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Spectral non-uniform temperature and non-local
heat transfer in the spin Seebeck effect
Konstantin S. Tikhonov1,2,3, Jairo Sinova1,4 & Alexander M. Finkel’stein1,2

Recently discovered spin-dependent thermoelectric effects have merged spin, charge, and

thermal physics, known as spin caloritronics, of which the spin Seebeck effect is its most

puzzling. Here we present a theory of this effect driven by subthermal non-local phonon heat

transfer and spectral non-uniform temperature. The theory explains its non-local behaviour

from the fact that phonons that store the energy (thermal) and the phonons that transfer it

(subthermal) are located in different parts of the spectrum and have different kinetics. This

gives rise to a spectral phonon distribution that deviates from local equilibrium along the

substrate and is sensitive to boundary conditions. The theory also predicts a non-magnon

origin of the effect in ferromagnetic metals in agreement with observations in recent

experiments. Equilibration of the heat flow from the substrate to the Pt probe and backwards

leads to a vertical spin current produced by the spin-polarized electrons dragged by the

thermal phonons.
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T
he key and most intriguing effect in spin caloritronics1–9

is the transverse spin Seebeck effect (SSE) in which a
thermal gradient in a ferromagnet/substrate structure

gives rise to spin currents that vary along the length of the
sample and are detected via the inverse spin-Hall voltage10.
This effect has been experimentally observed using different
ferromagnetic materials: metals1, semiconductors2,3 and
insulators4. The magnitude of the SSE is quantified by the
transport coefficient Sxy ¼ Vy

wrx T , where Vy is the measured ISHE
voltage, w is the width of Pt probe, and rxT¼ (T2�T1)/L, where
L is the length of the sample, see Fig. 1a. The ISHE voltage is
given by Vy ¼ 2 ej jryH

�h ðjs�sÞy , where js is the spin current, s is its
polarization, yH is the spin-Hall angle of the probe (in Pt, yH is of
the order of one per cent) and r is its electric resistivity. The effect
is non-local, that is, it depends on the position along the sample
rather than the local temperature gradient. In addition, the size of
the sample is usually about 1 cm and such a long-range
information about position can be transferred only by phonons,
propagating along the insulating substrate2. The key role of
phonons for the transversal SSE effect was discussed in Adachi
et al.5

Here we show that the non-locality of the SSE is a consequence
of the non-local energy transfer due to subthermal diffusive
phonons that are sensitive to the boundary conditions and
give rise to a spectral non-uniform temperature along the
sample11,12. In fact, in recent measurements in bilayer F–Pt
wire devices, the specific geometry excludes long-ranged
propagation of magnons and leaves only phonons as a source
of non-locality6. In addition, we demonstrate that while in the
insulator the SSE is likely determined by the phonon–magnon
mechanism, in the conducting ferromagnet (for example,
Ni81Fe19 (ref. 1) and GaMnAs3), the magnon mechanism is not
the only one available. The experiments by Jaworski et al.3 were
performed on a material with Curie temperature TC¼ 130 K,
considerably lower than the Debye temperature yD¼ 350 K, and
showed that VISHEpM at the vicinity of the Curie point; that is,
the SSE signal vanishes with the magnetization M with the same
critical behaviour. This latter fact excludes the magnon
mechanism for this case: as we have checked, starting from
equation 12 of Adachi et al.13, the magnon pumping yields
the contribution to the SSE signal, which vanishes as M3/2

(see Supplementary Note 1 for details).

Results
Physical mechanisms of the phonon–electron SSE. The theory
of this phonon–electron SSE, which does not involve magnons,
has three key physical mechanisms. The first (i) involves the non-
local nature of the signal driven by subthermal phonons, which is
also relevant for the magnon-phonon mechanism not considered
here. In recent measurements of the SSE in insulators14, the
temperature difference between thermal magnons and phonons
assumed in the current theory13,15 has not been observed,
suggesting the necessity of the concept of spectrally non-uniform
temperature. This concept originates from the fact that in most
dielectrics, and also some semiconductors, the energy transfer is
highly non-local11,12 because of the strong dependence of the
diffusion coefficient of phonons on frequency: D(o)po� 4, if the
dominant scatterers are point-like16. In the diffusive regime of
the experiments the energy relaxation length is given by
lin oð Þ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D oð Þtin oð Þ

