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ABSTRACT

The gauge transformations of p-form fields in supergravity theories acquire a non-

commuting character when one introduces potentials both for the theory’s original field

strengths and for their duals. This has previously been shown in the “doubled” formalism

for maximal supergravities, where a generalised duality relation between original and dual

field strengths replaces the equations of motion. In the doubled formalism, the gauge trans-

formations generate a superalgebra, and the corresponding symmetries have accordingly

been called “superdualities.” The corresponding Noether charges form a representation of

the cohomology ring on the spacetime manifold. In this paper, we show that the gauge

symmetry superalgebra implies certain non-trivial relations among the various p-brane ten-

sions, which can straightforwardly be read off from the superalgebra commutation relations.

This provides an elegant derivation of the brane-tension relations purely within a given the-

ory, without the need to make use of duality relations between different theories, such as

the type IIA/IIB T-duality, although the results are consistent with such dualities. We

present the complete set of brane-tension relations in M-theory, in the type IIA and type

IIB theories, and in all the lower-dimensional maximal supergravities. We also construct

a doubled formalism for massive type IIA supergravity, and this enables us to obtain the

brane-tension relations involving the D8-brane, purely within the framework of the mas-

sive IIA theory. We also obtain explicit transformations for the nine-dimensional T-duality

between the massive type IIA theory and the Scherk-Schwarz reduced type IIB theory.
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1 Introduction

A new formulation of the equations of motion in maximal supergravities was recently de-

veloped in [1], in which every field in the theory, with the exception of gravity itself, is

augmented by a “double” field of the dual degree. Thus in general in D dimensions each

potential of degree n is augmented by its double, of degree D − n − 2. In this approach

the doubling is performed even on the dilatons and all other scalar fields, corresponding

to n = 0. The effect of this doubling is that, with the exception of the Einstein equation,

all the other bosonic equations of motion are recast into a first-order form. In fact, as

was shown in [1], they can all be recast in the form of an algebraic condition on a single

generalised field strength that is subject to a “twisted self-duality” condition.

One of the intriguing features of the doubled system is that when one looks at the

extended set of gauge transformations for the entire set of fields, one encounters non-

commutativities that were not seen in the analogous gauge transformations for the original

system of fields. By associating Lie algebra generators with each field in the extended sys-

tem, one can thus construct an associated symmetry algebra. Interestingly enough, since

the generators associated with forms of odd degrees must themselves be odd (i.e. fermionic),

one generally finds that the algebra encoding the gauge symmetry transformations is a Lie

superalgebra [1]. (The only exception to this among the maximal supergravities is the case

of the type IIB theory in D = 10, for which all the generators are bosonic.) Formulating the

system of bosonic field equations as a twisted self-duality condition is achieved by exponen-

tiating the superalgebra generators, with the various gauge potentials as parameters, and

constructing a generalised field strength G = dV V−1. The twisted self-duality condition is

then expressed as ∗G = S G, where S is a pseudo-involution operator that maps between

the generators of the original fields and their doubles [1].

In fact, as we shall discuss in this paper, a careful inspection shows that the non-

commutativity of certain gauge transformations can already be seen in the framework of

the canonical formalism even before the introduction of the dual gauge potentials. This

arises when one considers the integrated Noether charges as generators of canonical trans-

formations. Non-vanishing Noether charges for local symmetries occur only for “large”

gauge transformations, corresponding to cohomologically nontrivial p-form gauge parame-

ters. As a consequence, one finds that the Poisson bracket algebra of the integrated charges

gives a representation of the cohomology ring on the underlying spacetime manifold.

The non-commutativity of the gauge transformations allows one to establish a set of

relations among the various p-brane “tensions” (which are perhaps better thought of as
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the units of the corresponding electric charges). By using the superalgebra in the doubled

formalism, one can straightforwardly arrive at relations between the p-brane tensions that

could previously be derived only using rather intricate arguments based on duality transfor-

mations and various D-brane techniques [2,3,4,5,6,7,8,9,10]. Some of the relations that we

shall present in this paper have appeared previously in the literature [2, 3, 4, 5, 6, 7, 8, 9, 10],

but many are new.

In section 2 we shall present a canonical discussion of the gauge transformations, and

shall show how the Poisson brackets of the gauge generators can be non-vanishing even when

the gauge transformations might ostensibly appear to be abelian. The explanation for this

apparent discrepancy is related to the subtle distinction between gauge transformations with

exact gauge parameters and transformations with closed gauge parameters. In fact, pre-

cisely the same subtlety was shown in [1] to be responsible for the non-commutativity in the

doubled formalism. In section 3 we shall exploit this non-commutativity in order to derive

relations between the tensions for the various p-branes supported by the fields in the eleven-

dimensional and ten-dimensional maximal supergravity theories. As we shall show, there is

in general a one-to-one correspondence between the set of non-vanishing (anti)commutators

in the Lie superalgebra, and the set of brane-tension relations. In section 4 we shall extend

this discussion to all the lower-dimensional maximal supergravities. One interesting feature

is that certain sets of brane-tension relations are themselves inter-related, as a consequence

of a discrete set of relations among the various non-trivial commutators in the Lie superal-

gebras. This application of the so-called “jade rule”1 [1] of the Lie superalgebras leads to a

significant simplification of the structures of the brane-tension relations in the theories.

The brane-tension relations in the various dimensions can be inter-related also by means

of dimensional reduction, and also by exploiting the T-duality symmetry that relates the

type IIA and type IIB theories. We shall discuss this is detail in sections 4 and 5. In order

to obtain a complete picture, it is necessary to extend the discussion of the type IIA theory

to include the massive IIA supergravity first constructed in [11]. The main topic covered

in section 5 is the construction of the doubled system of equations for the massive IIA

theory, yielding an extended Lie superalgebra with additional (anti)commutators related

to tension relations involving the D8-brane. Finally, in an extensive appendix, we derive

explicit results for the T-duality between the massive IIA and the type IIB supergravities.

This involves performing a Kaluza-Klein reduction of the massive IIA theory to D = 9, and

a generalised Scherk-Schwarz reduction of the type IIB theory to D = 9. We do this at

1The term “jade rule” was a more lapidary variant of general rules such as the golden rule, etc.
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the level of the full doubled systems. In the last subsection of the appendix, we derive the

explicit field transformations that map between the nine-dimensional massive IIA and IIB

theories.

2 Local symmetry Noether charges and non-commutativity

of supergravity gauge transformations

Let us begin with an elementary discussion of the gauge transformations in supergravity

theories and their non-commutativity. We shall consider this issue both at the level of the

gauge transformations themselves and also at the level of the corresponding charges. For

this, we shall first need to consider the nature of the Noether charges that can be associated

to gauge symmetries.

It is well known that if the Lagrangian of a theory is left invariant by some set of group

transformations, one can always, following the Noether procedure, define a set of locally-

conserved quantities, i.e. Noether currents. The conservation law for the Noether current

follows from the equations of motion. This conservation law has the consequence that if

one integrates the time component of the current over the volume of a spatial hypersurface,

one obtains a globally-conserved quantity, i.e. a charge.

In the case of a rigid symmetry transformation, a Noether charge may be interpreted as

the generator of the associated symmetry transformation. In the case of a gauge symmetry,

on the other hand, the equations of motion typically imply that the Noether charge reduces

to a surface integral. This surface integral can sometimes be interpreted as the generator

of a non-vanishing symmetry transformation, depending on the topological character of

the corresponding gauge parameter Λ. Consequently, in discussing the charges, one must

take care to consider the topological character of the corresponding gauge parameter Λ.

Thus, instead of just considering a charge Q for a given symmetry, one should consider the

charge QΛ associated to a specific gauge transformation, incorporating the transformation

parameter into the charge integral. For “little” local symmetry transformations, which can

be continuously deformed back to the identity transformation and which fall off sufficiently

fast at infinity, the total charge integral vanishes upon use of the equations of motion. For

topologically nontrivial, or “large” symmetry transformations, on the other hand, this in-

tegral need not vanish. In that case, a nonvanishing integrated charge may be interpreted,

via Poisson (or, more correctly, Dirac) brackets, as the generator of a gauge transforma-

tion. Since “little” gauge transformations have vanishing charge integrals, there is a natural
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equivalence relation between large symmetry transformations differing by little transforma-

tions. In view of this behaviour, the large symmetry transformations are somewhat akin

to rigid symmetry transformations such as Yang-Mills colour-rotating transformations that

tend to constants instead of falling off at infinity, for which nonvanishing Noether charges

may be defined, and for which charge integrals corresponding to transformations differing

by a “little” gauge transformation are equal.

Let us now consider the construction of Noether currents and charges more specifically.

If we have a set of fields φi, where i labels the fields, and a set of transformations δφi = f i(φj)

which leave the Lagrangian L invariant , where f i(φj) are some given functions, then the

conserved Noether current is given by

jµ =
∂L
∂∂µφi

δφi . (2.1)

This definition is appropriate in the case where Lagrangian itself is invariant under the

symmetry transformations. If instead it is invariant only up to a total derivative, i.e. if it

transforms as δL = ∂µΩ
µ for some Ωµ, then the formula (2.1) is replaced by

jµ =
∂L
∂∂µφi

δφi − Ωµ . (2.2)

This last expression is the one that we shall be using, since it is indeed the case that

some gauge transformations leave the supergravity Lagrangians invariant only up to total

derivatives. Having established the notation, we shall now derive explicit commutation

relations in the simplest of the examples, namely eleven-dimensional supergravity. Let us

first note a simplifying feature of the formula (2.2). Since we are interested in commutation

relations for globally-conserved charges only, we have to consider the following integral

Q =

∫
j0dV (10), (2.3)

where integration is performed over the entire ten-dimensional space. Note that in the

definition of j0 (2.2), the first term is nothing but the canonical momentum multiplied by

the field variation under the symmetry transformation.

