenuti for correspondence on this point.
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is that the contributions from the bifundamental fields in (3.15) are present only when

α and β are nonvanishing.

Turning on the 3-form

Turning on a 3-form results in the ranks of some of the gauge groups of the dual

quiver gauge theory being reduced with decreasing energy scale. For the case in

which the 3-form has nontrivial flux, the theory undergoes a Seiberg duality cascade

[27, 28, 32]. On the other hand, the 3-form Ψ1 given by (2.21) does not have nontrivial

flux. For a case such as this, it has been proposed that the reduction in ranks of gauge

groups is due to Higgsing [34]. In particular, from (3.10), we see that the parameterm

associated with the 3-form also contributes to the expectation value c6 of a dimension-

six scalar operator. An additional effect of this 3-form is that the U(1) R-symmetry

is broken. The theory still preserves N = 1 supersymmetry.

4 Eight-dimensional resolved Calabi-Yau cones

4.1 Cohomogeneity-two metrics

We now turn to eight-dimensional Calabi-Yau spaces, which can be used to construct

M2-brane solutions of eleven-dimensional supergravity. Before considering the general

cohomogeneity-four resolved cones over Lpqrs, we shall first look at the cohomogeneity-

two metrics, which can be built over an S2×S2 base space. These metrics are given

by [21, 22]

ds28 = 1
4
u2dx2+ 1

4
v2dy2+

1

u2

[
dτ+

y

3α
(σ3+σ̃3)

]2

+
1

v2

[
dτ− x

3α
(σ(3)+σ̃3)

]2
+c2(σ2

1+σ
2
2+σ̃

2
1+σ̃

2
2)

u2 =
x+y

X
, v2 =

x+y

Y
, c2 =

xy

6α
,

X = x(x+α)−2µ

x2
, Y = y(α−y)+2ν

y2
, (4.1)

Completely regular examples were discussed in [25].
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Calabi-Yau structure

We can define the vielbein basis

e1 = 1
2
u dx , e2 = −1

u
(dτ+

y

3α
(σ3+σ̃3)) , e3 = 1

2
v dy , (4.2)

e4 =
1

v
(dτ− x

3α
(σ3+σ̃3)) , e5 = c σ1 , e6 = c σ2 , e7 = c σ̃1 , e8 = c σ̃2 ,

and then the complex vielbein

ǫ1 = e1+i e2 , ǫ2 = e3+i e4 , ǫ3 = e5+i e6 , ǫ4 = e7+i e8 . (4.3)

The Kähler 2-form and holomorphic (4, 0)-form are given by

J = i
2
ǫi∧ǭi , (4.4)

and

G(4) = e−4iτǫ1∧ǫ2∧ǫ3∧ǫ4 . (4.5)

Harmonic (2, 2)-forms

We find four self-dual (2, 2)-forms; they are given by

Φ1 =
(ǭ1∧ǫ1+ ǭ2∧ǫ2)∧(ǭ3∧ǫ3+ ǭ4∧ǫ4)−2(ǭ1∧ǫ1∧ǭ2∧ǫ2+ ǭ3∧ǫ3∧ǭ4∧ǫ4)

x3y3

Φ2 =
(ǭ1∧ǫ1−ǭ2∧ǫ2)∧(ǭ3∧ǫ3−ǭ4∧ǫ4)

xy(x+y)2
,

Φ3 =
e−4iτ (ǭ1∧ǭ2∧ǫ3∧ǫ4+ǫ1∧ǫ2∧ǭ3∧ǭ4)

x2y2XY
,

Φ4 =
(ǭ1∧ǫ2−ǫ1∧ǭ2)∧(ǭ3∧ǫ3+ ǭ4∧ǫ4)

xy
√
XY

. (4.6)

Notice that Φ1 and Φ2 are square integrable, in that they are well behaved at both

small and large asymptotic distance. For the cases in which the eight-dimensional

Calabi-Yau spaces are regular [25], these harmonic forms can be used to construct

completely non-singular M2-brane solutions to eleven-dimensional supergravity.
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4.2 Cohomogeneity-four metrics on resolved cones over Lpqrs

We now turn to the general cohomogeneity-four metrics on resolved Calabi-Yau cones

over the seven-dimensional Einstein-Sasaki spaces Lpqrs, which can be written as [22]

ds28 = 1
4
(u21 dx

2
1+u

2
2 dx

2
2+u

2
3 dx

2
3+u

2
4 dx

2
4)

