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1 Introduction

It has been known for many years that the forms in D-dimensional maximal supergravity

theories, when the duals of the physical forms are included, are associated with algebraic

structures [1, 2]. These structures have been interpreted as subalgebras of Borcherds su-

peralgebras [3, 4] and in terms of extended E-series algebras [5–13]. It has been found that

there are also (D− 1)-form potentials (also called de-forms, since they are associated with

deformations) and D-forms (otherwise known as top forms), both carrying no physical de-

grees of freedom, whose existence is implied by these algebraic structures (these were first

written down explicitly in D = 10 [14, 15]). In general, the forms transform under repre-

sentations Rℓ of the duality group of the given supergravity theory where the level number

ℓ coincides with the form-degree of the potentials. In a separate, but related, development,

studies of the general structure of gauged supergravity theories [16–25] have revealed that

the same sets of forms are needed in that context (with two exceptions for D = 3) and

that the gauge transformations of the potentials at level ℓ involve parameters up to level

(ℓ + 1), the whole set of forms giving rise to a tensor hierarchy [26–28]. A key feature of

this general construction is the use of the embedding tensor that specifies how the gauge

group G0 is embedded in the duality group G, thereby facilitating a unified description of

arbitrary gaugings in any given spacetime dimension. The half-maximal matter-coupled

supergravity theories, their forms, algebras and gaugings have also been discussed in the

literature [10, 29–31].

In this article an extended discussion of the above topics is given for all maximal

supergravity and half-maximal matter-coupled supergravity theories in dimensions D ≥ 3.

We rederive all of the forms in an elementary way and show that they are consistent with

supersymmetry at the full, non-linear level. This is done using a superspace formulation,

thus extending the results of [32–34] to all cases. One advantage of the formalism is that

superforms can have arbitrarily high degrees; in particular, this means that the algebraic

structures associated with them can be studied covariantly via the Bianchi identities for

the field strengths even for potential forms with degree D. Indeed, one can even consider

over-the-top (OTT) forms that have degrees higher than D. In the context of on-shell

supergravity theories without any higher-order corrections some (D+2)-form field strengths

are non-zero; these are necessary for the completion of the gauge hierarchy in a covariant

formalism, and for this reason we also classify these. A second advantage of superspace is

that one can use cohomological techniques to show that the Bianchi identities for all of the

forms can all be solved almost trivially. This gives a very simple way of verifying that the

forms are indeed consistent with supersymmetry.

As noted in the original papers [1, 2] the Bianchi identities for the forms give rise

directly to Lie (super)algebras. In the superspace context these are naturally infinite-

dimensional, except for D = 11, and in many examples are determined by the level-

one forms, together with a level-two consistency condition that can be interpreted as the

requirement that the level-two Bianchi identity be soluble, a question that can be settled

by cohomology. This puts a constraint on the possible level-two representations in the

symmetric tensor product of R1 with itself. If we identify level zero (i.e. the scalars) with
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the Lie algebra g of the duality group, then we can obtain the full superalgebra of forms by

appending an additional odd generator, e0 say, that generates R1 under the action of the

raising operators of g and which anti-commutes with itself in order that the supersymmetry

constraint be satisfied. We can then extend this algebra symmetrically about level zero to

obtain a Borcherds superalgebra B, where e0 and the corresponding generator f0 at level

−1 are associated to an odd null root, added to the simple roots of g.

In maximal supergravity this construction works well for 3 ≤ D ≤ 8 and we arrive

in this way at the Borcherds superalgebras proposed in [3, 4]. However, ambiguities arise

for higher dimensions. This brings us to the second main theme of the paper, namely a

re-investigation of the algebraic structures and their interrelationships. In reference [35]

it was shown how one could derive Borcherds superalgebras for maximal supergravity

theories starting from E11, while in [36], it was shown how to go in the other direction.

More recently, it was argued in [37] that the Borcherds superalgebras given in [3, 35] for

D ≥ 8 do not agree with those obtained by oxidation from lower dimensions. As we shall

discuss, it is also the case that the Lie superalgebras determined by the forms do not imply

unique Borcherds superalgebras for these cases. We address this problem in a unified

construction that includes the form algebras, their Borcherds extensions and extended

Kac-Moody algebras. The key observation is that, in each case, the unique Borcherds

superalgebra B determined by the Bianchi identities (and, if needed for uniqueness, the

oxidation procedure) is of a special type. Namely, it can be obtained from an associated

Kac-Moody algebra A by assigning a non-negative integer, called the V-degree [35, 37],

to each simple root. As we shall explain, the V-degrees prescribe completely both how to

construct B from A, and how to extend A to another Kac-Moody algebra C, such that