The field content of eleven-dimensional supergravity includes a 3-form A(3). It is a

gauge field, transforming as δA(3) = Λ(3) under gauge transformations where Λ(3) is an

arbitrary closed 3-form, dΛ(3) = 0. It is a straightforward calculation to see that the eleven-

dimensional Lagrangian

L11 = R ∗ 1− 1
2 ∗ F(4) ∧ F(4) − 1

6F(4) ∧ F(4) ∧A(3) (2.4)
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transforms as

δL = d(16Λ(3) ∧A(3) ∧ F(4)) , (2.5)

which implies, according to our previous discussion, that the following conserved charges

can be defined:

Qe(Λ(3)) =

∫
Λ(3) ∧ (6 ∗Π− 1

6A(3) ∧ F(4)) . (2.6)

It is understood that the integrand here is projected into a 10-dimensional spacelike hyper-

surface. In (2.6), we have introduced a canonical momentum 3-form Π = 1
3!Πijkdx

i ∧ dxj ∧
dxk, with components defined by Πijk =

∂L
∂(∂tAijk)

. The Hodge dual is taken with respect to

the ten-dimensional metric. One may verify that for a Λ(3) that is not only closed but also

exact, the charge integral (2.6) vanishes upon integration by parts and the use of the equa-

tions of motion. This behaviour may be compared with the analogous charge integral in

Maxwell theory,
∫
Λ(1)∧∗Π, where Πi = F 0i. For an exact Λ(1) falling off sufficiently rapidly

at infinity, this integral vanishes upon use of the equations of motion. But for non-exact

Λ(1), the integral need not vanish.

For the charges (2.6), one may use the canonical Poisson bracket relations

{Aı1ı2ı3 ,Π
′123} = δ

[1
[ı1
δ2ı2 δ

3]
ı3]
δ(10)(x− x′) , (2.7)

with all others vanishing, to derive the charge algebra

{Qe(Λ1
(3)), Qe(Λ

2
(3))} = Qm(Λ

1
(3) ∧ Λ2

(3)) , (2.8)

where the charge Qm(Λ(6)) is defined by

Qm(Λ(6)) =

∫
Λ(6) ∧ F(4) . (2.9)

With this result we see that the non-commutativity is a characteristic property of the theory,

rooted in the structure of the gauge symmetry, and is not just an incidental by-product of

the doubled formalism that we are using. In the doubled formalism, on the other hand,

we shall encounter in addition an underlying (super)algebra of gauge transformations that

accords with the algebra (2.8) for the integrated charges.

Similar discussions can be given in other situations where we meet non-commutativity

of form-field gauge transformations, for example in the type IIA and IIB theories. The

algebras in those cases are a little more complicated, but the basic structure remains the

same.

At the level of the integrated charges, the algebra (2.8) reflects the ring structure of

the cohomology of p-form gauge parameters on the underlying spacetime manifold. Thus,
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another interpretation of the integrated charges such as (2.6) is as a representation of the

cohomology ring of the spacetime manifold. For most of the examples that arise in the study

of p-brane solutions in supergravity, this cohomology ring corresponds to that of a torus.

It remains an interesting problem to explore more sophisticated situations with manifolds

of less trivial cohomology.

3 Brane tension relations

In this section we shall derive some direct consequences of the non-commutativity of certain

gauge transformations in supergravity theories. It turns out that consistency requirements

impose some rather nontrivial relations among the various p-brane tensions. Some of the

relations we derive here have appeared previously in the literature [2,3,4,5,6,7,8,9,10], where

they were obtained by more indirect means. Typically, this involved making a sequence

of mappings between different low-energy theories, for example by exploiting the T-duality

that relates the type IIA and IIB theories, or even more indirectly through the requirements

for certain anomaly cancellations. By contrast, the method that we shall present below

represents a considerable simplification, not only technically but also conceptually, in that

it allows the brane-tension relations to be derived purely within the framework of the low-

energy description of a given theory.

3.1 M-brane tensions

Let us start with the simplest example, namely eleven-dimensional supergravity. We shall be

rather brief, since the doubled formalism has been developed in detail in an earlier paper [1];

we refer the interested reader there for additional information. The bosonic Lagrangian for

eleven-dimensional supergravity is given by (2.4). Varying with respect to A(3), we obtain

the equation of motion

d∗F(4) +
1
2F(4) ∧ F(4) = 0 . (3.1)

Equation (3.1) can be written as d(∗F(4) +
1
2A(3) ∧ F(4)) = 0, and so we can write the field

equation in the first-order form

∗ F(4) = F(7) ≡ dA(6) − 1
2A(3) ∧ F(4) , (3.2)

where we have introduced the dual potential A(6). It is easy to check that the first-order

equation (3.2) is invariant under the following gauge transformations [1]

δA(3) = Λ(3), δA(6) = Λ(6) − 1
2Λ(3) ∧A(3) , (3.3)
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where Λ(3) and Λ(6) are closed 3-form and 6-form gauge parameters, satisfying dΛ(3) = 0

and dΛ(6) = 0. The commutators of infinitesimal gauge transformations are given by

[δΛ(3)
, δΛ′

(3)
] = δΛ′′

(6)
, Λ′′

(6) = Λ(3) ∧ Λ′
(3),

[δΛ(3)
, δΛ(6)

] = 0, [δΛ(6)
, δΛ′

(6)
] = 0 . (3.4)

Since these transformations are to be thought of as gauge symmetries, it follows that not only

the eleven-dimensional equations of motion for the massless fields, but also the low-energy

actions for all extended objects, including massive p-branes, must be invariant under these

symmetries. In order to investigate the restrictions imposed by their non-commutativity,

we need to incorporate the couplings of the (p + 1)-forms to the world-volume fields. For-

tunately, the nature of these couplings is well known. For example, the term in the world-

volume action describing the coupling of the 3-form A(3) has the minimal form

T(3)

∫
A(3), (3.5)

where T(3) is the membrane “tension.” In this paper, we shall use the letter T exclusively

for brane tensions. In particular T(d), with d = p+ 1 denotes the tension for the p-brane.

Let us suppose now that the space-time contains a compact six-dimensional sub-manifold

with non-trivial third and sixth homology groups, H3(M) and H6(M). To simplify the

discussion, we shall take this compact sub-manifold to be the six-torus. Now, if we wrap

a membrane around one of the homology three-cycles M(3), and consider making gauge

transformations of the form δA(3) = ω(3), where ω(3) is a closed 3-form such that
∫
M(3)

ω(3) 6=
0, then invariance of the term (3.5) imposes the following restriction on the value of the

integral

T(3)

∫

M(3)

ω(3) = 2πk, (3.6)

where k is an arbitrary integer, in order that the quantum effective action be invariant.

This condition implies that if we take any closed 3-form gauge parameter, and integrate it

over an arbitrary homology 3-cycle, then result must be quantised in terms of the inverse

membrane tension.

From our above discussion we know that the gauge transformations do not commute.

However, since the commutator of two symmetry transformations must itself also be a

symmetry, we conclude that it too should leave everything invariant. We have seen above

that the commutator of two gauge transformations of the potential A(3) gives rise to a gauge

transformation of the potential A(6) (3.4). It is natural to think of A(6) as the gauge potential
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for the magnetic field-strength, and as such it must couple minimally to the world-volume

of the five-brane through the term

T(6)

∫
A(6) . (3.7)

The A(6) potential has its own independent symmetry; namely, we can shift it by an arbitrary

closed 6-form, ω(6). By the same argument as for the membrane, provided that five-brane

is also wrapped over a certain homology 6-cycle the invariance of the world-volume action

implies the quantisation condition

T(6)

∫

M(6)

ω(6) = 2πℓ , (3.8)

where ℓ is again an arbitrary integer. Now, if we commute two gauge transformations for

the A(3) potential we obtain the following shift in the five-brane world-volume action:

δS = T(6)

∫

M(6)

ω1
(3) ∧ ω2

(3), (3.9)

where ω1
(3) and ω2

(3) are the parameters of the first and second gauge transformations re-

spectively. For the torus this integral can be decomposed into the sum of products of

integrals over 3-cycles. But we already know that these integrals are quantised in terms of

the membrane tension (3.6). This is consistent with the equation (3.8) if and only if

T(6) =
1

2π
T 2

(3) . (3.10)

At this stage it is worthwhile to make an observation that significantly simplifies the

calculations in more complicated cases, such as the type IIA or IIB theories in ten or lower

dimensions. One can recast the commutation relations (3.4) as commutators in an ordinary

super Lie algebra, by introducing generators V and Ṽ for the Λ(3) and Λ(6) transformations

respectively. We see that commutation relations (3.4) translate into the super Lie algebra [1]

{V, V } = −Ṽ , [V, Ṽ ] = 0, [Ṽ , Ṽ ] = 0. (3.11)

Note that commutators are even or odd according to whether the degrees of the associated

field strengths are odd or even. (We shall in general, unless severe ambiguity might arise,

avoid clumsy language by referring to commutators and anti-commutators generally as

commutators in what follows.) Again we refer the reader to [1] for all details about these

algebras. Here, we wish only to point out that the complete structure of all relations among

the p-brane tensions is encoded in these algebras, and can be directly read off from the

commutators of the generators. For each non-vanishing commutator, one simply needs to

replace the bracket on the left by the product of corresponding inverse p-brane tensions,
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each multiplied by 2π, and likewise with each term on the right. For example, if one takes

the first commutator in (3.11), and replaces {V, V } by (2π/T(3))
2 and Ṽ by (2π/T(6)) (minus

signs must be dropped), then one arrives at the relation (3.10).