+
1

u21
[dτ+(x2+x3+x4)dφ+(x2x3+x2x4+x3x4)dψ+x2x3x4dχ]

2

+
1

u22
[dτ+(x1+x3+x4)dφ+(x1x3+x1x4+x3x4)dψ+x1x3x4dχ]

2

+
1

u23
[dτ+(x1+x2+x4)dφ+(x1x2+x1x4+x2x4)dψ+x1x2x4dχ]

2

+
1

u24
[dτ+(x1+x2+x3)dφ+(x1x2+x1x3+x2x3)dψ+x1x2x3dχ]

2 , (4.7)

where

u21 =
(x2−x1)(x3−x1)(x4−x1)

X1
, u22 =

(x1−x2)(x3−x2)(x4−x2)
X2

,

u23 =
(x1−x3)(x2−x3)(x4−x3)

X3
, u24 =

(x1−x4)(x2−x4)(x3−x4)
X4

,

X1 = x1(a−x1)(b−x1)(c−x1)−2M1 ,

X2 = x2(a−x2)(b−x2)(c−x2)−2M2 ,

X3 = x3(a−x3)(b−x3)(c−x3)−2M3 ,

X4 = x4(a−x4)(b−x4)(c−x4)−2M4 . (4.8)

Calabi-Yau structure

We shall choose the vielbein basis

e1 = 1
2
u1 dx1 , u3 =

1
2
u2 dx2 , e5 = 1

2
u3 dx3 , e7 = 1

2
u4 dx4 ,

e2 =
1

u1
[dτ+(x2+x3+x4)dφ+(x2x3+x2x4+x3x4)dψ+x2x3x4dχ] ,

e4 =
1

u2
[dτ+(x1+x3+x4)dφ+(x1x3+x1x4+x3x4)dψ+x1x3x4dχ] ,

e6 =
1

u3
[dτ+(x1+x2+x4)dφ+(x1x2+x1x4+x2x4)dψ+x1x2x4dχ] ,

e8 =
1

u4
[dτ+(x1+x2+x3)dφ+(x1x2+x1x3+x2x3)dψ+x1x2x3dχ] . (4.9)

The holomorphic vielbein are then given by

ǫ1 = e1+i e2 , ǫ2 = e3+i e4 , ǫ3 = e5+i e6 , ǫ4 = e7+i e8 . (4.10)
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Defining

J =
i

2
(ǭ1∧ǫ1+ ǭ2∧ǫ2+ ǭ3∧ǫ3+ ǭ4∧ǫ4) ,

Ω = ei ν ǫ1∧ǫ2∧ǫ3∧ǫ4 , (4.11)

where

ν = 4τ+3(a+b+c)φ+2(ab+bc+ca)ψ+abc χ , (4.12)

it is straightforward to verify that

dJ = 0 , dΩ = 0 , (4.13)

and hence that the metric is indeed Ricci-flat Kähler, with J being the Kähler form

and Ω the holomorphic (4, 0)-form.

Harmonic (3, 1)-forms

We find that harmonic (3, 1)-forms can be constructed as follows. First, it can be

verified that

G(3,1) =
1

X1
ei ν ǭ1∧ǫ2∧ǫ3∧ǫ4 (4.14)

is closed, and hence harmonic. Next, we define the function

γ =

√
X2X3X4

X1
ei ν , (4.15)

which can be shown to satisfy the relation

dγ =
u1 e

i ν

u2u3u4 (x1−x2)(x1−x3)(x1−x4)
(
u1 (x2−x3)(x2−x4)(x4−x3)X ′

1 ǭ
1

−u2 (x3−x1)(x3−x4)(x4−x1)X ′
2 ǫ

2+u3 (x1−x2)(x4−x1)(x4−x2)X ′
3 ǫ

3

+u4 (x1−x2)(x3−x1)(x2−x3)X ′
4 ǫ

4
)
, (4.16)

where X ′
i denotes the derivative of Xi with respect to its argument xi. It therefore

follows that dγ∧G(3,1) = 0, and so

Φ(3,1) = f(γ)G(3,1) (4.17)

is a harmonic (3, 1)-form for any function f . In particular, we have a family of

harmonic (3, 1)-forms given by

Ψ(3,1) =
Xδ

2 X
δ
3 X

δ
4

Xδ+1
1

e(2δ+1) i ν ǭ1∧ǫ2∧ǫ3∧ǫ4 (4.18)
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for any constant δ. For nonzero δ, these forms preserve only a U(1)3 subgroup of

the U(1)4 isometry of the eight-dimensional space. Note that Ψ(3,1) has a singularity

only at short distance if δ ≥ 0, where we have taken x1 to be the radial direction.