B and C give identical form spectra, up to an arbitrary level. If this level is equal to the

spacetime dimension of a maximal supergravity theory, then C is the “very extended” Kac-

Moody algebra E11. Our construction is thus a further development of the work of [35, 36]

relating B and E11 to each other. It also generalises the result of [38], which applies to

the generic case described above, where one simple root has V-degree one (the odd null

root of B), and the others have V-degree zero (the simple roots of g). Our result is much

more general since we can start with not only an arbitrary Kac-Moody algebra A, but also

an arbitrary assignment of V-degrees to its simple roots. In particular, it is valid for the

non-generic cases of maximal and half-maximal supergravity that appear for D ≥ 9 and

D ≥ 5, respectively.1

The form algebras lead to Borcherds superalgebras by extending them to negative

levels in a symmetrical fashion, in the sense that level minus one is the dual of level

one, but there is another extension that does not have this property known as the tensor

hierarchy algebra (THA) [40]. This algebra is instead symmetrical in the sense of spacetime

duality, for example level minus one is dual to level (D−1), and has applications to gauged

supergravity theories. We shall show that deforming the Bianchi identities by a dimension-

one, level-zero field-strength (the embedding tensor), invariant under the gauge group (a

1Another example is chiral supergravity in D = 6 coupled to two vector multiplets and two tensor

multiplets, recently studied in [39].
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subgroup of the duality group), has a natural interpretation in terms of a truncation of

the THA. We discuss the consistent deformed Bianchi identities and show how the field

strengths can be solved for in terms of potentials by using the THA [41]. We also show

that the gauged Bianchi identities can be solved to all orders and thus prove consistency

with supersymmetry.

The organisation of the paper is as follows: in the next two sections we discuss maximal

and half-maximal supergravity theories, including all the forms, in a superspace setting.

In the maximal case we go directly to the on-shell theories but in the half-maximal case we

start from off-shell formulations of supergravity (partially off-shell in the case of D = 10)

and then go on-shell by introducing the forms and scalars. This has the advantage of sim-

plifying the discussion a little. In these sections we also discuss superspace cohomology and

demonstrate how it can be used to show that all Bianchi identities are satisfied. Sections

4 and 5 concern the algebras that one obtains from the forms and their interpretation in

terms of the Borcherds-Kac-Moody picture sketched above, while in section 6 we discuss

gauged supergravity theories and the role of the THA. In the first two appendices we list,

up to level ℓ = (D + 1), all the representations Rℓ for maximal supergravity, and all the

Bianchi identities for half-maximal supergravity. There are also appendices on Borcherds

superalgebras (and the more general contragredient Lie superalgebras) and on extended

superspaces for some maximal theories. These superspaces include additional even coordi-

nates corresponding to the level-one representation R1. Since all of the forms are generated

from this in many cases, formulating the theory in such an extended superspace contains

all of the forms implicitly.

2 Forms, consistent Bianchi identities and cohomology in maximal su-

pergravity

In this section we describe a simple approach to the extended algebraic structures that arise

in maximal supergravity theories based on supersymmetry. In order to make supersymme-

try manifest we shall work in superspace. A significant advantage of this approach is that

forms in superspace can have arbitrary degrees, because the odd basis forms commute, and

this implies that one can work with field-strength forms rather than potentials, even for the

top forms for which the field strengths are identically zero in spacetime. Moreover, one can

in principal have potential forms that have degrees greater than the dimension of space-

time. We shall refer to these as over-the-top (OTT) forms. Even in supergravity there are

examples of OTT potentials with degree (D+1) whose (D+2)-form field strengths are non-

zero in superspace [33, 34], but we might expect many more of them to be non-zero when

higher-order corrections are taken into account. Such forms fit in naturally with Borcherds

superalgebras which are typically infinite-dimensional in the supergravity context.

2.1 Maximal supergravity

We begin with maximal supergravity considering only the on-shell Poincaré theories. The

supergeometries for these theories are straightforward to construct given their field content.

We briefly review this to remind the reader how supergravity is presented in superspace.
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(See, for example, [42] for D = 4, N = 8 supergravity and [43, 44] for D = 11.) The basic

geometrical structure is a choice of odd tangent bundle T1 such that the even tangent bundle

T0, considered as a quotient of the tangent bundle T , i.e. T0 = T/T1, is generated from

the odd one by taking Lie brackets of odd vector fields. This is essentially supersymmetry,

for which the translation generator is the Lie bracket of two supercharges. In addition, we

shall assume that the dimension-zero torsion is the same as it is in flat superspace,

Tαβ
c = −i(Γc)αβ , (2.1)

where the indices α, β run from 1 to 32 and combine spinor and internal symmetry indices

according to the dimension of spacetime, and where small latin indices are vector indices.