3.2 Type IIA brane tensions

The gauge potentials in type IIA massless supergravity inD = 10 are A(3), A(2)1, arising from

the dimensional reduction of the three-form potential in D = 11, together with the Kaluza-

Klein vector A1
(1). (Note that the index 1 implies that it is the first step in the reduction,

from D = 11 to D = 10.) Their dual potentials are Ã(5), Ã
1
(6) and Ã(7)1 respectively. These

fields, together with the dilaton φ and its 8-form dual ψ can be used to construct a “coset

representative” as follows:

V = e
1
2
φH e

A1
(1)

W1 eA(2)1 V
1
eA(3) V eÃ(5) Ṽ e

Ã1
(6)

Ṽ1 eÃ(7)1 W̃
1
e

1
2
ψ H̃ . (3.12)

Here, the generators H, W1, V
1, V , Ṽ , Ṽ1, W̃

1 and H̃ satisfy the following super Lie

algebra [1]

[H,W1] = 3
2W1 , [H,V 1] = −V 1 , [H,V ] = 1

2V ,

[H, W̃1] = −3
2W̃1 , [H, Ṽ 1] = Ṽ 1 , [H, Ṽ ] = −1

2 Ṽ ,

[W1, V
1] = −V , {W1, Ṽ } = −Ṽ1 , [V 1, V ] = −Ṽ ,

[V 1, Ṽ ] = −W̃ 1 , {V, V } = −Ṽ1 , {W1, W̃
1} = −3

8H̃ ,

[V 1, Ṽ1] = −1
4H̃ , {V, Ṽ } = −1

8H̃ , (3.13)

with all other commutators vanishing. The equations of motion are then given by ∗G = S G,
where ∗ is the Hodge dual and G = dV V−1. The operator S is an involution (or, according

to circumstance, a pseudo-involution) that exchanges each generators for a field with that

of its partners under the doubling [1].

It is now a rather straightforward procedure to read off a variety of relations among all

the p-brane tensions in the type IIA theory. For instance, the brackets involving W1 or W̃ 1,

associated with the Kaluza-Klein vector and its dual, give rise to the following identities

T(7) =
1

2π
T(2) T(5) , T(6) =

1

2π
T(1) T(5) , T(3) =

1

2π
T(1) T(2) . (3.14)

The brackets involving only V ’s and Ṽ ’s, associated with the fields coming from the dimen-

sional reduction of A(3) and its dual in D = 11, give rise to

T(6) =
1

2π
T 2

(3) , T(5) =
1

2π
T(2) T(3) . (3.15)
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Note that the first relation in (3.15) is the same as the one found already in D = 11, and

hence it can be viewed as a vertical dimensional reduction of the result in D = 11. The

second relation in (3.15) can be viewed as a double-dimensional reduction from (3.10) in

D = 11. The relations in (3.14) involve the tensions of the D0-brane and D6-brane, which

are associated with the Kaluza-Klein vector, and hence they are not related to (3.10) by

dimensional reduction. Note that there is a conservation rule for the subscripts that denote

the word-volume dimensions of the various branes appearing in the tension relations.

It is worth mentioning that all the tensions in this paper are measured using the p-

branes’ own metrics, e.g. string tension is measured in the string metric; membrane tension

is measured in the membrane metric, etc.. In such metrics, the tensions are independent

of the moduli. One can of course also discuss the tensions in a given fixed metric. In that

case, the tensions would in general depend on the moduli, since the metrics are related

by modulus-dependent Weyl transformations. It is straightforward to generalise to these

cases, following from the fact that if we have an algebra [X,Y } = Z, then we have a dilaton

summation rule that the dilaton vector coupled to the field associated with the generator

Z is the sum of the dilaton vectors of the fields associated with X and Y . This dilaton

summation rule guarantees the proper dilaton dependence in the brane tension relations in

any given metric.

We should draw attention to a subtlety in the use of such algebras for extracting re-

lations among p-brane tensions. In the super Lie algebra, there are generators H and H̃

associated with the dilaton and its dual ψ. However, there seem to be no BPS objects in

the supergravity theories that naturally couple to a dilaton. It follows that commutators

involving H and H̃ do not imply any tension relations. Furthermore, only the non-vanishing

commutators of generators associated with gauge potentials (which can include axions) are

associated with non-trivial tension relations among the corresponding p-branes.

3.3 Type IIB brane tensions

The doubled formalism for type IIB theory can be constructed by introducing the dual

potentials ψ, χ̃, Ai(6) for the original fields φ, χ, and Ai(2). Note that of the index values

i = 1, 2, the value i = 1 corresponds to NS-NS fields, while i = 2 corresponds to R-

R fields. Introducing a generator for each potential as before, one can construct a coset

representative [1]

V = e
1
2
φH eχE+ e

(A1
(2)

V++A2
(2)

V−)
eB(4) U e

(A1
(6)

Ṽ++A2
(6)

Ṽ−)
eχ̃ Ẽ+ e

1
2
ψ H̃ . (3.16)
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The equations of motion can then be written as ∗G = S G, with G = dV V−1, provided that

the generators satisfy the super Lie algebra [1]

[H,E+] = 2E+ , [H,V+] = V+ , [H,V−] = −V− ,

[H, Ẽ+] = −2Ẽ+ , [H, Ṽ+] = −Ṽ+ , [H, Ṽ−] = Ṽ− ,

[E+, V−] = V+ , [E+, Ṽ+] = −Ṽ− , [V+, V−] = −U ,

[V+, U ] = Ṽ− , [V−, U ] = −Ṽ+ , [V−, Ṽ+] = Ẽ+ ,

[E+, Ẽ+] =
1
2H̃ , [V+, Ṽ+] =

1
4H̃ , [V−, Ṽ−] = −1

4H̃ . (3.17)

Thus, this set of algebraic relations again enables us simply to read off the relations

among the type IIB p-brane tensions, namely

TNS
(6) =

1

2π
TRR

(2) T(4) , TRR
(6) =

1

2π
TNS

(2) T(4) , T(4) =
1

2π
TNS

(2) T
RR
(2) , (3.18)

T(8) =
1

2π
TNS

(2) T
RR
(6) , TRR

(2) =
1

2π
T(0) T

NS
(2) , TNS

(6) =
1

2π
T(0) T

RR
(6) . (3.19)

Note that the tension relation (3.18) is SL(2, IR) covariant, whilst (3.19) is not. This is

understandable, since the higher-degree gauge potentials form linear representations under

SL(2, IR), and hence so do their associated tensions. The tensions T(0) and T(8) are associated

with the axion and its dual, which do not transform linearly under SL(2, IR), and hence

(3.19) is not SL(2, IR) covariant.

4 Lower-dimensional brane tensions

In the previous sections, we have showed that the brane tension relations in M-theory or in

the type II theories can be derived from the non-commutativity of the gauge transformations

in the corresponding supergravities. In particular, they can be read off directly from the

super Lie algebras of the associated doubled formalisms constructed in [1]. The super Lie

algebras for all lower-dimensions maximal massless supergravities were also obtained in [1],

and from these it is straightforward to read off the complete set of brane tensions in all the

toroidally-reduced theories.

4.1 The reduction rule and the brane-tension “jade rule”

We begin with a brief review of the super Lie algebra of the lower dimensional maximal

massless supergravities. These can be obtained by dimensional reduction from D = 11

supergravity or type IIB supergravity. In the bosonic sector, in additional to the metric,

12



the theory contains the dilatons ~φ and the gauge potentials Ai
(0)j , Ai

(1), A(0)ijk, A(1)ij , A(2)i

and A(3). In the doubled formalism, a dual field is introduced for each field (except for

the metric), giving ~ψ, Ãi
(D−2)j , Ã(D−3)i, Ã

ijk
(D−2), Ã

ij
(D−3), Ã

i
(D−4) and Ã(D−5). The associated

generators for all these fields are given by ~H, Ei
j , Wi, V

ijk, V ij , V i and V for the original

fields, and Ẽij, W̃
i, Ṽijk, Ṽij, Ṽi and Ṽ for the doubled fields.

The generators form a deformed cotangent super Lie algebra. To be precise, let use

Ua to denote the set of generators of { ~H,Eij,Wi}, that is associated with the fields com-

ing from the dimensional reduction of the metric, and U ā to denote the generators of

{V ijk.V ij, V i, V } that are associated with the fields coming from the dimensional reduction

of the three-form potential in D = 11. Then the superalgebra has the following form [1]

[Ua, U b} = fabc U
c , [Ua, U b̄} = fab̄c̄ U

c̄ , [U ā, U b̄} = gāb̄c̄ Ũc̄ ,

[Ua, Ũb} = f cab Ũc , [Ua, Ũb̄} = f c̄ab̄ Ũc̄ , [U ā, Ũb̄} = f cāb̄ Ũc . (4.1)

This algebra satisfies the so-called “jade rule”, which states that if we have untilded gen-

erators X, Y and Z where [X,Y } = Z, then it follows that we will necessarily also have

[X, Z̃} = (−1)XY +1 Ỹ [1]. This implies that once the structure constants in the first line

in (4.1) are given, the structure constants for the second line can be deduced from the jade

rule. Thus it is only necessary for us to present the commutation relations for Ua and U ā,

which are given by

[Ei
j, Ek

ℓ] = δjk Ei
ℓ − δℓi Ek

j , [Ei
j, Ekℓm] = −3δ

[k
i E

ℓm]j ,

[Ei
j, V k] = −δki V j , [Ei

j , V kℓ] = 2δ
[k
i V

ℓ]j , [Ei
j ,Wk] = δjkWi ,

[Wi, E
jkℓ] = −3δ

[j
i V

kℓ] , {Wi, V
jk} = −2δ

[j
i V

k] , [Wi, V
j] = −δji V ,

[V ā, V b̄} = −(−1)[b̄] ǫc̄āb̄ Ṽc̄ , (4.2)

together with [ ~H,X] = ~µX where ~µ is the dilaton vector for any generator X. Note that

here we use generic indices ā, b̄, . . . to represent antisymmetrised sets of i, j, . . . indices. The

symbol [ā] denotes the number of such i, j, . . . indices. Appropriate 1/[ā]! combinatoric

factors are understood in summations over repeated generic indices. It is easy to see from

(4.2) that the algebra for the generators { ~H,Eij,Wi} is G = SL+(11 − D|1), and the

generators {V, V i, V ij, V ijk} form representations under G.