Additional harmonic (3, 1)-forms can be constructed by permuting the xi directions,

but these forms have singularities for all x1. They are analogous to the (2, 1)-forms Φ1,

Φ2 and Φ3 in (2.27) for a six-dimensional space, and they do not support nontrivial

flux.

Harmonic (2, 2)-forms

We can also construct harmonic (2, 2)-forms as follows. We define (2, 2)-forms

G(2,2) = f (ǭ1∧ǫ1∧ǭ2∧ǫ2+ ǭ3∧ǫ3∧ǭ4∧ǫ4)

+g (ǭ1∧ǫ1∧ǭ3∧ǫ3+ ǭ2∧ǫ2∧ǭ4∧ǫ4)
+h (ǭ1∧ǫ1∧ǭ4∧ǫ4+ ǭ2∧ǫ2∧ǭ3∧ǫ3) , (4.19)

where f , g and h are functions of (x1, x2, x3, x4). Imposing the closure of G(2,2) leads

to three independent solutions for f , g and h, namely

f = g = h = 1 , (4.20)

f =
1

(x1−x2)2(x1−x3)(x2−x4)(x3−x4)2
,

g =
x1 (2x4−x2−x3)+x2 (2x3−x4)−x3 x4
(x1−x2)2(x1−x3)2(x2−x4)2(x3−x4)2

,

h =
1

(x1−x2)(x1−x3)2(x2−x4)2(x3−x4)
, (4.21)

and

f =
1

(x1−x3)(x2−x3)2(x1−x4)2(x2−x4)
,

g =
1

(x1−x3)2(x2−x3)(x1−x4)(x2−x4)2
,

h =
x1 (x3+x4−2x2)+x2 (x3+x4)−2x3 x4
(x1−x3)2(x2−x3)2(x1−x4)2(x2−x4)2

. (4.22)

These forms are somewhat analogous to the (2, 1)-forms Φ4 and Φ5 given in (2.27)

for a six-dimensional space. The first solution, (4.20), is just the harmonic (2, 2)-form
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J∧J . It follows from (4.19) that J∧G(2,2) is proportional to (f+g+h), and so J∧G(2,2)

is non-zero for (4.20). However, each of the solutions (4.21) and (4.22) satisfies

f+g+h = 0, and so these two harmonic (2, 2)-forms satisfy the supersymmetric

condition

J∧G(2,2) = 0 . (4.23)

Notice also that these harmonic (2, 2)-forms are square integrable. These can be used

to construct modified M2-brane solutions, which have only orbifold-type singularities.

Note that none of these cohomogeneity-four Calabi-Yau spaces are completely regular

[25].

4.3 M2-brane solutions

We can use these eight-dimensional spaces, and the harmonic 4-forms which they sup-

port, to construct a modified M2-brane solution to eleven-dimensional supergravity,

given by

ds211 = H−2/3(−dt2+dx21+dx22)+H1/3ds28 ,

F(4) = dt∧dx1∧dx2∧dH−1+mL(4) , (4.24)

where

H = − 1

48
m2L2

(4)
, (4.25)

and L(4) is an (anti)self-dual harmonic 4-form on the eight-dimensional space with

the metric ds28.

Let us first consider the case with m = 0, for which the Laplace equation on the

Calabi-Yau metric is separable. The solution for general dimensionality is presented

in the appendix B. Here we just give a solution for the eight-dimensional case that

depends only on the radial variable x1; it is given by

H =

∫ x1 3Q

X(x′1)
dx′1 . (4.26)

Thus in the asymptotic region at large x1, the function H has the behavior

H =
Q

x31

(
1+

c2
x1

+· · ·
)
, where c2 =

3

4
(α+β+γ) . (4.27)
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We have taken an arbitrary additive constant to zero, so that the geometry is asymp-

totically AdS4×Lpqrs. Since x1 has dimension two, we see that there is a non-mesonic

dimension-two scalar operator being turned on with expectation value c2.