Both sets of indices are with respect to preferred frame bases for T1 and T ∗
0 . The gamma-

matrix in (2.1) is in general a product of an appropriate spacetime gamma-matrix and

an invariant tensor for the internal R-symmetry group, so that the diagonal components

of the Lie algebra of the structure group should be Lorentzian in the even-even sector

and a direct sum of the corresponding spin and R-symmetry Lie algebras in the odd-odd

sector. In addition we can choose the dimension one-half torsion Taβ
c to vanish. This

specifies the dimension one-half Lorentz connection and fixes the splitting of the tangent

bundle into even and odd, so that there is no longer any mixed component in the structure

algebra. These two conventional constraints do not fix Taβ
c to be zero immediately, but

the remaining irreducible representation of the spin group that it contains can be shown

to vanish by means of the dimension one-half Bianchi identity. Given this, the connection

one-form ΩA
B and the curvature two-form RA

B = dΩA
B + ΩA

CΩC
B, both of which take

their values in the structure algebra, do not have mixed even-odd components. Let EA =

(Ea, Eα) denote a preferred basis of one-forms with dual basis EA. The torsion two-form

is TA = DEA := dEA + EBΩB
A. The Bianchi identities are

DTA = EBRB
A , DRA

B = 0 . (2.2)

Dragon’s theorem [45], valid in D > 3, states that the second set of Bianchi identities

is satisfied if the first one is and that the components of the curvature can be expressed

in terms of those of the torsion and derivatives thereof.2 In order to describe on-shell

supergravity we therefore only need to specify the components of the torsion tensor. This

can be done straightforwardly given the spectrum of the theory under consideration and

dimensional analysis. Since the torsion is gauge-covariant it follows that the non-zero

components can only be functions of the field strengths. (Any component field strength

can always be considered as the leading component of a superfield in a θ-expansion.)

A simple example of this is D = 11 supergravity.3 The fields are the graviton, the

gravitino and a three-form gauge field. The corresponding field strengths are the curvature

(dimension two) the gravitino field-strength (dimension three-halves) and the four-form

2In D = 3 there is a set of scalars in the dimension-one curvature transforming as an R-symmetry

four-form that does not appear in the torsion; this has to be specified in terms of the physical fields

on-shell [33, 34].
3In this case the constraint (2.1) is enough to put the theory on-shell [46].
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field-strength which has dimension one. The superfield starting with this field will be de-

noted Fabcd. Since there are no fields at dimension one-half it follows that all torsion com-

ponents are zero or constant until we get to dimension one. Moreover, the dimension-one

torsion Tab
c can be set to zero as a conventional constraint corresponding to the dimension-

one component of the Lorentz connection. Thus we are left with Taβ
γ , which must be linear

in Fabcd and, at dimension three-halves Tab
γ , whose leading component can be identified

with the gravitino field-strength. (This can be seen from its definition if we make the iden-

tification Em
α = ψm

α at θ = 0.) There are two possible structures in Taβ
γ that can contain

Fabcd and their relative coefficient can be determined by the Bianchi identities. We find

Taβ
γ = −

1

36
(Γa

bcd)β
γFabcd +

1

8
(Γa

bcde)β
γFbcde . (2.3)

The remaining Bianchi identities can be used to determine the gravitino field strength and

the dimension-two curvature in terms of odd derivatives of Fabcd, and since the theory is

on-shell, one also finds the equations of motion for all of the component fields and the

Bianchi identity for Fabcd. This is a covariant expression, rather than dF = 0, but we can

obtain the latter by constructing a superspace four-form which obeys this equation. By

dimensional analysis the only non-zero components can be at dimension zero and one; the

latter is just Fabcd while the former is

Fabγδ = −i(Γab)γδ . (2.4)

In addition we can introduce a dual six-form potential with its seven-form field-strength

obeying the Bianchi identity dF7 =
1
2F

2
4 . Its non-vanishing components are [47]

Fabcdeαβ = −i(Γabcde)αβ and Fabcdefg =
1

4!
εabcdefgijklF

ijkl . (2.5)

2.2 Forms

Similar analyses can be applied to lower-dimensional maximal supergravity theories. They

are slightly more complicated due to the presence of dimension-one-half fermions and

scalars, although the latter cause few difficulties thanks to duality symmetries. The scalars

take their values in the coset space H\G where G is the rigid duality group and H is

the local R-symmetry group. Thus the scalars do not appear naked in the torsion and

curvature (provided we include H in the structure group).