The jade rule for the algebra (4.1) has the consequence that if we have a tension relation

T(n+m) =
1

2π
T(n) T(m) (4.3)

13



then we must also have two further tension relations

T(D−2−n) =
1

2π
T(D−2−n−m) T(m) and T(D−2−m) =

1

2π
T(D−2−n−m) T(n) . (4.4)

For example, the M-brane tension relation (3.10) is invariant under this jade rule. The

full set of brane tension relations of the type IIA theory given in (3.14) and (3.15) can be

obtained from applying the jade rule on the first equations in (3.14) and (3.15) respectively.

The same story goes for the type IIB case, with the complete set of tension relations given

in (3.18) and (3.19).

It follows from the above discussion that the complete set of brane-tension relations in

lower dimensions is given by

T(0)i
j =

1

2π
T(0)i

k T(0)k
j , T ijk(0) =

1

2π
T(0)ℓ

i T ℓjk(0) ,

T i(2) =
1

2π
T(0)j

i T j(2) , T ij(1) =
1

2π
T(0)k

i T jk(1) , T(1)i =
1

2π
T(0)i

j T(1)j ,

T ij(1) =
1

2π
T(1)k T

ijk
(0) , T i(2) =

1

2π
T(1)j T

ij
(1) , T(3) =

1

2π
T(1)i T

i
(2) ,

T ā(D−2−[ā]) =
1

2π
T b̄([b̄]) T

c̄
([c̄]) , (4.5)

together with those which can be derived from the jade rule. Here, we are using a self-

explanatory notation for labelling the brane tensions that parallels the index labelling on

the corresponding gauge potentials listed previously. In the last equation in (4.5), it is only

when {ā, b̄, c̄} collectively saturate the range of the internal indices without repetition that

there is a non-trivial relation between the associated tensions. There is no sum over the

repeated indices in (4.5); rather it meant that the relation holds for different values of the

repeated indices.

Having obtained the complete set of the brane-tension relations in lower dimensions, it

is of interest to see how they are related by dimensional reduction. If in D + 1 dimensions

there is a tension relation given (4.3), then in D dimensions, there exist relations

T(n+m) =
1

2π
T(n) T(m) , T(n+m−1) =

1

2π
T(n−1) T(m) , T(n+m−1) =

1

2π
T(n) T(m−1) . (4.6)

The first relation can be viewed as coming from vertical dimensional reduction, whilst

the second and third come from diagonal reduction. Of course, additional brane tensions

emerge from the introduction of a new Kaluza-Klein vector, associated with the generator

Wi, whose algebra is given in (4.2).
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4.2 IIA/IIB T-duality

The standard dimensional reduction of the type IIA and type IIB supergravities on a cir-

cle gives rise to two D = 9 supergravities which are identical, modulo field redefinitions.

The identification of the type IIA/IIB gauge potentials leads to an identification of their

associated electric and magnetic brane tensions. It is straightforward then to see that the

D = 9 brane tensions relations are the same in the two theories obtained from standard

dimensional reduction of the IIA or IIB theories. In this scheme, the vertical dimensional

reduction of the brane-tension relation between the 7-brane, the NS-NS string and R-R

5-brane would lead to the D = 9 relation

T(8) =
1

2π
TNS

(2) T
RR
(6) . (4.7)

However, this could not actually arise within the framework of a standard Kaluza-Klein

reduction, since there is no seven-brane in D = 9 massless supergravity. It is, however,

nevertheless consistent to perform instead a generalised Scherk-Schwarz dimensional reduc-

tion, which gives rise to a massive supergravity in D = 9 [12], within which the above

brane-tension relation does hold. Applying T-duality and oxidising back to D = 10, one is

led to expect that there should be a brane-tension relation

T(9) =
1

2π
T(2) T(7) (4.8)

in ten dimensions. There is no eight-brane in massless type IIA supergravity, but there is

such a solution in massive type IIA supergravity. In the next sections, we shall show that

the brane tension relation (4.8) does indeed hold within the framework of the massive type

II theory.

5 Massive IIA supergravity

5.1 Doubled formalism for massive IIA supergravity

As originally formulated, the massive N = 2 supergravity in ten dimensions involved a fixed

mass parameter m. After a transformation of variables, given in [12], its bosonic sector can

be described by the Lagrangian2

L = R ∗1l− 1
2∗dφ ∧ dφ− 1

2e
3
2
φ ∗F(2) ∧ F(2) − 1

2e
−φ ∗F(3) ∧ F(3) − 1

2e
1
2
φ ∗F(4) ∧ F(4)

2Our notation and conventions are different from those used in [11]; here we use a convenient notation,

using differential forms. The Lagrangian is written as a 10-form. When there is no ambiguity, we often omit

the wedge-product symbol between differential forms in a product, for example writing A ∧ B as AB, and

A ∧A as (A)2, etc.
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−1
2dA(3) ∧ dA(3) ∧A(2) − 1

6mdA(3) ∧ (A(2))
3 − 1

40m
2 (A(2))

5 − 1
2m

2 e
5
2
φ ∗1l , (5.1)

where the field strengths are given in terms of potentials by

F(2) = dA(1) +mA(2) , F(3) = dA(2) ,

F(4) = dA(3) +A(1) ∧ dA(2) +
1
2mA(2) ∧A(2) . (5.2)

The formulation where m is a constant is an inappropriate one in the context of string

theory, where one wishes to describe sets of D8-branes that can carry different values of

the “charge” m. One can easily reformulate the Lagrangian (5.1) so that m is treated as a

spacetime-independent field, subject to the Bianchi identity dm = 0. This Bianchi identity

can be enforced by adding a Lagrange multiplier term LLM = mdA(9) to (5.1).

In this section, we shall reformulate the massive IIA theory in a “doubled formalism,”

following the same ideas and procedures as those developed in [1], where they were applied

to the usual massless theories of D = 11 supergravity, type IIB supergravity, and their

toroidal dimensional reductions. The philosophy of the doubled formalism is essentially to

recast the system of second-order differential equations of motion for the original potentials

of the theory into a first-order form, by introducing a dual potential for every original one.

The ostensible doubling of the physical degrees of freedom that would result from this is

removed by the imposition of algebraic constraints that equate the new “doubled” set of

field strengths to the duals of the original field strengths. In fact, these constraint equations

actually encode the original system of field equations.

The strategy used in [1] for constructing the doubled systems was first to obtain the

system of field equations from the original Lagrangian describing the theory, and then to

show by a systematic procedure that each equation could be reformulated in a first-order

form, by introducing an appropriate dual potential. In our present massive IIA example,

we begin by considering the equation of motion for the 3-form potential A(3) that follows

from (5.1), namely

d(e
1
2
φ ∗F(4)) + dA(2) dA(3) +

1
2mA(2)A(2) dA(2) = 0 . (5.3)

We note that an overall exterior derivative can be extracted from this equation, so that we

may write it as d[e
1
2
φ ∗F(4) + A(2) dA(3) +

1
6m (A(2))

3] = 0. This allows us to re-express the

equation of motion as

e
1
2
φ ∗F(4) ≡ F(6) = dA(5) −A(2) dA(3) − 1

6m (A(2))
3 , (5.4)

where the 5-form potential A(5) dual to A(3) has now been introduced. Next, we consider

the equation of motion for A(1), which is d(e
3
2
φ ∗F(2)) + e

1
2
φ ∗F(4) dA(2) = 0. Substituting
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the previously-derived result (5.4) into this, we can then remove the derivative from this

equation, introducing a new doubled potential A(7). Continuing this process, we can rewrite

the entire theory in a first-order form by introducing an additional double potential for each

of the original fields (including the dilaton, but excluding the metric itself). Summarising

the results, we obtain the following first-order system:

e
1
2
φ ∗F(4) ≡ F(6) = dA(5) −A(2) dA(3) − 1

6m (A(2))
3 ,

e
3
2
φ ∗F(2) ≡ F(8) = dA(7) −A(2) dA(5) +

1
2A(2)A(2)dA(3) +

1
24m (A(2))

4 , (5.5)

e−φ ∗F(3) ≡ F(7) = dA(6) − (dA(5) −A(2) dA(3) − 1
6m (A(2))

3 )A(1)

−1
2A(3) dA(3) −mA(7) ,

∗dφ ≡ Fφ(9) = dAφ(8) − 5
4mA(9) +

1
2mA(2)A(7) − 3

4A(1) dA(7) − 1
2A(2) dA(6)

−1
4A(3) dA(5) +

3
4A(1)A(2) dA(5) +

1
4A(2)A(3) dA(3)

−3
8A(1)A(2)A(2) dA(3) − 1

32mA(1) (A(2))
4 ,

m e
5
2
φ ∗1l ≡ F(10) = dA(9) −A(2) dA(7) +

1
2A(2)A(2) dA(5)

−1
6(A(2))

3 dA(3) − 1
120m (A(2))

5 .

In deriving the last equation, we have treated m as a spacetime-dependent field, and derived

its “equation of motion” by varying the Lagrangian with respect to m.

For future reference, we note that among the gauge symmetries of the double theory is

one with a 1-form gauge parameter λ(1), under which the various potentials transform as

follows:

δA(1) = −mλ(1) , δA(2) = dλ(1) , δA(3) = −mλ(1)A(2) ,

δA(5) = λ(1) dA(3) − 1
2mA(2)A(2) λ(1) , δA(6) =

1
2mA(2)A(3) λ(1) , (5.6)

δA(7) = λ(1) dA(5) − 1
6m (A(2))

3 λ(1) , δA(9) = λ(1) dA(7) − 1
24m (A(2))

4 λ(1) .

If we had been treating m as a constant parameter in the Lagrangian, this transformation

would have had the interpretation of describing a Stückelberg symmetry, which would allow

the field A(1) to be set to zero, reflecting the fact that this field is eaten by A(2) when it

becomes massive. However since we have changed to a viewpoint in which m is a field in

the theory, we can no longer interpret δA(1) = −mλ(1) as the inhomogeneous term in a

Stückelberg symmetry; rather, it is just one of many terms in the generally non-linear full

set of transformations (5.6).

