A MICROBIOLOGICAL STUDY OF POLYARTHRITIS IN SLAUGHTER PIGS

G.V.S. TURNER

ABSTRACT: Turner, G.V.S. A Microbiological study of polyarthritis in slaughter pigs. Journal of South African Veterinary Association (1982) 53 No. 2, 99-101 (En) Department of Veterinary Public Health, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843, USA.

Polyarthritis in slaughter pigs is a universal problem. In other countries the occurrence, importance, and aetiology of porcine arthritis is well documented17. It is generally accepted that the following microorganisms are the main arthritogenic agents in swine: Erysipelothrix rhusiopathiae, Corynebacterium pyogenes, Staphylococcus aureus, Escherichia coli, Haemophilus spp., Mycoplasma spp., Salmonella spp., and viruses. E. rhusiopathiae was found to be responsible for 48 % of the cases of arthritis and Streptococcus spp., C. pyogenes and S. aureus for 20 %, 4 %, and 2 % respectively; no microorganisms were cultured from 26 % of the arthritic joints.

INTRODUCTION

Polyarthritis in slaughter pigs is a universal problem. In other countries the occurrence, importance, and aetiology of porcine arthritis is well documented17. It is generally accepted that the following microorganisms are the main arthritogenic agents in swine: Erysipelothrix rhusiopathiae, Corynebacterium pyogenes, Staphylococcus aureus, Haemophilus spp., Escherichia coli, Streptococcus spp., Salmonella spp., and Mycoplasma spp. In many countries E. rhusiopathiae is regarded as the major aetiological agent responsible for polyarthritis in slaughter pigs and Streptococcus spp. are regarded as the second most common cause17.

With swine erysipelas being a notifiable disease and a zoonosis and E. rhusiopathiae being the main arthritogenic agent encountered in slaughter pigs, it is difficult to understand why the high incidence of arthritis in pig carcasses and the economic implications thereof did not prompt an earlier investigation into the actual aetiology of the problem in South Africa. It therefore became apparent that it was necessary to ascertain the aetiology of arthritis in slaughter pigs encountered at the abattoirs. From the microbiological standpoint it was deemed necessary to develop an efficient and practical method for aseptically opening joints and obtaining microbiological samples for further testing.

MATERIALS AND METHODS

Fore- and hindlegs with unopened intact joints were obtained from freshly slaughtered pig carcasses which had been condemned for polyarthritis. In order to achieve satisfactory results, the fresh material was processed in the laboratory as soon after slaughter as possible. The microbiological examination procedure was developed for aseptically opening joints to obtain material for microbiological examination. A standard series of culture media for primary isolation of the following microorganisms: Erysipelothrix rhusiopathiae, Corynebacterium pyogenes, Staphylococcus aureus, Escherichia coli, Haemophilus spp., Mycoplasma spp., Salmonella spp., and viruses was included.

A standard series of culture media for primary isolation of the following microorganisms was included. A routine technique was developed for aseptically opening joints to obtain material for microbiological examination. A standard series of culture media for the primary isolation of arthritogenic agents were used in the examination of each affected joint. The microbiological study catered for isolation of the following microorganisms: Erysipelothrix rhusiopathiae, Corynebacterium pyogenes, Staphylococcus aureus, Escherichia coli, Streptococcus spp., Haemophilus spp., Mycoplasma spp., Salmonella spp., Chlamydia, and viruses. E. rhusiopathiae was found to be responsible for 48 % of the cases of arthritis and Streptococcus spp., C. pyogenes and S. aureus for 20 %, 4 %, and 2 % respectively; no microorganisms were cultured from 26 % of the arthritic joints.

A standard series of culture media for primary isolation of the following microorganisms was included. A routine technique was developed for aseptically opening joints to obtain material for microbiological examination. A standard series of culture media for the primary isolation of arthritogenic agents were used in the examination of each affected joint. The microbiological study catered for isolation of the following microorganisms: Erysipelothrix rhusiopathiae, Corynebacterium pyogenes, Staphylococcus aureus, Escherichia coli, Haemophilus spp., Mycoplasma spp., Salmonella spp., and viruses. E. rhusiopathiae was found to be responsible for 48 % of the cases of arthritis and Streptococcus spp., C. pyogenes and S. aureus for 20 %, 4 %, and 2 % respectively; no microorganisms were cultured from 26 % of the arthritic joints.

The joint capsule was further incised and a small piece of capsule was aseptically transferred to serum broth and another placed in Hayflick's broth. A slightly large piece was then removed and firmly streaked sequentially across BTA, chocolate agar, and Chalquest agar. The plating on the Chalquest agar was always performed last because the medium contains penicillin, and it was undesirable for the antibiotic to contaminate antibiotic-free BTA and chocolate agar. For Chlamydia and virus detection a piece of joint capsule was ground finely with a sterile pestle and mortar. The ground material was inoculated into the yolksac of 7-8 day embryonated eggs for the isolation of Chlamydia, and roller tube cultures of Stice (PK 15) porcine kidney cells were infected as described by Turner.