It is especially interesting to construct M2-brane solutions using one of the square-

integrable harmonic (2, 2)-forms that we found previously, since this guarantees that

with the appropriate integration constants the only singularities are of orbifold type.

This is because the 4-form prevents the blown-up 4-cycle from collapsing. Moreover,

examples of regular eight-dimensional Calabi-Yau spaces that have been discussed

in [25] can be used to construct completely non-singular M2-brane solutions. The

resulting geometry smoothly interpolates between AdS4×Lpqrs asymptotically, and a

direct product of Minkowski3 and a compact space at short distance. Many examples

of cohomogeneity-one solutions of this type were constructed in [49, 50, 51]. Although

not much is known even about the UV conformal fixed point of the dual three-

dimensional N = 2 super Yang-Mills field theory, based on the geometrical properties

of the supergravity background it flows to a confining phase in the IR region.

5 Harmonic forms on higher-dimensional resolved

cones

In this section, we extend some of the constructions of harmonic middle-dimension

forms to the case of higher-dimensional metrics on the resolutions of cones over

Einstein-Sasaki spaces. We take as our starting point the local Ricci-flat Kähler

metrics in dimension D = 2n+4 that were considered in [25]:

ds̃2 =
x+y

4X
dx2+

x+y

4Y
dy2+

X

x+y

[
dτ+

y

α
σ
]2
+

Y

x+y

[
dτ− x

α
σ
]2
+
xy

α
dΣ2

n

σ = dψ+A , X = x(x+α)−2µ

xn
, Y = y(α−y)+2ν

yn
, (5.1)

where dΣ2
n is a metric on a 2n-dimensional Einstein-Kähler space Z, satisfying Rab =

2(n+1) gab, with Kähler form J = 1
2
dA. (We have made some minor changes of

coordinates compared to the metric presented in [25].) For convenience, we shall set

the constant α to unity. This can always be done, when α 6= 0, by means of coordinate

scalings together with an overall rescaling of the Ricci-flat metric. The special case
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α = 0 can be recovered via a limiting procedure.

Next, we define the 2-forms

ωx =
1
2
dx∧(dτ+y σ) , ωy =

1
2
dy∧(dτ−xσ) , ω = xy J . (5.2)

It can easily be verified that Ĵ ≡ ωx−ωy+ω is closed and, in fact, this is the Kähler

form of the Ricci-flat Kähler metric (5.1). In the case that n is even (n = 2m), we

find that the middle-degree form

G(2m+2) =
1

(xy)2m+1

[
ωx∧ωy∧ωm−1+

1

m+1
(ωx−ωy)∧ωm−

1

m(m+1)
ωm+1

]
(5.3)

is closed. Since it is also self-dual, it follows that it is a harmonic form. This gener-

alises the harmonic (2, 2)-form Φ1 in eight dimensions given in (4.6) and is somewhat

analogous to the (2, 1)-forms Φ4 and Φ5 given in (2.27) for a six dimensions.

Further harmonic forms can be obtained if one takes the Einstein-Kähler base

metric dΣ2
n to be a product of Einstein-Kähler metrics. For example, if we choose it

to be the product of metrics on two copies of CPm (recall that we are considering the

case where n = 2m is even), with Kähler forms J1 and J2 respectively (so J = J1+J2),

then defining

ω1 = xy J1 , ω2 = xy J2 , (5.4)

we find that

G̃(2m+2) =
1

(x+y)2 (xy)m
(ωx+ωy)∧

m∑

p=0

(−1)p ωm−p
1 ∧ωp2 (5.5)

is closed and self-dual, and therefore it is harmonic.

6 Conclusions

We have investigated the Kähler moduli associated with blowing up a 2-cycle or

4-cycle on Calabi-Yau cones over the Labc spaces. This yields a countably infinite

number of backgrounds with ALE singularities on which perturbative string dynamics

is well-defined. Although adding D3-branes induces a power-law type singularity at

short distance, one can still use the AdS/CFT dictionary to relate the blown-up

cycles to deformations of the dual quiver gauge theory close to the UV conformal
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fixed point. In particular, we identify the non-mesonic dimension-two real scalar

operator that acquires a vev, thereby generalizing the state/operator correspondence

for the resolved conifold over T 11 [14] and T 11/Z2 [18] to resolved cones over the

Labc spaces. On the other hand, blowing up a 4-cycle corresponds to a dimension-six

non-mesonic scalar operator getting a vev.