In fact, it is worth remarking that the treatment of the field m can be put on a more

equal footing with the other fields if we adopt the formal device of regarding the 0-form
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field strength m as arising from the exterior derivative of a (−1)-form:

m = dA(−1) . (5.7)

Having done this, a sequence of transformations under the other gauge symmetries of the

theory allow us to move the exterior derivatives off the A(−1) potentials in (5.6), and instead

onto the gauge parameters λ(1). Having done so, we can then replace the exact 2-form dλ(1)

by the closed 2-form Λ(2), putting the gauge transformation of the 2-form potential A(2) on

a par with the way we have described the gauge transformations for all the other potentials

in the doubled formalism. We find that the full set of gauge transformations then takes the

form

δA(−1) = Λ(−1) , δA(1) = Λ(1) − Λ(2)A(−1) , δA(2) = Λ(2) ,

δA(3) = Λ(3) − Λ(2)A(−1)A(2) + Λ(1)A(2) ,

δA(5) = Λ(5) +
1
2Λ(1) (A(2))

2 + Λ(2)A(3) − 1
2Λ(2)A(−1) (A(2))

2 ,

δA(6) = Λ(6) − Λ(1)A(5) +
1
2Λ(1)A(2)A(3) + Λ(2)A(−1)A(5)

−1
2Λ(2)A(−1)A(2)A(3) − 1

2Λ(3)A(3) − Λ(7)A(−1) ,

δA(7) = Λ(7) +
1
6Λ(1) (A(2))

3 + Λ(2)A(5) − 1
6Λ(2)A(−1) (A(2))

2 ,

δA(8) = Λ(8) +
3
4Λ(1)A(7) − 1

8Λ(1) (A(2))
2A(3) − 1

2Λ(2)A(6) − 3
4Λ(2)A(−1)A(7)

+1
8Λ(2)A(−1)A(3) (A(2))

2 + 1
4Λ(3)A(5) +

5
4Λ(9)A(−1) ,

δA(9) = Λ(9) +
1
24Λ(1) (A(2))

4 + Λ(2)A(7) − 1
24Λ(2)A(−1) (A(2))

4 . (5.8)

From the definitions of the original field strengths in (5.2), and the doubled fields in

(5.5), it is easy to calculate the Bianchi identities for the full set of field strengths. We find

dF(2) = mF(3) , dF(3) = 0 , dF(4) = F(2) ∧ F(3) ,

dF(6) = −F(3) ∧ F(4) , dF(8) = −F(3) ∧ F(6) ,

dF(7) = −1
2F(4) ∧ F(4) −mF(8) − F(2) ∧ F(6) ,

dFφ(9) =
5
4 mF(10) − 3

4F(2) ∧ F(8) − 1
2F(3) ∧ F(7) − 1

4F(4) ∧ F(6) ,

dF(10) = 0 , dm = 0 . (5.9)

Note that these are all bilinear relations (m is viewed a 0-form field strength here). It is

interesting to note that although F(10) is by definition a closed 10-form, since we are in ten

dimensions, we could nevertheless choose to consider the system of field strengths in (5.2)

and (5.5) as being defined in some arbitrary dimension D > 10. In this case, we can simply

18



calculate dF(10) from the definition of F(10) in (5.5), finding

dF(10) = −F(3) ∧ F(8) . (5.10)

Thus even though there was no a priori reason for it to do so, the field F(10) satisfies a

bilinear Bianchi identity in D > 10.

From the Bianchi identities, it is a simple matter to read off the commutation relations

for the generators associated with the various fields. To do this, we first, as in [1], define the

generalised field strength obtained by summing over products of all field strengths multiplied

by their associated generators:

G = 1
2dφH +me

5
4
φ Y + e

3
4
φ F(2)W1 + e−

1
2
φ F(3) V

1 + e
1
4
φ F(4) V

+e−
1
4
φ F(6) Ṽ + e

1
2
φ F(7) Ṽ1 + e−

3
4
φ F(8) W̃

1 + e−
5
4
φ F(10) Ỹ + 1

2F
φ
(9) H̃ . (5.11)

Here, in addition to the generators already introduced for the usual type IIA theory in [1],

we have the generators Y and Ỹ associated with the 0-form and 10-form fields m and F(10)

respectively. Note that these are both fermionic in nature, since the associated potentials

are odd-degree forms.

It was shown in [1] that the equations of motion can be derived by requiring that the

generalised field strength G satisfy the Cartan-Maurer equation

dG = G ∧ G . (5.12)

This requirement then gives a determination of the commutation relations for the various

generators. Thus we find by comparing with (5.9) that the non-vanishing commutators are

precisely those found in [1] for the usual massless type IIA theory, and presented here in

(3.13), together with some additional ones resulting from the inclusion of the additional

fields m and F(10). We find that these extra commutators are

[V 1, Y ] =W1 , {W̃ 1, Y } = −Ṽ1 ,

[H,Y ] = −5
2 Y , {Y, Ỹ } = −5

8 H̃ . (5.13)

Note that if we consider the theory in a dimension D > 10, so that there is the addi-

tional non-trivial Bianchi identity for dF(10), in (5.10), we obtain one further non-vanishing

commutator, namely

[V 1, W̃ 1] = −Ỹ . (5.14)

Actually, there are also direct ways of deriving this commutator that do not require

the use of the “dimensionally-extended” Bianchi identity (5.10). For example, one can

19



read it off from the gauge transformations given in (5.8). Alternatively, one can read it

off from the fact that the exponentiation V of the superalgebra generators in this theory,

analogous to (3.16), must give rise to the generalised field strength G = dV V−1 given in

(5.11). In general, all three procedures give identical conclusions about the commutation

relations in the superalgebra [1], but the method where one reads them off from the Bianchi

identities degenerates in the case of a field strength of degree D in D dimensions unless one

“dimensionally extends” the spacetime to D + 1 dimensions.

5.2 Massive type IIA brane tensions

The additional non-trivial commutators in the massive type IIA supergravity imply addi-

tional brane-tension relations, over and above those arising in the massless IIA theory. In

particular, the commutator (5.14) implies that

T(9) =
1

2π
T(2) T(7) . (5.15)

The existence of this relation is essential for type IIA/IIB T-duality, as explained in section

4.2. It should be emphasised again that the above relation is derived within the framework of

the massive type IIA supergravity itself, without needing to invoke type IIA/IIB T-duality.

The first line of (5.13) can be understood by applying the jade rule to (5.14). Acting with

the jade rule on the brane tension (5.15), we would obtain two more relations that involve

the brane tension of a (-2)-brane. It is not clear whether such BPS states exist.
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Appendices

A Massive IIA/IIB T-duality

A.1 Reduction of massive IIA to D = 9

In order to find the T-duality transformation between the type IIB and the massive type

IIA theories, it is necessary to reduce each of them to D = 9. For the type IIB theory

the reduction will be of of the generalised Scherk-Schwarz type, whereas for the massive
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type IIA, it will be a standard Kaluza-Klein reduction on a circle. In this appendix, we now

perform the reduction of the massive IIA theory. We shall be interested in obtaining the full

doubled system in D = 9. For the most part, this can be done by dimensionally reducing the

already-doubled system in D = 10. However, since we are unable to double gravity itself, it

follows that a reduction of the doubled D = 10 system will not of itself generate the doubled

fields for the Kaluza-Klein vector and the new Kaluza-Klein dilaton, which come from the

ten-dimensional metric upon dimensional reduction. Thus for these fields, it is necessary to

perform a doubling after having reduced the ten-dimensional theory to D = 9. For all other

fields, however, one can easily check that the nine-dimensional theory obtained by doubling

in D = 10 and then reducing to D = 9 is the same as the one obtained by reducing the

original theory from D = 10 to D = 9 and then doubling in the lower dimension. Here,

since the algebra is somewhat lengthy, we shall just present our results for the full set of

nine-dimensional fields. Since the doubling of the Kaluza-Klein fields must be performed in

D = 9, it is useful first to present the nine-dimensional Lagrangian:

L9 = R ∗1l− 1
2∗dφ ∧ dφ− 1

2∗dϕ ∧ dϕ− 1
2e

3
2
φ+2αϕ ∗F(2) ∧ F(2)

−1
2e

3
2
φ−14αϕ ∗F(1)1 ∧ F(1)1 − 1

2e
−φ+4αϕ ∗F(3) ∧ F(3) − 1

2e
−φ−12αϕ ∗F(2)1 ∧ F(2)1

−1
2e

1
2
φ+6αϕ ∗F(4) ∧ F(4) − 1

2e
1
2
φ−10αϕ ∗F(3)1 ∧ F(3)1 − 1

2e
16αϕ ∗F(2) ∧ F(2)

−1
2m

2 e
5
2
φ−2αϕ ∗1l− 1

2A(1)1 dA(3) dA(3) −A(2) dA(2)1 dA(3)

−1
6m (A(2))

3 dA(2)1 − 1
2mA(1)1 (A(2))

2 dA(3) − 1
8m

2 (A(2))
4A(1)1 , (A.1)

where we have defined α = 1/(4
√
7).

