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A memristor-based five-dimensional (5D) hyperchaotic Chua’s circuit is proposed. Based on the Lyapunov stability theorem, the
controllers are designed to realize the synchronization and lag synchronization between the hyperchaotic memristor-based Chua’s
circuits under different initial values, respectively. Numerical simulations are also presented to show the effectiveness and feasibility
of the theoretical results.

1. Introduction

The fourth fundamental circuit element included along with
the resistor, capacitor, and inductor, called thememristor, was
first postulated by Chua in 1971 [1]. Until 2008, the Hewlett-
Packard (HP) research team announced that they had real-
ized a prototype of memristor based on nanotechnology [2].
Many researchers focus on the memristor due to its potential
applications in programmable logic, signal processing, neural
networks, control systems, reconfigurable computing, brain-
computer interfaces, and so on [3–9].

Itoh and Muthuswamy presented a fourth-order mem-
ristor based on Chua’s oscillator by replacing Chua’s diode
with an active two-terminal circuit consisting of a conduc-
tance and a flux-controlled memristor and observed rich
nonlinear dynamic behavior in such system [10, 11]. Bao et al.
investigated the initial state dependent dynamical behaviors
of the memristor-based chaotic circuit [12, 13]. In [14], a
memristor with cubic nonlinear characteristics is employed
in the modified canonical Chua circuit. In their work, a
systematic study of hyperchaotic behavior in the circuit

is performed. Hyperchaotic systems are being developed
for applications in secure communications. It is important
that memristive hyperchaotic systems are developed for
implementation in coming generations of memristor-based
devices. Novel dynamical behaviors of the memristor chaotic
oscillator system are heavily dependent on the initial state
of the memristor except for the circuit parameters. Namely,
it is different from the traditional chaotic systems that the
memory of initial state of the memristor is very important
in producing complicated transient transition dynamics.
The chaotic memristor-based oscillator system will enable
the production of more complex and unpredictable time
domain signals, which may result in applications for secure
communications and encryption.

Many works have been done about the stabilization and
synchronization of memristor-based systems [15–19]. Zhang
et al. presented theoretical results on the global exponen-
tial periodicity and stability of a class of memristor-based
recurrent neural networks with multiple delays [15]. Wu et
al. formulated and investigated a class of memristor-based
recurrent neural networks [18]. In this paper, by replacing
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Figure 1: The hyperchaotic circuit based on memristor [13].

Chua’s diode with a flux-controlled memristor circuit, a
memristor-based five-dimensional (5D) hyperchaotic circuit
is derived from four-dimensional Chua’s oscillator. Based
on Lyapunov stability theory, we will study synchronization
and lag synchronization of memristor-based hyperchaotic
circuits. Hyperchaotic circuits are being developed for appli-
cations in secure communications [20, 21]. It is impor-
tant that memristive hyperchaotic circuits be developed for
implementation in coming generations of memristor-based
devices. On the other hand, it has been shown that the
complete synchronization of chaos is practically impossible
for the finite speed of signals. Chaotic lag synchronization
appears as a coincidence of shift-in-time states of interac-
tive systems. It is just synchronization lag that makes lag
synchronization practically available. So, in many cases, it is
more reasonable to require the slave system to synchronize
the master system with a time-delay. Thus, it is of great
importance to study lag synchronization. This paper will
study synchronization and lag synchronization between the
hyperchaotic memristor-based Chua circuits.

The rest of the paper is organized as follows. In Section 2,
a memristor-based 5D chaotic system is introduced. In
Sections 3 and 4, using feedback control method, general
convergence criterion for synchronization and lag synchro-
nization of memristor-based chaotic hyperchaotic system is
established. Numerical simulation results are given to show
the effectiveness of the theoretical results. Conclusions are
finally drawn in Section 5.

2. Problem Formulation and Preliminaries

Referring to [13], by replacing Chua’s diode with an active
flux-controlled memristor circuit, a memristor-based five-
dimensional chaotic circuit is derived from four-order Chua’s
oscillator, as shown in Figure 1. The circuit consists of two
capacitors, two inductors, and onememristor.Thememristor
is characterized by its incremental memductance function
𝑊(𝜑) describing the flux-dependent rate of change of charge:

𝑊(𝜑 (𝑡)) =
𝑑𝑞 (𝜑 (𝑡))

𝑑𝜑 (𝑡)
= −𝑎 + 3𝑏𝜑

2
(𝑡) , (1)

where 𝑎 > 0, 𝑏 > 0 are constants.

And the equations for the circuit are described by
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where𝑊(𝜑(𝑡)) = −𝑎 + 3𝑏𝜑
2
(𝑡).