The resolved cones over the cohomogeneity-two Labc spaces support various har-

monic (2, 1)-forms, some of which depend nontrivially on three non-azimuthal coordi-

nate directions. These forms can be further generalized by a multiplicative function,

so long as the exterior derivative of this function satisfies a certain orthogonality

condition. In particular, there are harmonic (2, 1)-forms which depend on continu-

ous parameters. 3-forms carrying nontrivial flux correspond to fractional D3-branes,

while those which do not correspond to giving a vev to a dimension-six operator.

For the D3-brane solutions constructed with resolved cones over Labc, we have

restricted ourselves to the case in which the D3-branes are smeared over the blown-

up cycle. As we already mentioned, this yields to a power-law singularity at short

distance. For solutions involving a 3-form field, one may be able to smooth out this

singularity by a complex deformation of the Calabi-Yau space that results in a blown-

up 3-cycle. Although it has been shown that there are obstructions to the existence

of complex deformations of cones over Y pq spaces, there are other subsets of the Labc

cones which do allow for complex structure deformations [37, 38, 12]. It would be

useful to construct the explicit metrics describing these deformed Labc cones, as well

as the non-singular supergravity solutions that describe fractional D3-branes on these

spaces.

Alternatively, one can consider stacking the D3-branes at a single point. For

the case of the resolved conifold, this has been shown to yield a completely regular

solution [26]. Perhaps there are analogous constructions with the resolved cones over

Labc. With the exceptions of T 1,1, T 1,1/Z2 and Y 2,1, the resolved Labc cones have

orbifold singularities. Although these singularities will remain there when D3-branes

are stacked at a single point, perturbative string dynamics is well-defined on such

backgrounds.

One can also consider fibering a D3-brane worldvolume direction (which need not

be compact) over a resolved Labc cone in such a way that the resulting geometry
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only has orbifold-type singularities. For the case of the resolved conifold, such a

D3-brane solution has already been constructed and is completely regular, and it is

also supersymmetric [46]. The corresponding D3-brane solutions for the resolved Labc

cones are currently being investigated [47].

We also discussed the geometry of higher-dimensional Calabi-Yau spaces with

blown-up cycles, as well as the various harmonic forms which live on them. In par-

ticular, we have found that eight-dimensional resolved cones over the Lpqrs spaces

support harmonic 4-forms that are square integrable. They can be used to construct

M2-brane solutions of eleven-dimensional supergravity which have only orbifold-type

singularities. Unfortunately, not much is known about the dual three-dimensional

N = 2 gauge theories, other than that they flow from a UV conformal fixed point to

a confining phase in the IR region.

Lastly, the type IIB supergravity backgrounds dual to certain marginal deforma-

tions (β deformations) of the conformal fixed point of the Y pq and Labc quiver gauge

theories were obtained in [48, 52]. The solution-generating method works for any

gravity solution with U(1)×U(1) global symmetry. It might be interesting to see if

these deformations can be applied to the gravity solutions discussed in this paper,

since they possess the necessary global symmetry.
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A Complex structure and first-order equations

In this appendix, we construct Ricci-flat Kähler spaces in dimension D = 2n+4,

built over an Einstein-Kähler base space of real dimension 2n with metric dΣ2
n. We

normalise this metric so that it satisfies Rij = 2(n+1)gij. Its Kähler form will be

27



written as J = 1
2
dA. We may also assume that it admits a holomorphic (n, 0)-form

Ω, satisfying (see, for example, section 4 of [23])

dΩ = i (n+1)A∧Ω . (A.1)

The ansatz for the (3n+4)-dimensional Ricci-flat Kähler metrics will be

dŝ2 = u2dx2+v2dy2+a2(dτ+f1σ)
2+b2(dτ+f2σ)

2+c2dΣ2
n , (A.2)

where a, b, c, u, v, f1 and f2 are functions of x and y, and

σ = dψ+A . (A.3)

We define the vielbein

ê1 = udx , ê2 = a(dτ+f1σ) , ê3 = vdy , ê4 = b(dτ+f2σ) , êi = cei ,

(A.4)

where ei is a vielbein for the Einstein-Kähler base metric dΣ2
n.