p
; where the energy relaxation rate is

t� 1
in / T4o: While the thermal phonons, �hoBkBT, are

equilibrated, the subthermal low-frequency phonons can deviate
from the local equilibrium due to the rapid low-frequency growth
of inelastic length lin(o)¼ lin(T)(T/o)5/2, which leads to non-local
kinetics. Even the concept of temperature itself is well defined
only for phonons of high-enough frequency. For the ‘thermal’
part of the spectrum �ho\kBT, the distribution function has
a Planckian form nT(o)¼ (e�ho/kBT� 1)� 1 with a local
temperature T¼T(x). As a result, the phonons that store the
energy and phonons that transfer it are located in different parts
of the spectrum. As illustrated in Fig. 1b, this spectral separation
occurs when lel(T)oolin(T)ooL, where lel(T)�lel(�ho¼ kBT)p
D(�ho¼ kBT)pT� 4, and lin(T)�lin(�ho¼ kBT)pT� 4.5. Then the
subthermal phonons whose inelastic length is of the order of (but
whose elastic length is much shorter) than L drive the non-local
heat propagation along the substrate, giving rise to a steady-state
phonon distribution function that deviates from local equilibrium
for �hoookBT and depends on the position along the substrate.
This deviation from local thermal equilibrium in the low
frequencies manifest in a T(x) profile that deviates from a
linear dependence. To describe this non-local effect, it is essential
to formulate the boundary conditions for the equations
describing the propagation of the diffusive phonons.
(Previously15, the sensitivity to the boundaries entered the
theory as a result of the different boundary conditions imposed

js (x) ∝ �T⊥ (x )
T (x) = T1 + T2−T1

L x + δT (x)
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Figure 1 | Scheme of the SSE experiment. (a) The effect incorporates three key physical mechanisms: (i) subthermal phonons whose inelastic length, lin, is

of the order of the sample size, L, and whose elastic length, lel, is smaller than L, drive the non-local heat propagation along the substrate, which gives rise to

a steady-state distribution function that deviates from local equilibrium; (ii) equilibration of heat flows out of the substrate into the Pt probe and backwards

establishes the temperature in the probe TPtaT (x); (iii) the different phonon distribution functions in the probe and the substrate yield a spin-phonon-drag

current,~jsðxÞ / dT? . (b) Spectral phase diagram of phonons as a function of sample length. The deviation from local thermal equilibrium,

dn(o,x)¼ n(o,x)� nT(x) (o), is illustrated (green curve) for x¼ L/3; here rph (o)po2 is the phonon density of states.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2945

2 NATURE COMMUNICATIONS | 4:1945 | DOI: 10.1038/ncomms2945 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


on phonons and magnons17. This model, however, cannot
explain the position dependence of the SSE signal, measured on
the sample with a scratched magnet2 or on the bilayer wire
device6. Here, instead, we demonstrate that phonons in different
parts of the energy spectrum act as the ‘subsystems’ of different
sensitivity to the boundaries).

The second (ii) mechanism involves the electron–phonon
drag. As the probe is a ‘dead end’, there is a full balance between
incoming and outgoing heat fluxes such that net heat flux is zero.
However, the incoming and outgoing fluxes have different
spectral distributions, because of the inelastic processes in Pt,
which average out the spectrum of the incoming flux, and
establish a local temperature TPt (x) different from T (x). The
spin drag, induced by the phonon flux, is sensitive to the spectral
content of the phonon distribution function. Hence, despite zero
net heat flux, the spin injection is not zero. In the stationary
situation, the drag voltage induced by the phonons is
compensated by redistribution of the electron density, so that
the total electric current is zero (as well as electrochemical
potential gradient). However, in the presence of a spin
polarization, there will be a net spin current js¼ jm� jk polarized
along magnetization M: unlike its charge counterpart, spin drag
is not blocked by accumulation of the spin density, which is
eliminated by the SO interaction in Pt. The magnitude of js

depends on the ratio of the thickness of the ferromagnet, dF, and
the phonon inelastic scattering length there, lF

in. The optimal
value of dF for observing the phonon drag SSE is of the order of
lF
in Tð Þ. For too thin ferromagnet, dFoolF

in, the phonons cannot
effectively transfer their momentum to electrons to drag them
towards the probe. In the opposite limit, dF44lF

in, the phonons
equilibrate before they reach the region near the probe. An
alternative mechanism not considered here is the quantum
acoustoelectric pumping18 due to the spectrally non-uniform
flux of phonons (O. Tretiakov, K.S.T., J.S., A.M.F., manuscript in
preparation).