As well as the torsion and curvature tensors, which are forms that also carry superspace

indices, there are additional field-strength forms, such as the four- and seven-forms in

D = 11, that do not. These forms will transform under representations of the duality

group when one is present. The components of the field-strength forms can be constructed

straightforwardly using dimensional analysis and the Bianchi identities. A potential form

Aℓ of degree ℓ has a field-strength form Fℓ+1 of degree ℓ+1 and there will be a corresponding

Bianchi identity Iℓ+2 of degree ℓ + 2. As well as the physical forms and their duals there

are additional forms that can be generated from them. The way to do this is to look for

all potential forms Aℓ of degree ℓ such that the corresponding field-strength forms Fℓ+1

– 6 –
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satisfy consistent Bianchi identities (CBIs) Iℓ+2 of the form

Iℓ+2 := dFℓ+1 −
∑

m+n=ℓ

Fm+1Fn+1 , (2.6)

where consistency means that the set of Bianchi identities forms a differential ideal,

dI = 0 mod I . (2.7)

Of course, by solving the Bianchi identities we mean setting the Is to zero, but this is con-

siderably simplified if one makes use of the consistency conditions together with superspace

cohomology, an idea first put forward some years ago [48].

Clearly the higher-degree forms will transform under representations of the duality

group if the physical ones do. We must also require that each CBI should be soluble. It

turns out that there is a subset of the physical forms, which we shall call the generating

set, from which all of the forms can be constructed systematically using the above process,

and that the full set of CBIs is guaranteed to be satisfied if those for the generating set are.

This can be done rather easily using superspace cohomology which we shall now briefly

describe in order for the discussion to be self-contained.

2.3 Cohomology

Since the tangent bundle splits into even and odd parts the space of n-forms splits into

spaces of (p, q)-forms, p+ q = n, where a (p, q) form has p even and q odd indices:

Ωp,q ∋ ωp,q =
1

p!q!
Eβq · · ·Eβ1Eap · · ·Ea1ωa1···apβ1···βq

. (2.8)

The exterior derivative splits into four terms with different bi-degrees:

d = d0 + d1 + t0 + t1 , (2.9)

where the bidegrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. The first two, d0 and

d1, are essentially even and odd differential operators, while the other two are algebraic

operators formed with the dimension-zero and dimension three-halves torsion respectively.

In particular,

(t0ωp,q)a2···apβ1···βq+2
∝ T(β1β2

a1ωa1a2···apβ3···βq+2) . (2.10)

The equation d2 = 0 splits into various parts according to their bi-degrees amongst

which one has:

(t0)
2 = 0 , (2.11)

t0d1 + d1t0 = 0 , (2.12)

d21 + t0d0 + d0t0 = 0 . (2.13)

The first of these enables us to define the cohomology groups Hp,q
t , the space of t0-

closed (p, q)-forms modulo the exact ones [49]. The other two then allow one to define the

spinorial cohomology groups Hp,q
s . To do this we first introduce the spinorial derivative

– 7 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
2

ds that maps Hp,q
t to Hp,q+1

t by ds[ωp,q] := [d1ωp,q] where the brackets denote cohomology

classes in Ht. It is easy to check, using (2.13), that ds is well-defined, i.e. is independent of

the choice of representative ω, and that it is nilpotent, d2s = 0, so that cohomology groups

can be defined [50, 51]. The cohomology groups Hp,q
t and Hp,q

s are related to spaces of pure

spinors (suitably defined) and pure spinor cohomology respectively [52–55]. We emphasise

that the cohomologies we are interested in here are algebraic, rather than topological, in

that the coefficients of the cohomology groups will be covariant fields of the supergravity

theory under consideration.

When the dimension-zero torsion is flat, Ht cohomology is isomorphic to the cohomol-

ogy of the supersymmetry algebra if (Ea, Eα) are respectively identified with the trans-

lational and supersymmetry ghosts and the BRST operator Q with t0. Supersymmetry

cohomology has been discussed in various dimensions in [56–59] and in the context of Ht

in [60, 61].

In maximal supergravity the t0-cohomology groups turn out to be trivial for p ≥ 1

when D ≤ 9, for p ≥ 2 when D = 10, and for p ≥ 3 when D = 11. Most of these results

can be derived by dimensional reduction from D = 10 or D = 11. The proof that this is

so can be found in [59, 61], but we can understand it intuitively by thinking about branes.