Letting 𝑥
1
(𝑡) = V

1
(𝑡), 𝑥
2
(𝑡) = V

2
(𝑡), 𝑥
3
(𝑡) = 𝑖

3
(𝑡), 𝑥
4
(𝑡) =

𝑖
4
(𝑡), and 𝑥

5
(𝑡) = 𝜑(𝑡), system (2) can be further rewritten as

𝑑𝑥
1
(𝑡)

𝑑𝑡
=

1

𝐶
1

(𝑥
3
(𝑡) − 𝑊 (𝑥

5
(𝑡)) 𝑥
1
(𝑡)) ,

𝑑𝑥
2
(𝑡)

𝑑𝑡
=

1

𝐶
2

(−𝑥
3
(𝑡) + 𝑥

4
(𝑡)) ,

𝑑𝑥
3
(𝑡)

𝑑𝑡
=

1

𝐿
1

(𝑥
2
(𝑡) − 𝑥

1
(𝑡) − 𝑅𝑥

3
(𝑡)) ,

𝑑𝑥
4
(𝑡)

𝑑𝑡
=
−𝑥
2
(𝑡)

𝐿
2

,

𝑑𝑥
5
(𝑡)

𝑑𝑡
= 𝑥
1
(𝑡) .

(3)

When 1/𝐶
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= 9, 𝐶

2
= 1, 1/𝐿

1
= 30, 1/𝐿

2
= 15, 𝑅 =

1, 𝑎 = 1.2, and 𝑏 = 0.4, system (2) exhibits chaos or
hyperchaos as shown in Figure 2.

3. Synchronization of Hyperchaotic Systems-
Based Memristor

Let system (3) be the drive system. In what follows, the
coupled response system with feedback control is given by
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Figure 2: The chaotic attractor of the memristor oscillator.

where 𝑢
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error system

̇𝑒
1
(𝑡) =

1

𝐶
1

(𝑒
3
(𝑡) + 𝑎𝑒

1
(𝑡)) + 𝑘

1
𝑒
1
(𝑡) ,

̇𝑒
2
(𝑡) =

1

𝐶
2

(−𝑒
3
(𝑡) + 𝑒

4
(𝑡)) + 𝑘

2
𝑒
2
(𝑡) ,

̇𝑒
3
(𝑡) =

1

𝐿
1

(𝑒
2
(𝑡) − 𝑒

1
(𝑡) − 𝑅𝑒

3
(𝑡)) + 𝑘

3
𝑒
3
(𝑡) ,

̇𝑒
4
(𝑡) =

−𝑒
2
(𝑡)

𝐿
2

+ 𝑘
4
𝑒
4
(𝑡) ,

̇𝑒
5
(𝑡) = 𝑒

1
(𝑡) + 𝑘

5
𝑒
5
(𝑡) .

(6)

We now state our main results.
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then the synchronization error system (6) is asymptotically
stable, and the systems (3) and (4) are asymptotically synchro-
nized.

Proof. Choose the Lyapunov function as follows:
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Figure 3: Synchronization error of memristor-based hyperchaotic
systems.

According to Lyapunov theory, the inequality �̇�(𝑡) ≤ 0

indicates 𝑉(𝑡) converges to zero asymptotically; that is, the
error system 𝑒(𝑡) converges to zero globally and asymptoti-
cally, and the synchronization between system (3) and system
(4) is achieved.

In simulation, we select the parameters of memristor-
based Chua’s system as initial values of drive and
response systems are (𝑥

1
(0), 𝑥
2
(0), 𝑥
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(0), 𝑥
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(0)) = (0, 0, 0.0001, 0, 0), respectively. FromTheorem 1, the

control gain is chosen as 𝑘
1
= −11, 𝑘

2
= 𝑘
3
= 𝑘
4
= 𝑘
5
= −2.

We plot the time response curves of the synchronization
error system as shown in Figure 3. From Figure 3, one can see
that the synchronization error of the hyperchaotic systems
is asymptotically stable; that is, the synchronization between
systems (3) and (4) is achieved.

4. Lag Synchronization of Hyperchaotic
Systems

In this section, we study the lag synchronization of
memristor-based Chua’s circuit.The system (3) can be rewrit-
ten with two parts as follows:
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As for vector function 𝑓(𝑥), assume that for any 𝑥, 𝑦 ∈ Ω
we have

𝑓𝑖 (𝑥) − 𝑓𝑖 (𝑦)
 ≤ 𝐿max

𝑥 − 𝑦
 , 𝑖 = 1, 2, 3, 4, 5. (13)

The above condition is considered as the uniform Lips-
chitz condition, and 𝐿max > 0 refers to the uniform Lipschitz
constant.

We construct the response system as follows:

̇𝑦 (𝑡) = 𝐴𝑦 (𝑡) + 𝐵𝑓 (𝑦 (𝑡)) + 𝑢 (𝑡) , (14)
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state and 𝑢(𝑡) is the control gain defined by

𝑢 (𝑡) = 𝑘 (𝑦 (𝑡) − 𝑥 (𝑡 − 𝜏)) , (15)

where 𝜏 > 0 is the propagation delay and 𝑘 denotes control
strength. Let 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡 − 𝜏) be the lag synchronization
error between the systems (11) and (14); then the error system
is
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= 𝐴𝑒 (𝑡) + 𝐵 (𝑓 (𝑦) − 𝑓 (𝑥 (𝑡 − 𝜏))) + 𝑢 (𝑡)
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(16)

We now state our main results.