We make the ansatz

Ĵ = e1∧e2+e3∧e4+c2J (A.5)

for the Kähler form. It is then natural to define a complex vielbein by

ǫ̂1 = ê1+i ê2 , ǫ̂2 = ê3+i ê4 , ǫ̂i = c ǫi , (A.6)

where ǫi is a complex vielbein for the base metric dΣ2
n. We also make the ansatz

Ω̂ = eiατ+iβψ cn ǫ̂1∧ǫ̂2∧Ω (A.7)

for the holomorphic (n+2, 0)-form. The conditions for dŝ2 to be Ricci flat and Kähler

are then given by

dĴ = 0 , dΩ̂ = 0 . (A.8)

One immediately finds that the constant β should be chosen to be

β = n+1 . (A.9)

However, the constant α can be left arbitrary.
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We now obtain the first-order equations:

dĴ = 0 : (bv)′−(au)̇ = 0 , (c2)′−2auf1 = 0 , (c2)̇−2bvf2 = 0 ,

dΩ̂ = 0 : αuvcn−(avcn)′−(bucn)̇ = 0 ,

αbucnf2−(n+1)bucn+[abcn(f1−f2)]′ = 0 ,

αavcnf1−(n+1)avcn−[abcn(f1−f2)]̇ = 0 . (A.10)

The constant α appearing in the first-order equations (A.10) is always trivial, in the

sense that it can be set to any chosen non-zero value without loss of generality. To

see this, we perform the following rescaling of coordinates and functions:

x→ λ x , y → λ y , τ → λ τ ,

c→ λ c , f1 → λ f1 f2 → λ f2 , (A.11)

whilst leaving the functions a, b, u and v unscaled. It can be seen that the effect of

these rescalings is to scale the metric dŝ2 in (A.2) according to

dŝ2 → λ2 dŝ2 . (A.12)

The rescalings have the effect of replacing α by λα in the first-order equations (A.10),

thus giving

dĴ = 0 : (bv)′−(au)̇ = 0 , (c2)′−2auf1 = 0 , (c2)̇−2bvf2 = 0 ,

dΩ̂ = 0 : λαuvcn−(avcn)′−(bucn)̇ = 0 ,

λα bucnf2−(n+1)bucn+[abcn(f1−f2)]′ = 0 ,

λα avcnf1−(n+1)avcn−[abcn(f1−f2)]̇ = 0 . (A.13)

Since a rescaling of a Ricci-flat metric by a non-zero constant leaves it Ricci-flat, it

follows that the constant λ can be chosen at will, and so no generality is lost by

setting α to any desired finite and non-zero value.
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B Separability of Laplacian on Calabi-Yau metrics

We consider the Calabi-Yau metrics obtained in [21, 22]. The metric can be expressed

as

ds2 =

n∑

µ=1

[Uµ dx2µ
4Xµ

+
Xµ

Uµ
(

n−1∑

i=0

Widφi)
2
]
,

Xµ = xµ

n−1∏

i=1

(αi−xµ)−2ℓµ , Uµ =

n∏

ν=1

′ (xν−xµ) , (B.1)

where Wi is defined by
n∏

µ=1

(1+qxµ) ≡
n−1∑

i=0

Wi q
i+1 . (B.2)

It turns out that the equation H = 0 is separable in the xµ coordinates, where

is the Laplacian taken on the above metric. (The separability for the more general

non-extremal Kerr-NUT-AdS metrics was shown explicitly in [43, 44, 45]. Making

the ansatz

H =
( n∏

µ=1

Hµ(xµ)
)
exp

(
2i

n−1∑

i=0

(−1)iaiφn−1−i

)
, (B.3)

for the harmonic function, we find that the Hµ(xµ) satisfy

(XµH
′
µ)

′−
((

∑n−1
i=0 ai x

i
µ)

2

Xµ
+

n−2∑

i=1

bix
i
µ

)
Hµ = 0 , (B.4)

where a prime on Hµ or Xµ denotes a derivative with respect to its argument xµ.

The system thus has 2n−1 independent separation constants a0, a1, . . . an−1 and

b0, b1, . . . , bn−2.
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[49] M. Cvetič, H. Lü and C.N. Pope, Brane resolution through transgression, Nucl.

Phys. B 600, 103 (2001), hep-th/0011023.
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