The final (iii) mechanism involves the conversion of the spin
current to an electric signal via the ISHE. This conversion is most
optimal if the thickness of the Pt layer is of the same order of
magnitude as the spin relaxation length in Pt, which is the case in
the discussed experiments19. As shown in detail in the following
sections, the resulting theory gives the correct magnitude of the
signal, predicts a dependence on magnetization SSSEpM, and
gives specific temperature and size dependencies that can be
tested experimentally.

Subthermal phonon kinetics. On Fig. 1b, we show the spectral
phase diagram of frequency regions contributing differently to the
kinetics of phonons. There are two characteristic frequencies, onl

and obal, determining the propagation of phonons:

lin onlð Þ¼ L; lel obalð Þ¼ L: ð1Þ
For non-local transport, we require �honl¼ kBT(L/lin(T))� 2/5

ookBT. In addition, we will not be interested in phonons in the
ballistic part of the spectrum, ooobal. This is legitimate as long
as obalooonl, and determines a maximum length of the sample,
Lmax, given by the point of intersection of the curves lin(o) and
lel(o), as shown in Fig. 1b. This gives a temperature dependence
LmaxpT� 16/3. For lengths larger than Lmax, the non-local effect
is due to the fraction of phonons propagating ballistically and
requires a different formalism, which we will not discuss here.
The other condition that allows to separate thermal phonons
from those which produce non-local effects is lin(T)ooL. This
gives a minimum length of the sample LminpT� 9/2. For length
smaller than Lmin even thermal phonons are out of equilibrium
and spectral separation does not hold. The large ratio of
lin(T)/lel(T) opens the window LminooLooLmax; which we are

interested in. Hence, the sample size should be in the range
indicated on Fig. 1b. Estimation at T¼ 10 K (when typical
phonon energy is 28 K), gives Lmax about few centimetres and
Lmin on the scale of milimetres. Recall that the typical size of the
sample used for the SSE experiments is 1 cm. With temperature,
the width of the region of applicability of the theory behaves as
Lmax/LminpT� 5/6 and we expect it to be relevant up to 50 K. In
addition, the temperature is assumed to be much smaller than the
Debye temperature, TooyD, which allows us to ignore Umklapp
processes.

With these specific length restrictions, we consider next the
theory of propagation of diffusive phonons along the substrate.
Owing to the fact that the low-frequency phonons do not
primarily interact with themselves but with equilibrated high-
frequency phonons, one may use the following kinetic equation
that describes propagation of phonons in the insulating substrate,
valid for �hotkBT:

D oð Þ@2
x n o; xð Þ¼ dn o; xð Þ

tin oð Þ ; ð2Þ

where dn is the deviation from the local equilibrium

dn o; xð Þ¼ n o; xð Þ� nTðxÞðoÞ: ð3Þ

The solution to this second-order differential equation requires
two sets of effective boundary condition equations. The first,
which establishes T(x) from a given dn(x,o), is obtained from
continuity of the energy density in the system, which in stationary
situations reads as r �~jQ¼ 0.

Because of the divergence of D(o) at small o, the heat flux~jQ is
transported by the low-energy part of the spectrum20–22. The heat
current density is given by:

~jQ xð Þ¼ �
Z1

0

�horph oð ÞD oð Þ@xn o; xð Þdo; ð4Þ

where rph(o)po2 is the phonon density of states (summed over
all branches). The integral for~jQ ðxÞ diverges and has to be cutoff
at small frequency (the exact value of the cutoff does not enter
our results, as the integral for r �~jQ converges). Using
equation (2), the energy density continuity equation takes the
following form:

Z1

0

o2dn o; xð Þrph oð Þdo¼ 0: ð5Þ

This equation should hold for all x. Thus, one has to solve a
system of integro-differential equations. For the case of a pulse
propagation in an infinite media, the non-local phonon transport
has been studied in Levinson11,12 and Wilson and Schaich23.
However, we are interested in a stationary solution in the
presence of the boundaries which yield the second equation that
fully establishes n(o,x) and T(x).