Now, we present the results for the doubled system. Firstly, we list the “original” field

strengths in D = 9:

F(1)1 = dA(0)1 +mA(1)1 , F(2) = dA(1) +mA(2) +A(1) F(1)1 ,

F(2)1 = dA(1)1 , F(3) = dA(2) −A(1) dA(1)1 ,

F(3)1 = dA(2)1 −A(0)1 dA(2) +A(1) dA(1)1 +mA(1)1A(2) ,

F(4) = dA(3) ++A(1) dA(2) +
1
2m (A(2))

2 +A(1) F(3)1 ,

F(2) = dA(1) , (A.2)

Next, we list the doubled field strengths:

F(5)1 = dA(4)1 −A(1)1 dA(3) −A(2) dA(2)1 − 1
2m (A(2))

2A(1)1 ,

F(6) = dA(5) −A(2) dA(3) − 1
6m (A(2))

3 +A(1) F(5)1 ,
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F(6)1 = dA(5)1 −A(0)1 dA(5) −A(1) dA(4)1 −A(2)1 dA(3) +A(0)1A(2) dA(3) +A(1)A(1)1 dA(3)

+A(1)A(2) dA(2)1 −mA(6)1 +
1
2mA(1)A(1)1 (A(2))

2 + 1
6mA(0)1 (A(2))

3 ,

F(7) = dA(6) −A(1) F(6)1 −A(1) dA(5) − 1
2A(3) dA(3) +A(1)A(2) dA(3) −mA(7)

+1
6mA(1) (A(2))

3 ,

F(7)1 = dA(6)1 −A(1)1 dA(5) −A(2) dA(4)1 +A(1)1A(2) dA(3) +
1
2(A(2))

2 dA(2)1

+1
6mA(1)1 (A(2))

3 ,

F(8) = dA(7) +A(1) F(7)1 −A(2) dA(5) +
1
2 (A(2))

2 dA(3) +
1
24m (A(2))

4 ,

F(9)1 = dA(8) −A(1)1 dA(7) −A(2) dA61 +A(1)1A(2) dA(5) +
1
2 (A(2))

2 dA(4)1

−1
2A(1)1 (A(2))

2 dA(3) − 1
6(A(2))

3 dA(2)1 − 1
24mA(1)1 (A(2))

4 ,

F(7) = dA(6) −A(0)1 dA(6)1 −A(1)1 dA(5)1 −A(2)1 dA(4)1 +A(0)1A(1)1 dA(5)

+A(0)1A(2) dA(4)1 +A(1)1A(2)1 dA(3) − 1
2A(2)1A(3) dA(1)1

−A(0)1A(1)1A(2) dA(3) − 1
2A(0)1 (A(2))

2 dA(2)1 +mA(1)1A(6)1

−1
6mA(0)1A(1)1 (A(2))

3 . (A.3)

Note that F(7) is the doubled field strength corresponding to the dual of Kaluza-Klein

field strength F(2). We are using a notation where a subscript “1” that is not enclosed in

parentheses indicates the internal index associated with the D = 10 to D = 9 reduction

step. Finally, the doubled fields associated with the two dilatons φ and ϕ are:

Fφ(8)1 = dAφ(7)1 − 3
4A(0)1 dA(7) − 3

4A(1) dA(6)1 +
1
2A(1)1 dA(6) − 1

2A(2) dA(5)1

−1
4A(2)1 dA(5) − 1

4A(3) dA(4)1 +
3
4A(0)1A(2) dA(5) +

3
4A(1)A(1)1 dA(5)

+3
4A(1)A(2) dA(4)1 − 1

4A(1)1A(3) dA(3) +
1
4A(2)A(2)1 dA(3)

+1
4A(2)A(3) dA(2)1 − 3

8A(0)1 (A(2))
2 dA(3) − 3

4A(1)A(1)1A(2) dA(3)

−3
8A(1) (A(2))

2 dA(2)1 − 5
4mA(8) − 1

2mA(1)1A(7) +
1
2mA(2)A(6)1

− 1
32mA(0)1 (A(2))

4 − 1
8mA(1)A(1)1 (A(2))

3 ,

Fϕ(8) = dAϕ(7) − α
{
− 8A(1) dA(6) + 7A(0)1 dA(7) −A(1) dA(6)1 + 6A(1)1 dA(6)

+2A(2) dA(5)1 + 5dA(2)1 dA(5) − 3dA(3) dA(4)1 − 7A(0)1A(2) dA(5)

+8A(0)1A(1) dA(6)1 +A(1)A(1)1 dA(5) +A(1)A(2) dA(4)1 − 3A(1)1A(3) dA(3)

−8A(1)1A(1) dA(5)1 − 2A(2) A(2)1 dA(3) +A(2)1A(3) dA(2) + 8A(2)1 A(1) dA(4)1

+8A(0)1A(1)1 A(1) dA(5) +
7
2A(0)1 (A(2))

2 dA(3) − 8A(0)1A(2) A(1) dA(4)1

−A(1)A(1)1A(2) dA(3) − 1
2A(1) (A(2))

2 dA(2)1 + 8A(1)1A(2)1A(1) dA(3)

22



−4A(2)1A(3) A(1) dA(1)1 − 8A(0)1A(1)1A(2) A(1) dA(3) + 4A(0)1 (A(2))
2 A(1) dA(2)1

+mA(8) − 6mA(1)1A(7) − 2mA(2)A(6)1 + 8mA(1)1 A(1)A(6)1

+ 7
24mA(0)1 (A(2))

4 − 1
6mA(1)A(1)1 (A(2))

3 + 4
3mA(0)1A(1)1A(1) (A(2))

3
}
, (A.4)

where again α = 1/(4
√
7).

Before presenting the full set of nine-dimensional field equations in the doubled formal-

ism, it is useful to present a general lemma for the dimensional reduction of field strengths

and their duals. If we start with a metric in (D + 1) dimensions, and perform a reduction

on a circle to D dimensions, the metric ansatz will be

dŝ2 = e−2αϕ ds2 + e2(D−2)αϕ (dz +A(1))
2 , (A.5)

where α = [2(D − 1)(D − 2)]−1/2. The dimensional reduction of an n-form field strength

F̂(n) will give

F̂(n) = F(n) + F(n−1) ∧ (dz +A(1)) . (A.6)

Denoting the Hodge dual in (D + 1) dimensions by ∗̂, and in D dimensions by ∗, it is easy
to show that the dimensional reduction of the dual of F̂(n) is given by

∗̂F̂(n) = (−1)n e2(n−1)αϕ ∗F(n) ∧ (dz +A1) + e−2(D−n)αϕ ∗F(n−1) . (A.7)

Consequently, we find that the dimensional reduction of the single (D + 1)-dimensional

equation eaφ ∗̂F̂(n) =
ˆ̃
F (D+1−n) will in general give rise to the two D-dimensional equations

eaφ+2(n−1)αϕ ∗F(n) = (−1)n F̃(D−n)1 ,

eaφ−2(D−n)αϕ ∗F(n−1)1 = F̃(D+1−n) . (A.8)

Note therefore that although we defined the signs of our doubled field strengths in the

massive ten-dimensional theory to be such that eaφ ∗̂F̂(n) = +
ˆ̃
F (10−n), we are taking the

doubled fields in D = 9 to be precisely those obtained by dimensional reduction of the ten-

dimensional doubled fields. Consequently, we will have certain minus signs in the duality

equations in the nine-dimensional theory, whenever n is odd, as indicated in the first line

in (A.8).

With these preliminaries, we now present the nine-dimensional equations of motion for

the reduced massive IIA theory:

e
1
2
φ+6αϕ ∗F(4) = F(5)1 , e

1
2
φ−10αϕ ∗F(3)1 = F(6) ,

e−φ+4αϕ ∗F(3) = −F(6)1 , e−φ−12αϕ ∗F(2)1 = F(7) ,
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e
3
2
φ+2αϕ ∗F(2) = F(7)1 , e

3
2
φ−14αϕ ∗F(1)1 = F(8) , (A.9)

∗dφ = −Fφ(8) , m e
5
1
φ−2αϕ ∗1l = F(9)1 ,

e16αϕ ∗F(2) = F(7) , ∗dϕ = Fϕ(8) .

Note that the two equations in the final line are associated with the doubling of the new

fields A(1) and ϕ that have emerged from the metric under dimensional reduction. Since

these have not descended from any doubled equations in the higher dimension we have

simply chosen our definitions of the associated doubled field strengths F(7) and F
ϕ
(8) so that

there are plus signs in these equations of motion.

A.2 Doubled formalism for type IIB supergravity

The doubled formalism for type IIB supergravity was worked out in detail in [1]. Here, we

shall just summarise the results. We do, however, make one change to the formalism, in

anticipation of the fact that we shall subsequently be using it for describing Scherk-Schwarz

generalised reductions. It is therefore convenient to make appropriate field redefinitions

prior to constructing the doubled formalism, such that the axion χ is covered by a derivative

everywhere. The Lagrangian describing the bosonic sector of type IIB supergravity may

thus be written as

L = R ∗1l− 1
2∗dφ ∧ dφ− 1

2e
2φ ∗dχ ∧ dχ− 1

2e
−φ ∗GNS

(3) ∧GNS
(3) − 1

2e
φ ∗GRR

(3) ∧GRR
(3)

−1
4∗G(5) ∧G(5) +

1
2B(4) dB

NS
(2) dB

RR
(2) +

1
2B(4) dB

NS
(2) dB

NS
(2) dχ , (A.10)

where the various field strengths are defined by

GNS
(3) = dBNS

(2) , GRR
(3) = dBRR

(2) +BNS
(2) dχ ,

G(5) = dB(4) +
1
2B

NS
(2) dB

RR
(2) − 1

2B
RR
(2) dB

NS
(2) +

1
2B

NS
(2) B

NS
(2) dχ . (A.11)

As described in [13], the self-duality of G(5) is to be imposed here after varying the La-

grangian (A.10) to obtain the equations of motion. This can be done consistently, since

the equation of motion for G(5) turns out to be d∗G(5) = dBNS
(2) dB

RR
(2) + dBNS

(2) dB
NS
(2) dχ, and

the right-hand side is identical to the expression for the Bianchi identity for G(5), following

from (A.11).