The inoculated solid media were placed in a sealed candle jar in order to create an atmosphere of ± 10% carbon dioxide. All the media were incubated at 37 °C. Indentification of any growth on BTA was based on the morphological and haemolytic characteristics of the colonies, the production of catalase, the microscopic appearance of a Gram stained smear, and specific biochemical tests based on those recommended in Bergey's Manual of Determinative Bacteriology. The serum broth was examined for signs of growth 24 hours after inoculation. If there was no growth, the serum broth was incubated for an additional 24 hours before subculturing onto BTA. The BTA plate was then examined as described above.

The Chalquest agar was examined under a dissecting microscope for typical Mycoplasma colonies. On the second day after inoculating the Hayflick's broth, a subculture was made from the broth onto chocolate agar. The agar was then examined 7 days later as described above. The Hayflick's broth was discarded at this stage. Where no growth was noted on the Chalquest agar after 7 days the medium was incubated for an additional 7 days.

RESULTS

None of the ten apparently normal joints used as controls yielded any microbiological growth. The results of any growth on BTA were based on the morphological and haemolytic characteristics of the colonies, the production of catalase, the microscopic appearance of a Gram stained smear, and specific biochemical tests based on those recommended in Bergey's Manual of Determinative Bacteriology. The agar was then examined 7 days later as described above.

The agar was then examined 7 days later as described above. The BTA plate was then examined as described above.

The inoculated solid media were placed in a sealed candle jar in order to create an atmosphere of ± 10% carbon dioxide. All the media were incubated at 37 °C. Indentification of any growth on BTA was based on the morphological and haemolytic characteristics of the colonies, the production of catalase, the microscopic appearance of a Gram stained smear, and specific biochemical tests based on those recommended in Bergey's Manual of Determinative Bacteriology. The serum broth was incubated for an additional 24 hours before subculturing onto BTA. The BTA plate was then examined as described above.

The Chalquest agar was examined under a dissecting microscope for typical Mycoplasma colonies. On the second day after inoculating the Hayflick's broth, a subculture was made from the broth onto chocolate agar. The agar was then examined 7 days later as described above. The Hayflick's broth was discarded at this stage. Where no growth was noted on the Chalquest agar after 7 days the medium was incubated for an additional 7 days.

No isolation of Haemophilus spp., Mycoplasma spp., and Chlamydia organisms was made. No evidence of cytopathic changes was noted in the Stice porcine kidney cell cultures and the material was therefore considered free of virus.

DISCUSSION

Certain Mycoplasma spp. are known arthritogenic agents in swine and can bring about joint lesions which are difficult to differentiate from those caused by other arthritogenic agents. For this reason it was considered necessary to screen the affected joints in this survey for the possible presence of Mycoplasma organisms as the causative agent. The complex growth requirements of Mycoplasma organisms necessitated the use both liquid and solid media. Hayflick's broth is a suitable enrichment medium for most Mycoplasma organisms. Chalquest agar is also a suitable medium, especially for the subculture from PPLO broth and facilitates the microscopic detection of the characteristic small colonies.

The fact that no Mycoplasma were isolated from these media makes it unlikely that Mycoplasma were present in the arthritic lesions. Haemophilus spp. are known arthritogenic agents which can cause lesions very similar to that caused by other arthritogenic agents. For this reason two selective media were utilized for the isolation of Haemophilus spp. The fact that no Haemophilus spp. could be isolated from the joint material is therefore considered of some significance. Chlamydia organisms are known to cause polyarthritis in lambs and calves and have been isolated from affected joints in these animals. To establish whether Chlamydia were causing the arthritis in this study, cultural methods capable of supporting growth of these organisms were included. The negative findings are of significance.

To facilitate the isolation of organisms it is generally recommended that both synovial fluid and a portion of the affected synovial membrane be inoculated. Because of the scarcity of organisms in some of the more chronic forms of arthritis, it is also recommended that an enrichment medium such as serum be used for primary isolation.

It is interesting to note that in this study there was no significant difference between the results obtained from the use of either serum broth or BTA for the primary isolation of E. rhusiopathiae, Streptococcus spp., C. pyogenes, and S. aureus. Similarly, no significant difference resulted from the use of either synovial fluid or synovial membrane as inoculum.