Theorem 2. Suppose that there exist positive constants 𝑠
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1
(𝐵 + 𝐵

𝑇
) + 𝑠
1

−1
𝐿max
2
𝐼 + 𝑔
1
𝐼 ≤ 0. (17)

Then, the synchronization error system (16) is globally
exponentially stable, and the systems (11) and (14) are globally
exponentially lag-synchronized.

Proof. Choose the Lyapunov function as follows:

𝑉 (𝑡) = 𝑒(𝑡)
𝑇
𝑒 (𝑡) . (18)
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Then the differentiation of 𝑉 along trajectories of (16) is

�̇� (𝑡)

= 𝑒(𝑡)
𝑇
̇𝑒 (𝑡) + ̇𝑒(𝑡)

𝑇
𝑒 (𝑡)

= 𝑒(𝑡)
𝑇
[𝐴𝑒 (𝑡) + 𝐵 (𝑓 (𝑦) − 𝑓 (𝑥 (𝑡 − 𝜏))) + 𝑘𝑒 (𝑡)]

+ [𝐴𝑒 (𝑡) + 𝐵 (𝑓 (𝑦) − 𝑓 (𝑥 (𝑡 − 𝜏))) + 𝑘𝑒 (𝑡)]
𝑇

𝑒 (𝑡)

≤ 𝑒(𝑡)
𝑇
[𝐴 + 𝐴

𝑇
+ 2𝑘𝐼] 𝑒 (𝑡) + 𝑠

1
𝑒(𝑡)
𝑇
[𝐵 + 𝐵

𝑇
] 𝑒 (𝑡)

+ 𝑠
1

−1
[𝑓 (𝑦) − 𝑓 (𝑥 (𝑡 − 𝜏))]

𝑇

[𝑓 (𝑦) − 𝑓 (𝑥 (𝑡 − 𝜏))]

≤ 𝑒(𝑡)
𝑇
[𝐴 + 𝐴

𝑇
+ 2𝑘𝐼 + 𝑠

1
(𝐵 + 𝐵

𝑇
)] 𝑒 (𝑡)

+ 𝑠
1

−1
𝐿max
2
𝑒(𝑡)
𝑇
𝑒 (𝑡)

= 𝑒(𝑡)
𝑇
[𝐴 + 𝐴

𝑇
+2𝑘𝐼 + 𝑠

1
(𝐵 + 𝐵

𝑇
)+ 𝑠
1

−1
𝐿max
2
𝐼 +𝑔
1
𝐼]𝑒 (𝑡)

− 𝑔
1
𝑒(𝑡)
𝑇
𝑒 (𝑡)

≤ −𝑔
1
𝑒(𝑡)
𝑇
𝑒 (𝑡)

= −𝑔
1
𝑉 (𝑡) .

(19)

According to Lyapunov theory, the inequality �̇�(𝑡) ≤

−𝑔
1
𝑉(𝑡) indicates 𝑉(𝑡) converges to zero exponentially. Fur-

thermore, we can conclude that the lag synchronization error
system 𝑒(𝑡) converges to zero globally and exponentially with
exponential convergence rate 𝑔

1
, and the lag synchronization

between system (11) and system (14) can be obtained. This
completes the proof.

Let 𝑠
1
= 1; one obtains from Theorem 2 the following

corollary.

Corollary 3. If there exist positive constants 𝑔
1
such that

𝑘 ≤

(−𝜆min (𝐴 + 𝐴
𝑇
) − 𝜆min (𝐵 + 𝐵

𝑇
) − 𝐿
2

max − 𝑔1)

2
, (20)

then the synchronization error system (16) is globally expo-
nentially stable, and the systems (11) and (14) are globally
exponentially lag-synchronized.

In simulation, we select the parameters of memristor-
based Chua’s system as initial values of drive and response
systems are

(𝑥
1
(0) , 𝑥

2
(0) , 𝑥

3
(0) , 𝑥

4
(0) , 𝑥

5
(0))

= (0.001, 0, −0.0001, 0, 0) ,

(𝑦
1
(0) , 𝑦

2
(0) , 𝑦

3
(0) , 𝑦

4
(0) , 𝑦

5
(0)) = (0, 0, 0.0001, 0, 0) .

(21)

Based on the bound of the hyperchaotic attractor, we can
choose 𝐿max = 4.40832. Respectively, from Corollary 3, we
select 𝑔

1
= 32, 𝑘 = −1.1827 and plot the lag synchronization
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Figure 4: Lag synchronization error of memristor-based hyper-
chaotic systems.
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Figure 5: The norm of lag synchronization error of memristor-
based hyperchaotic systems.

errors curve, as shown in Figure 4. Figure 5 shows the
norm of lag synchronization error of the memristor-based
hyperchaotic systems. As the time 𝑡 goes to infinity, the lag
synchronization error system is exponentially stable. Hence,
the lag synchronization between system (11) and system (14)
is achieved.

5. Conclusions

This paper has studied the synchronization and lag syn-
chronization of memristor-based 5D hyperchaotic circuits.
The feedback controllers have been designed to stabilize
the synchronization error system and lag synchronization
error system. Simulation results were given to verify the
effectiveness and feasibility of method.
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