On the boundary between the substrate and the heater, there is
a jump in the phonon distribution function because of the abrupt
change in the properties of materials. This leads to a finite
thermal boundary resistance (Kapitza resistance), which man-
ifests itself through the jump DTK at the contact24. If the
scattering in the vicinity of the boundary is mostly elastic, the
boundary condition consists of conservation of spectral heat
current density across the boundary. It relates the heat flux
through the boundary to the jump of the phonon distribution
function across it. At the left end of the sample (which is at heat
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contact with a reservoir at temperature T1) it takes the following
form:

lel oð Þ@xn o; xð Þjx¼ 0¼
1

RBd
n o; 0ð Þ� nT1 oð Þ½ �: ð6Þ

The boundary resistance RBd is assumed to be frequency
independent. If the heat contacts are in thermal equilibrium,
RBd can be related to the thermal boundary conductivity
hBd¼ _Q

ADTK
/ T3

v2
s

R� 1
Bd ; where vs is the averaged sound velocity.

Note, that in the absence of the boundary resistance (RBd¼ 0), the
locally equilibrated distribution function n(o,x)¼ nT0(x)(o) with
T0(x)¼T1þ (T2�T1)x/L satisfies the kinetic equation, so that
dn¼ 0 and the non-local effect vanishes, as the boundaries are
effectively at infinity. One may easily see that dnpRBd at not too
large values of RBd.

With this it is then possible to write down a closed equation for
T(x). If the phonon temperature as a function of position x is
known, the distribution function can be obtained from
equation (2) and reads:

n o; xð Þ¼ nS o; xð Þ

þZo

Z Y
o

L� xoð Þ
Y

o
x4ð ÞnT x0ð Þ oð Þdx0=lin oð Þ;

ð7Þ
where xo¼min (x,x0), x4¼max (x,x0). The ‘source’ term
nS(o, x) comes from the boundary condition (equation (6)) and
is equal to

nS o; xð Þ¼ goZo nT1 oð Þ
Y

o
xð Þþ nT2 oð Þ

Y
o

L� xð Þ
h i

; ð8Þ

where
Y

o
xð Þ¼ cosh

L� x
lin oð Þ

� �
þ gosinh

L� x
lin oð Þ

� �
; ð9Þ

and

Zo¼ 2gocosh L=lin oð Þð Þþ 1þ g2
o

� �
sinh L=lin oð Þð Þ

� �� 1
: ð10Þ

Above we have introduced the effective boundary thermal
conductance go¼ lin oð Þ=lel oð Þð ÞR� 1

Bd . The second term in
equation (7) describes the process of redistribution of phonons
along the sample due to diffusion and inelastic scattering.
Substituting equation (7) into equation (5), one gets an integral
equation for T(x), which can be solved numerically. This procedure
is self-consistent: after finding T(x), the distribution function is easily
calculated from equation (7). To illustrate the result, we assume the
following ratios of characteristic lengths of a thermal phonon

L : lin Tð Þ : lel Tð Þ¼ 1 : 0:1 : 0:005; ð11Þ
and calculate the correction dTk xð Þ to the linear temperature
behaviour

T xð Þ¼T1þ
T2�T1

L
xþ dTk xð Þ; ð12Þ

which is shown on Fig. 2, where we have assumed that RBd¼ 0.1
and T1oT2. Although the deviation from the linear behaviour is
small, it ensures the conservation of the energy density of the
phonons propagating along the substrate. Ultimately, the non-
equilibrium correction dn(o,x) is responsible for the SSE effect. In
Fig. 1b, the frequency dependence of �horph (o)dn (o,x) is plotted
close to the colder end (for x¼ 0.3L). On the hotter end, dn has the
opposite sign.

Out-of-plane spin transport. After finding the non-equilibrium
distribution function of phonons dn(o,x), we next concentrate on
the heat and spin transport in the vertical direction from the
substrate to the probe across the magnet. The temperature of

phonons in the Pt probe, TPt(x), is different from the T(x). It is
determined by the requirement that the heat flux created by non-
equilibrium non-local phonons from the substrate to Pt is com-
pensated by backflow flux of thermal phonons from Pt to the
substrate. The resulting temperature difference, dT>(x)¼
T(x)�TPt(x), can be found from the heat balance equation:

Z1

0

orph oð ÞdN o; xð Þdo¼ 0; ð13Þ

where dN (o,x)¼ nsub� nPt is the difference of the distribution
function of phonons entering and leaving the Pt probe, located at
x. Here we neglect inelastic scattering of phonons while they pass
through the ferromagnetic layer (dFtlF

in), and have assumed the
sound velocities to be of similar order in the Pt and the substrate.
We also assume, that the probe is small enough aoolel(T), so that
the influence of the counterflow on the phonon distribution
function in the substrate can be ignored.