Various techniques have been employed for the isolation of E. rhusiopathiae. Some workers advocate the use of enrichment media to enhance the possibility of isolating E. rhusiopathiae from affected material. The use of selective media containing substances such as sodium azide and crystal violet are widely advocated, especially in order to eliminate much of the difficulty in culturing E. rhusiopathiae from contaminated material. The fluorescent antibody technique is considered less accurate than cultural methods for the detection of E. rhusiopathiae and is not regarded as a satisfactory test for routine use in the diagnostic laboratory. In spite of the fact that in some cases the number of colonies on primary plates may be rather low, the use of blood agar is regarded as a useful medium for the primary isolation of E. rhusiopathiae organisms. Because of the reliability of the aseptic technique adopted in this study, it was thought unnecessary to use an additional selective medium merely for the specific isolation of E. rhusiopathiae. The use of BTA and serum broth was adequate for the isolation of E. rhusiopathiae, as well as catering for organisms such as C. pyogenes, Streptococcus spp., S. aureus, and E. coli.

In this study E. rhusiopathiae was found to be the most common isolate. Some workers have, however, also observed that a substantial number of joints showing arthritis failed to yield organisms on culture. Connell et al. found that a significant percentage of pathological joints did not yield E. rhusiopathiae even though the arthritics was initiated by this organism.
There are various theories on why the causative organisms cannot be isolated from a number of cases of chronic porcine arthritis. It has been postulated that although primarily due to E. rhusiopathiae, the arthritis is perpetuated by immunological phenomena. The failure to isolate organisms has also been attributed to the lack of sensitivity of the bacteriological techniques employed. With chronicity, bacteria are commonly more difficult to recover from arthritic joints and there may be an element of chance attached to the presence or absence of viable organisms at the site where the bacterial specimen is taken. Based on the above criteria it may be assumed that E. rhusiopathiae was responsible for at least some of the arthritic processes in the 26% culturally negative joints encountered in this survey.

Based on the fact that the joints of all 10 control pigs were found to be sterile and the absence of obvious contaminants during the entire course of the study, the routine technique used for aseptically opening joints must be regarded as being efficient and practical. For primary isolation of the arthritogenic agents listed, the standard series of culture media employed proved to be the most practical for this study.

Table 1: RESULTS OF MICROBIOLOGICAL EXAMINATION OF ARTHRITIC PORCINE JOINTS

<table>
<thead>
<tr>
<th>Isolations</th>
<th>Number Carcasses Affected</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erysipelothrix rhusiopathiae</td>
<td>24</td>
<td>48</td>
</tr>
<tr>
<td>Streptococcus spp.</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Corynebacterium pyogenes</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Negative</td>
<td>13</td>
<td>26</td>
</tr>
</tbody>
</table>

Total Number of Carcasses Examined: 50 (100%)

REFERENCES

2. Chalquest R R 1962 Cultivation of the infectious-syosovitis-type pleuropneumonia-like organisms. Avian Diseases 6:36-43

10. Lemcke R M 1965 Media for the mycoplasmaeae. Laboratory Practice 14:712-715

11. Packer R A 1943 The use of sodium azide (NaN3) and crystal violet in a selective medium for streptococci and *Erysipelothrix rhusiopathiae*. Journal of Bacteriology 46:343-349

13. Shuman R D 1959 Swine erysipelas and arthritis. Laboratory Investigation 8:1416-1418

A new genus and species of trichostrongylid nematode, *Paracooperioides peleae*, was collected from the small intestines of vaal ribbok, *Pelea capreolus* (Foster, 1790), from the Bontebok National Park, Swellendam, Cape Province.

These nematodes are small and slender with a small cephalic inflation. The cuticle bears numerous transverse striations which are more pronounced anteriorly. The dorsal ray is long and is similar to that of *Gazellostrongylus* Yeh, 1956, and *Cooperioides hepaticae* Orthlepp, 1938, but differs in that it bifurcates in its distal quarter. Each branch divides again, giving rise to a thinner, outer branch and a thicker inner branch. The latter recurs upon itself to form a small, elongated knob. The spicules of *Paracooperioides peleae* resemble those of *C. hepaticae* but can be differentiated from them in that they bear small lateral barbs on their tips. Ten longitudinal ridges, supported by sclerotized rods, are present at the middle of the body. In transverse section, *Paracooperioides peleae* is intermediate between *Cooperioides* Daubney, 1933 and *Paracoperaeria* Travassos, 1935.

A case of bovine cerebral theileriosis was confirmed at autopsy on a farm where 4 animals out of 70 died. All were less than 2 years old and all showed nervous signs.

Serologically, no evidence was found of *Theileria monos* or the *Theileria parva* group in young animals born on the farm. Six out of 13 calves 6-9 months of age were, however, serologically positive for *Theileria? taurotragi* and it was concluded this species was the probable cause of death of the 4 animals.

JOURNAL OF THE SOUTH AFRICAN VETERINARY ASSOCIATION – JUNE 1982