Following steps analogous to those used for the massive IIA theory in the previous

section, and described in detail in [1], we can now construct the doubled formalism for the

type IIB theory, effectively re-expressing the second-order equations of motion following
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from (A.10) in first-order form. We find the following:

∗G(5) ≡ G(5) = dB(4) +
1
2B

NS
(2) dB

RR
(2) − 1

2B
RR
(2) dB

NS
(2) +

1
2B

NS
(2) B

NS
(2) dχ ,

eφ ∗GRR
(3) ≡ GRR

(7) = dBRR
(6) −BNS

(2) dB(4) − 1
4B

NS
(2) B

NS
(2) dB

RR
(2) − 1

6B
NS
(2) B

NS
(2) B

NS
(2) dχ ,

e−φ ∗GNS
(3) ≡ GNS

(7) = dBNS
(6) −BRR

(6) dχ+BRR
(2) dB(4) − 1

4B
RR
(2) B

RR
(2) dB

NS
(2) +

1
4B

NS
(2) B

NS
(2) B

RR
(2) dχ ,

e2φ ∗dχ ≡ G(9) = dB(8) −BNS
(2) dB

RR
(6) + 1

2B
NS
(2) B

NS
(2) dB(4) +

1
8(B

NS
(2))

3 dBRR
(2)

+1
8B

NS
(2) B

NS
(2) B

RR
(2) dB

NS
(2) +

1
24 (B

NS
(2))

4 dχ ,

∗dφ ≡ Gφ(9) = dBφ
(8) −B(8) dχ− 1

2B
NS
(2) dB

NS
(6) +

1
2B

RR
(2) dB

RR
(6)

+1
2B

NS
(2) B

RR
(6) dχ− 1

2B
NS
(2) B

RR
(2) dB(4) − 1

12 (B
NS
(2))

3BRR
(2) dχ . (A.12)

A.3 Scherk-Schwarz reduction of IIB to D = 9

Just as for the massive IIA theory discussed in Appendix A.1, here too we may perform

a dimensional reduction to obtain the doubled formalism for type IIB in D = 9. This

time, in order to make contact with the nine-dimensional massive IIA theory, we must

make a generalised Scherk-Schwarz type reduction, where the axion χ in D = 10 is reduced

according to χ(x, z) = χ(x) +mz. All other fields will be reduced according to the usual

z-independent Kaluza-Klein scheme. Again, for all except the new Kaluza-Klein vector,

which we denote by B(1) here, and the new Kaluza-Klein dilaton ϕ, the doubled fields in

D = 9 can be obtained simply by dimensionally reducing the doubled fields in D = 10.

However, to obtain the doubles of the two new Kaluza-Klein fields we need to perform a

doubling in D = 9. It is therefore useful to begin by presenting the type IIB Lagrangian in

D = 9:

L9 = R ∗1l− 1
2∗dφ ∧ dφ− 1

2∗dϕ ∧ dϕ− 1
2e

2φ ∗G(1) ∧G(1) − 1
4e

−8αϕ ∗G(4) ∧G(4)

−1
4e

8αϕ ∗G(5) ∧G(5) − 1
2e

−φ+4αϕ ∗GNS
(3) ∧GNS

(3) − 1
2e

−φ−12αϕ ∗GNS
(2) ∧GNS

(2)

−1
2e
φ+4αϕ ∗GRR

(3) ∧GRR
(3) − 1

2e
φ−12αϕ ∗GRR

(2) ∧GRR
(2) − 1

2e
16αϕ ∗F(2) ∧ F(2) (A.13)

−1
2m

2 e2φ−16αϕ ∗1l + 1
2B(3) dB

NS
(2) dB

RR
(2) − 1

2B(4) dB
NS
(1) dB

RR
(2) +

1
2B(4) dB

NS
(2) dB

RR
(1)

+1
2(B(4)B

NS
(1) dB

NS
(2) −B(4)B

NS
(2) dB

NS
(1) +B(3)B

NS
(2) dB

NS
(2)) dχ+ 1

2mB(4)B
NS
(2) dB

NS
(2) .

This is obtained by performing the Scherk-Schwarz reduction on the ten-dimensional La-

grangian (A.10).

Our results for the doubled system of fields in the massive nine-dimensional type IIB

theory are as follows. Firstly, the “original” fields in D = 9 are:

G(1) = dχ−mB(1) , GRR
(2) = dBRR

(1) +mBNS
(2) − B(1) dχ ,
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GNS
(2) = dBNS

(1) , GNS
(3) = dBNS

(2) − B(1) dB
NS
(1) ,

GRR
(3) = dBRR

(2) +BNS
(2) dχ− B(1) dB

RR
(1) −BNS

(1) B(1) dχ−mBNS
(2) B(1) ,

G(4) = dB(3) − 1
2B

NS
(1) dB

RR
(2) +

1
2B

NS
(2) dB

RR
(1) + 1

2B
RR
(1) dB

NS
(2) − 1

2B
RR
(2) dB

NS
(1)

−BNS
(1) B

NS
(2) dχ+ 1

2m (BNS
(2))

2 ,

G(5) = dB(4) +
1
2B

NS
(2) dB

RR
(2) − 1

2B
RR
(2) dB

NS
(2) − B(1) dB(3) − 1

2B
NS
(1) B(1) dB

RR
(2)

+1
2(B

NS
(2))

2 dχ+ 1
2B

NS
(2) B(1) dB

RR
(1) + 1

2B
RR
(1) B(1) dB

NS
(2) +

1
2B

RR
(2) B(1) dB

NS
(1)

−BNS
(1) B

NS
(2) B(1) dχ− 1

2m (BNS
(2))

2 B(1) ,

F(2) = dB(1) . (A.14)

We have presented these fields in the same order as the corresponding fields of the nine-

dimensional massive IIA theory in (A.2). Of course in this case we also have G(5) classified

as an “original” field, since we had already effectively doubled the G(5) field in D = 10. In

the type IIA picture, the corresponding field F(5)1 appears among the list of doubled fields

in (A.3).

We find that the doubled fields in D = 9 are as follows:

GRR
(6) = dBRR

(5) +BNS
(1) dB(4) −BNS

(2) dB(3) +
1
2N

NS
(1) B

NS
(2) dB

RR
(2) − 1

4 (B
NS
(2))

2 dBRR
(1)

+1
2B

NS
(1) (B

NS
(2))

2 dχ− 1
6m (BNS

(2))
3 ,

GNS
(6) = dBNS

(5) −BRR
(1) dB(4) +BRR

(2) dB(3) +BRR
(5) dχ+ 1

2B
RR
(1) B

RR
(2) dB

NS
(2)

−1
4(B

RR
(2) )

2 dBNS
(1) − 1

2B
NS
(1) B

NS
(2) B

RR
(2) dχ− 1

4(B
NS
(2))

2BRR
(1) dχ+ 1

4m (BNS
(2))

2BRR
(2) ,

GNS
(7) = dBNS

(6) +BRR
(2) dB(4) −BRR

(6) dχ− B(1) dB
NS
(5) −BRR

(1) B(1) dB(4) − 1
4(B

RR
(2) )

2 dBNS
(2)

−BRR
(2) B(1) dB(3) +BRR

(5) B(1) dχ+ 1
4 (B

NS
(2))

2BRR
(2) dχ+ 1

2B
RR
(1) B

RR
(2) B1 dB

NS
(2)

+1
4(B

RR
(2) )

2 B(1) dN
NS
(1) − 1

2B
NS
(1) B

NS
(2) B

RR
(2) B(1) dχ

−1
4(B

NS
(2))

2BRR
(1) B(1) dχ+mBRR

(6) B(1) ,

GRR
(7) = dBRR

(6) −BNS
(2) dB(4) − B(1) dB

RR
(5) +BNS

(1) B(1) dB(4) − 1
4 (B

NS
(2))

2 dBRR
(2) +BNS

(2) B(1) dB(3)

+1
2B

NS
(1) B

NS
(2) B(1) dB

RR
(2) − 1

6(B
NS
(2))

3 dχ+ 1
4(B

NS
(2))

2 B(1) dB
RR
(1)

+1
2B

NS
(1) (B

NS
(2))

2 B(1) dχ+ 1
6m (BNS

(2))
3 B(1) ,

G(8) = dB(7) +B(1) dB
RR
(6) −BNS

(2) dB
RR
(5) −BNS

(1) B
NS
(2) dB(4) +

1
2(B

NS
(2))

2 dB(3)

−3
8B

NS
(1) (B

NS
(2))

2 dBRR
(2) − 1

4B
NS
(1) B

NS
(2) B

RR
(2) dB

NS
(2) − 1

8(B
NS
(2))

2BRR
(1) dB

NS
(2)

+1
8(B

NS
(2))

3 dBRR
(1) +

1
8 (B

NS
(2))

2BRR
(2) dB

NS
(1) − 1

6B
NS
(1) (B

NS
(2))

3 dχ+ 1
24m (BNS

(2))
4 ,

G(9) = dB(8) −BNS
(2) dB

RR
(6) +

1
2(B

NS
(2))

2 dB(4) +
1
8(B

NS
(2))

3 dBRR
(2) +

1
8(B

NS
(2))

2BRR
(2) dB

NS
(2)

+ 1
24(B

NS
(2))

4 dχ− B(1)G(8) ,
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F(7) = dB(6) − 1
2B(3) dB(3) −BNS

(1) dB
NS
(5) −BRR

(1) dB
RR
(5) +BNS

(1) B
RR
(1) dB(4) − 1

2B
NS
(1) B

RR
(2) dB(3)

−BNS
(1) B

RR
(5) dχ+ 1

2B
NS
(2) B

RR
(1) dB(3) +

1
4B

NS
(1) B

NS
(2) B

RR
(1) dB

RR
(2) + 1

8B
NS
(1) (B

RR
(2) )

2 dBNS
(1)

+1
8(B

NS
(2))

2BRR
(1) dB

RR
(1) +

1
4B

NS
(2) B

RR
(1) B

RR
(2) dB

NS
(1) +

1
4B

(n)

(1) 2 (B
NS
(2))

2BRR
(1) dχ

−mB(7) +mBNS
(1) B

RR
(6) − 1

8mBNS
(1) (B

NS
(2))

2BRR
(2) +

1
24m (BNS

(2))
3BRR

(1) . (A.15)

Finally, the doubled fields associated with the two dilatons φ and ϕ turn out to be:

Gφ(8) = dBφ
(7) +B(7) dχ+ 1

2B
NS
(1) dB

NS
(6) − 1

2B
NS
(2) dB

NS
(5) − 1

2B
RR
(1) dB

RR
(6) +

1
2B

RR
(2) dB

RR
(5)

+1
2B

NS
(1) B

RR
(2) dB(4) − 1

2B
NS
(1) B

RR
(6) dχ+ 1

2B
NS
(2) B

RR
(1) dB(4) − 1

2B
NS
(2) B

RR
(2) dB(3)

−1
2B

NS
(2) B

RR
(5) dχ+ 1

4B
NS
(1) (B

NS
(2))

2BRR
(2) dχ+ 1

12 (B
NS
(2))

3BRR
(1) dχ

−mB(8) +
1
2mBNS

(2) B
RR
(6) − 1

12 (B
NS
(2))

3BRR
(2) ,

Gϕ(8) = dBϕ
(7) − 2α

{
2B(3) dB(4) + 3BNS

(1) dB
NS
(6) +BNS

(2) dB
NS
(5) + 3BRR

(1) dB
RR
(6) +BRR

(2) dB
RR
(5)

−4B(1) dB(6) − 2B(3) B(1) dB(3) + 2BNS
(1) B

RR
(2) dB(4) − 3BNS

(1) B
RR
(6) dχ− 4BNS

(1) B(1) dB
NS
(5)

−2BNS
(2) B

RR
(1) dB(4) +BNS

(2) B
RR
(5) dχ− 4BRR

(1) B(1) dB
RR
(5) − 4BNS

(1) B
RR
(1) B(1) dB(4)

−1
4B

NS
(1) (B

RR
(2) )

2 dBNS
(2) − 2BNS

(1) B
RR
(2) B(1) dB(3) + 4BNS

(1) B
RR
(5) B(1) dχ

−1
4(B

NS
(2))

2BRR
(1) dB

RR
(2) − 1

4(B
NS
(2))

2BRR
2 dBRR

(1) + 2BNS
(2) B

RR
(1) B(1) dB(3)

−1
4(B

NS
(2))

2BRR
(2) dB

NS
(1) +

1
4B

NS
(1) (B

NS
(2))

2BRR
(2) dχ−BNS

(1) B
NS
(2) B

RR
(1) B(1) dB

RR
(2)

+1
2B

NS
(1) (B

RR
(2) )

2 B(1) dB
NS
(1) − 1

4(B
NS
(2))

3BRR
(1) dχ+ 1

2(B
NS
(2))

2BRR
(1) B(1) dB

RR
(1)

+BNS
(2) B

RR
(1) B

RR
(2) B(1) dB

NS
(1) −BNS

(1) (B
NS
(2))

2BRR
(1) B(1) dχ+ 4mB(8)

−4mB(7) B(1) −mBNS
(2) B

RR
(6) + 4mBNS

(1) B
RR
(6) B(1) +

1
2m (BNS

(2))
3BRR

(2)

−1
2mBNS

(1) (B
NS
(2))

2BRR
(2) B(1) +

1
6m (BNS

(2))
3BRR

(1) B(1)

}
. (A.16)

It follows that the nine-dimensional equations of motion may again be read off from the

ten-dimensional ones, by using (A.8). Thus we find

e8αϕ ∗G(5) = −G(4) , e−8αϕ ∗G(4) = G(5) ,

eφ4αϕ ∗GRR
(3) = −GRR

(6) , eφ−12αϕ ∗GRR
(2) = GRR

(7) ,

e−φ+4αϕ ∗GNS
(3) = −GNS

(6) , e−φ−12αϕ ∗GNS
(2) = GNS

(7) ,

e2φ ∗G(1) = −G(8) , m e2φ−16αϕ ∗1l = G(9) , (A.17)

∗dφ = −Gφ(8) ,

e16αϕ ∗F(2) = F(7) , ∗dϕ = Gϕ(8) .

Note that the two equations on the top line are actually equivalent. As in the type IIA

reduction, the equations in the final line correspond to the new fields B(1) and ϕ coming

27



from the dimensional reduction of the metric, and we have chosen the conventions for their

doubled field strengths so that there are plus signs in these two equations of motion.

A.4 Massive IIA/IIB T-duality in D = 9

Having obtained the doubled formalism for both the massive type IIA and type IIB theories

in D = 9, it is straightforward, albeit tedious, to verify that the two sets of equations of

motion are the same, after appropriate field redefinitions. The T-duality between massive

type IIA and type IIB was proven in [12], making use of the Stückelberg symmetry. In

this section, we shall present the explicit T-duality transformation rules for the doubled

formalism. We shall present these field transformation rules in two sets, namely the R-R

sector and NS-NS sector. For the R-R sector, we find that the expressions for the type IIB

fields in terms of the type IIA fields are:

χ = −A(0)1 , BRR
(1) = A(1) , BRR

(2) = −A(2)1 +A(0)1A(2) +A(1)A(1)1 ,

B(3) = A(3) − 1
2A(1)A(2) − 1

2A(1)A(2)1 +
1
2A(0)1A(1)A(2) ,

B(4) = A(4)1 − 1
2A(2)A(2)1 − 1

2A(1)A(1)1A(2)

+1
2A(1)1 A(1)A(2)1 − 1

2A(0)A(1)1A(1)A(2) ,

BRR
(5) = A(5) − 1

4A(1) (A(2))
2 − 1

2A(1)A(2)A(2)1 +
1
2A(0)1 A(1) (A(2))

2 ,

BRR
(6) = A(6)1 − 1

4(A(2))
2A(2)1 +

1
12A(0)1 (A(2))

3 − 1
4A(1)A(1)1 (A(2))

2

+1
2A(1)1 A(1)A(2)A(2)1 − 1

2A(0)A(1)1A(1) (A(2))
2 ,

B(7) = A(7) − 1
8A(1) (A(2))

3 − 1
8A(1)A(2)1 (A(2))

2 + 1
8A(0)1 A(1) (A(2))

3 ,

B(8) = A(8) − 1
24 (A(2))

3A(2)1 − 1
8A(1)A(1)1(A(2))

3 + 1
8A(1)1 A(1) (A(2))

2A(2)1

−1
8A(0)A(1)1 A(1) (A(2))

3 , (A.18)

For the NS-NS sector, we find that the T-duality transformations are given by

B(1) = A(1)1 , BNS
(1) = A(1) , BNS

(2) = A(2) −A(1)1 A(1) ,

BNS
(5) = A(5)1 −A(0)1A(5) +

1
2A(2)1A(3) − 1

2A(1)A(2)A(2)1

−1
4A(1) (A(2)1)

2 + 1
2A(0)1A(1) (A(2))

2 + 1
2A(0)1 A(1)A(2)A(2)1

−1
4(A(0)1)

2 A(1) (A(2))
2 ,

BNS
(6) = A(6) −A(0)1A(6)1 − 1

2A(1)1A(2)1A(3) − 1
4A(2) (A(2)1)

2

−1
2A(1)A(1)1A(2)A(2)1 +

1
4A(1)1 A(1) (A(2)1)

2 + 1
12 (A(0)1)

2 (A(2))
3

+1
2A(0)1A(1)A(1)1 (A(2))

2 − 1
2A(0)1A(1)1 A(1)A(2)A(2)1
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+1
4(A(0)1)

2A(1)1 A(1) (A(2))
2 ,

B(6) = A(6) − 1
4A1A(2)A(3) − 1

4A(1)A(2)1A(3) +
1
4A(0)1 A(1)A(2)A(3)

−1
8A(1) A(1)A(2)A(2)1 +

1
8A(0)1A(1) A(1) (A(2))

2 ,

Bφ
(7) = 3

4A
φ
(7) +

√
7
4 A

ϕ
(7) −A(0)1A(7) +

1
16A(2)A(2)1A(3)

−1
8A(1) (A(2))

2A(2)1 − 1
8A(2) (A(2)1)

2 A(1) +
1
8A(0)1A(1) (A(2))

3

+1
4A(0)1A(1) (A(2))

2A(2)1 − 1
8(A(0)1)

2 A(1) (A(2))
3 ,

Bϕ
(7) =

√
7
4 Aφ(7) − 3

4A
ϕ
(7) +

5
8A(2)A(2)1A(3) +A1A(1)1A(2)A(3)

−A(1)1A(1)A(2)1A(3) +A(0)1A(1)1 A(1)A(2)A(3) , (A.19)

The relation between the dilatonic scalars in the two nine-dimensional theories are given by

(
φ

ϕ

)

IIA

=

( 3
4 −

√
7
4

−
√
7
4 −3

4

)(
φ

ϕ

)

IIB

≡M

(
φ

ϕ

)

IIB

. (A.20)

Note that we have M−1 = M . The dimensional reduction of the ten-dimensional string

metric to D = 9 is given by

ds2str = e
1
2φ ds210

= e
1
2φ (e−ϕ/(2

√
7) ds29 + e

√
7ϕ/2 (dz2 +A)2) , (A.21)

where ds210 and ds29 are the Einstein-frame metrics in D = 10 and D = 9. The radius

of the compactifying circle, measured using the ten-dimensional string metric, is therefore

given by R = e
1
4φ+

√
7
4 ϕ. Note that the dilaton vector {1

4 ,
1
4

√
7} defining the radius is

an eigenvector of M , with eigenvalue −1. It follows that the radii RIIA and RIIB of the

compactifying circles, measured using their respective ten-dimensional string metrics, are

related by RIIA = 1/RIIB.

Note that all the T-duality transformations between the massive type IIA and type IIB

theories are independent of m. In particular, this means that the relations between the

type IIA and type IIB fields in nine-dimensions are the same whether one is looking at the

massive theories or the massless ones. Note also that the relations between the original

“undoubled” sets of fields do not involve any of the extended “doubled” system, and so by

restricting attention just to the original undoubled fields in (A.18) and (A.19), one obtains

the explicit field relations for the standard undoubled systems.
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