It is useful to present dN(o,x) in the following form:

dN o; xð Þ¼ nT xð Þ oð Þ� nTPt xð Þ oð Þ
� �

þ dn o; xð Þ: ð14Þ
Then, the temperature difference dT>(x) can be calculated

from the equation:

dT? xð Þ=T xð Þ / �
Z1

0

z3dn zT; xð Þdz � � h xð Þ; ð15Þ

where h(x) is the dimensionless heat flux supplied to the probe by
the non-equilibrium phonons. The function h(x) can be written
in a form of hðxÞ¼ DT

T obal=Tð Þ4H xð Þ; where H(x) is a slow
function of temperature and boundary resistance RBd. Here obal

encodes information about scattering of phonons on the disorder
and the length of the sample. Function H(x) is plotted on Fig. 3
for the same sample parameters as before.

With this we can finally estimate the scale of the SSE due to
conducting electrons, dragged by out-of-equilibrium phonons, in
more detail. The guiding idea about the scale of the effect follows
from the derivation of the well-known Gurevich formula25–27 for
the phonon drag. This formula gives for thermoelectric coefficient
Z¼ � j/rT the following expression: Z / � sT3

e pFvsð Þ3 , which is
valid when qTl441 (here qT¼ kBT/�hvs is the wavevector of a
thermal phonon). For the dirty case qTloo1, the particle current
density dragged to the probe is given by Sergeev and Mitin28:

jz
e xð Þ / tei

pF

Z1

0

o2dN o; xð ÞW olei=vsð Þrph oð Þdo: ð16Þ

We write tei, lei for electron-impurity scattering time and
length in the ferromagnet. The role of electron-impurity

0.001

0.5

x/ L

–0.001

�T (x )
ΔT

Figure 2 | Correction to temperature behaviour. Correction to the linear

temperature dependence as a function of position, equation (12).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2945

4 NATURE COMMUNICATIONS | 4:1945 | DOI: 10.1038/ncomms2945 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


scattering in equation (16) is twofold. It enhances electron–
phonon interaction by slowing the motion of electrons (making it
diffusive). This is taken into account by the form of W(x). On the
other hand, it diminishes the drag effect due to the loss of electron
momentum by impurity scattering. The details of the function
W(x) depend on the character of the scattering of phonons
on defects. We assume that phonons scatter on impurities
vibrating with the lattice29 and W(x)¼Wvb(x). For temperatures
kBToo�hvs/lei, we may use the asymptotic behaviour
Wvb(xoo1)Ex. Recalling that the charge current will be
compensated by an unpolarized backflow charge current from
the Pt probe, the total spin current is given by the polarized
current dragged by the phonons into the Pt probe. Finally, we
rewrite the expression for the spin-phonon-drag current injected
into the Pt probe as

jz
s xð Þ / XMT T=vsð Þ2 T=yDð Þ2Ael Tð ÞJ x;Tð Þ; ð17Þ

where Ael(T)¼ (kBT/EF) (kFlei)2 is a dimensionless constant,
determined by electrons, XM¼ n" � n#

n" þ n# is the level of spin
polarization and the dragging factor is

J x;Tð Þ¼
Z1

0

z5dN zT; xð Þdz: ð18Þ

As the spectral densities of the energy and the charge currents
are proportional to different powers of the phonon frequency, the
electronic drag due to phonons is possible even when the net
energy flow is zero. The contribution to J in equation (18) arising
due to the temperature difference dT>(x) between the substrate
and the Pt probe (first term in equation (14)) is dominant. In
other words, while the non-locality of the effect along the sample
is carried by the low-frequency phonons, the dragging force
generating the spin current is produced by the thermal phonons.
As a result of this intricate joint effort by the phonons in different
parts of the spectrum, one gets (restoring units):

jz
s xð Þ¼XM kB=�hð Þ3Ael Tð Þ T=yDð Þ2 T=vsð Þ2dT? xð Þ: ð19Þ

Finally, for the magnitude of the SSE,
Sxy ¼ � 2 ej jr=�hð ÞyHjz

s=rxT , and recalling that dTm(x)p�
Th(x), we obtain:

Sxy ¼ yHS 0ð Þ
xy Ael Tð ÞXMkFlel yD=2:8ð ÞH xð Þ; ð20Þ

where S 0ð Þ
xy ¼ ej jkFr is a material-dependent constant. The factor

2.8 takes into consideration that the energy of thermal phonon is
2.8kBT. Assuming that in Pt, r¼ 0.9 mO �m and k� 1

F ¼ 10� 8 cm,
we obtain S 0ð Þ

xy � 30 mV K� 1. Function H(x) is positive at the
cold end, meaning the dragging force pushes electrons towards
the magnet there, according to equation (19). Note that although
the electron–phonon drag is proportional to a high power of
temperature, see equation (17), the final result for the SSE

coefficient is only weakly temperature dependent, SxypT. It
comes out as a result of the strong dispersion of the phonon-
scattering time in the substrate. Although function H(x) in
equation (20) is also temperature dependent, this dependence
comes only from the non-locality of the phonon collision integral
in energy, and is relatively weak. Another important property of
this function is that its spatial profile varies with temperature
rather slowly. This is because the phonons which contribute
mostly to the non-local effect have inelastic scattering length of
the order of the sample size. Varying the temperature mainly
results in the shift of the relevant phonon energy onl, so that the
corresponding length scale lin (onl) remains the same. These
observations stress the importance of the strong dispersion of the
phonon scattering.

Taking yH¼ 0.08, EF/kB¼ 103 K, yD¼ 350 K, kFlei¼ 10 and the
ratio of characteristic lengths as in equation (11), we find the
magnitude of the effect at 10 K to be SB20mV K� 1�XM.

Discussion
In this work, we have discussed the main ingredients of the
phonon dynamics in the substrate that allows to understand the
spatial profile of the SSE signal. As we have shown, to explain the
non-local effect, i.e., its dependence on the position of the probe
along the substrate, one must consider the spectral non-
uniformity of the phonon distribution function, which can be
interpreted as spectrally non-uniform temperature. A key aspect
of the non-locality is the explicit introduction of the boundaries
into the equations describing the propagation of diffusing
phonons.

In addition, we have presented a scheme of the non-magnon
mechanism in the case when the ferromagnetic element of the
device is conducting and obtain the correct magnitude of the
effect. (The recent observation30 of the magnetic proximity effect
in FM/Pt contact suggests the possibility of another channel to
contribute to the SSE voltage: anomalous Nernst effect. However,
it is less universal than the electron–phonon drag and in any case
must rely on the mechanism, which we propose for generation of
the non-local signal: subthermal phonons with energy-dispersive
diffusion, which is quite universal.)

Furthermore, the spatial profile of the SSE signal, presented in
Fig. 3, is very similar to the one shown as a ‘universal’ profile on
the figure 2f of Jaworski et al.2 Although the phonon kinetics at
temperatures comparable with yD is strongly modified by
Umklapp processes, the measured proportionality between the
SSE signal and the magnitude of the magnetization in Jaworski
et al.3 clearly indicates that near TCE130 K, the effect is still
dominated by the flux of the spin-polarized electrons, instead of
the magnon-mediated spin torque. We believe that the difference
between the data presented in figures 2 and 3 of Jaworski et al.3—
in particular, the difference in the behaviour near the TC,—
supports this picture. Two different samples demonstrate
drastically different temperature behaviour. The sample that is
thicker and grown on a substrate of a better quality has larger
peak value of both Sxy and thermopower axx and also much faster
decay of Sxy at approaching TC. The stronger thermopower
observed in the thicker sample demonstrates that in this sample,
phonons lose momentum mainly in collisions with electrons,
while in the thinner sample, their scattering on the defects is more
efficient. However, due to strong sensitivity of the phonon
distribution function at the F–Pt boundary to the ratio dF=lF

in Tð Þ,
in the thicker sample, the SSE decays with temperature much
faster than in the thinner one. As we have already discussed, at
large dF=lF

in Tð Þ, the phonons equilibrate before they reach the
probe. Indeed, in the thicker sample (more than three times
thicker than the thinner one), the effect was not even resolved

0.03

0.5

x / L

H (x )

–0.03

Figure 3 | The function of temperature and boundary conditions H(x).

The function H(x)pdT>(x) determining the magnitude and spatial profile

of the SSE signal Sxy given in equation (20).
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near the Curie temperature within the accuracy of the
measurement. This suggests the need to study the dependence
of the SSE signal on the thickness of the magnetic sample in
otherwise identical conditions, that is, keeping the properties of
the insulating substrate and semiconductor/substrate boundary
the same.
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(Leipzig) 3, 1055 (1929).

21. Pomeranchuk, I. On the thermal conductivity of dielectrics. Phys. Rev. 60, 820
(1941).

22. Herring, C. The role of low-frequency phonons in thermoelectricity and
thermal conduction. Proc. Int. Coll. Garmisch-Parten kirchen 1956;
pp. 184–235 (1958).

23. Wilson, T. & Schaich, W. A calculation of nonlocal phonon heat transfer. Solid
State Commun. 50, 3–6 (1984).

24. Swartz, E. & Pohl, R. Thermal boundary resistance. Rev. Mod. Phys. 61, 605
(1989).

25. Gurevich, L. The thermoelectric properties of conductors. Zh. Eksp. Teor. Fiz.
16, 193 (1946).

26. Blatt, F., Schroeder, P., Foiles, C. & Greig, D. Thermoelectric Power of Metals
(Plenum Press, New York, 1976).

27. Lifshitz, E., Pitaevskii, L. & Landau, L. Physical Kinetics Vol. 60 (Pergamon
Press, Oxford, 1981).

28. Sergeev, A. & Mitin, V. Effect of electronic disorder on phonon-drag
thermopower. Phys. Rev. B 65, 064301 (2001).

29. Pippard, A. B. Ultrasonic attenuation in metals. Philos. Mag. 46, 1104 (1955).
30. Huang, S. Y. et al. Intrinsic spin-dependent thermal transport. Phys. Rev. Lett.

107, 216604 (2011).

Acknowledgements
We are grateful for useful discussion with O. Tretiakov, J. Heremans, R. Myers and G.
Jakob. We acknowledge the support by grants ONR-000141110780, NSF-DMR-1006752,
NSF-DMR-1105512, NHARP and the Paul and Tina Gardner fund for Weizmann-
TAMU collaboration.

Author contributions
K.S.T. carried out theory calculations with assistance of A.M.F and J.S. All three authors
contributed equally to the project planning, writing the text and analysing the results.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Tikhonov, K. S. et al. Spectral non-uniform temperature
and non-local heat transfer in the spin Seebeck effect. Nat. Commun. 4:1945
doi: 10.1038/ncomms2945 (2013).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2945

6 NATURE COMMUNICATIONS | 4:1945 | DOI: 10.1038/ncomms2945 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://arXiv.org/abs/1209.3405
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://www.nature.com/naturecommunications

	title_link
	Results
	Physical mechanisms of the phonon-electron SSE

	Figure™1Scheme of the SSE experiment.(a) The effect incorporates three key physical mechanisms: (i) subthermal phonons whose inelastic length, lin, is of the order of the sample size, L, and whose elastic length, lel, is smaller than L, drive the non-loca
	Subthermal phonon kinetics
	Out-of-plane spin transport

	Figure™2Correction to temperature behaviour.Correction to the linear temperature dependence as a function of position, equation™(12)
	Discussion
	Figure™3The function of temperature and boundary conditions H(x).The function H(x)propdeltaTperp(x) determining the magnitude and spatial profile of the SSE signal Sxy given in equation™(20)
	UchidaK.Observation of the spin seebeck effectNature4557787812008JaworskiC. M.Observation of the spin-seebeck effect in a ferromagnetic semiconductorNat. Mater.98989032010JaworskiC. M.Spin-seebeck effect: a phonon driven spin distributionPhys. Rev. Lett.1
	We are grateful for useful discussion with O. Tretiakov, J. Heremans, R. Myers and G. Jakob. We acknowledge the support by grants ONR-000141110780, NSF-DMR-1006752, NSF-DMR-1105512, NHARP and the Paul and Tina Gardner fund for Weizmann-TAMU collaboration
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