A scalar p-brane, i.e. one without world-volume gauge fields, has a world-volume action

with a kinetic term and a Wess-Zumino term. The latter is the pull-back of a (p+1)-form

potential in the target superspace to the world volume. In order for the brane action to be

invariant under kappa-symmetry, it is necessary that the corresponding (p+ 2)-form field-

strength be closed and non-trivial cohomologically. In a flat background, the only non-zero

component of this field strength must have dimension zero, i.e. it is the component Fp,2.

This can only be a gamma-matrix multiplied by some R-symmetry invariant. For maximal

supersymmetry there are just two independent possibilities, D = 11 or IIB in D = 10, since

the other cases can be obtained by dimensional reduction. In D = 11 there is a membrane

with F2,2 ∼ Γ2,2, where Γp,2 denotes a symmetric gamma-matrix with p antisymmetric

even indices, while in IIB in D = 10 we have two types of string, reflected by the fact that

there are two independent F1,2 involving the 16× 16 gamma-matrix γa multiplied by two

independent two-dimensional euclidean gamma-matrices. These (1, 2)-forms are t0-closed

but not exact. More generally, one can see that t0-cohomology is determined by the p-

branes in any given dimension for any number of supersymmetries. There is thus a close

relationship between this cohomology and the brane scan [62].

Suppose we have a t0-closed non-trivial gamma matrix Γp,2 considered as a (p, 2)-form

and consider a form ωr,s defined by

ωa1···ar,α1···αs = (Γa1···ar···ap)(α1α2
λar+1···ap

α3···αs) , (2.14)

where λ is constructed from the fields and r ≤ p and s ≥ 2. Clearly such an ω is t0-closed

and is not exact, in general. This illustrates how one can build non-trivial cohomology

elements with the aid of the basic brane gamma-matrices. Note that, after dimensional

reduction, the t0Γp,2 = 0 relation will not be of the same form in general. This explains

why there is no t0 cohomology for p > 0 in D ≤ 9 for maximal supergravity. (There is

cohomology for p = 1 in D = 10 IIA because ΓaΓ11, considered as a (1,2)-form, is t0-closed
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but not exact.) Moreover, since one needs a gamma-matrix to construct a non-trivial

t0-closed form, it is generically the case that Hp,q
t = 0 if p ≥ 1 and q < 2.

2.4 Solving the Bianchi identities

The above results, when combined with some simple dimensional analysis, greatly simplify

the analysis of the CBIs, as we shall now explain. Suppose the dimension of the top (purely

even) component of an n-form, ωn,0, is k, then the dimension of ωn−q,q is k − q/2. The

dimension of the top component of a field-strength form Fℓ+1,0 is one, and since there are

no fields with negative dimensions in supergravity, the only components of a field strength

Fℓ+1 that can be non-zero are Fℓ−1,2(0), Fℓ,1(1/2) and Fℓ+1,0(1), where the dimensions

are indicated in brackets. For a CBI Iℓ+2, the components that are not identically zero

on dimensional grounds are Iℓ−2,4 up to Iℓ+2,0, the former having dimension zero and the

latter dimension two. The Bianchi identities for the forms with lowest degree must be

gauge-trivial, i.e. have the form dF = 0. For 3 ≤ D ≤ 9, the lowest-degree potentials have

ℓ = 1, in D = 10 the forms start at degree one in IIA and two in IIB while in D = 11

the forms start at degree three. As we shall see shortly, the only forms with canonical

dimensions that can have gauge-trivial Bianchi identities are the generating forms.

Let us consider first the Bianchi identities for the forms of least degree (i.e. ℓ = 1) for

the cases 3 ≤ D ≤ 9. The Bianchi identity for the two-form field strength is I3 = dF2

and is clearly consistent as dI3 = 0. The lowest possible non-zero component of F2 is F0,2

which has dimension zero and trivially satisfies t0F0,2 = 0. If it is t0-exact it can be set

to zero by redefining the top component of the connection A1,0. Suppose that this is the

case, then I1,2 = t0F1,1, and hence setting I1,2 = 0 implies that F1,1 = 0 by the absence of

cohomology, and this in turn implies F2,0 = 0 as well. Indeed, this is a general feature: the

possible generating forms all have cohomologically non-trivial dimension-zero components.

The dimension-one-half component of the Bianchi identity, I0,3, is d1F0,2 + t0F1,1 = 0. It

allows one to solve for F1,1 but also places a constraint on F0,2, namely ds[F0,2] = 0. All

of the higher components of the Bianchi identity are then automatically satisfied because

of the consistency condition. Given that I0,3 = 0, dI3 = 0 implies that t0I1,2 = 0, and

since H1,q
t = 0 for D ≤ 9, we have I1,2 = t0J2,0 for some J2,0. So we only need to set

J2,0 = 0 to get I1,2 = 0; but the former equation simply allows us to solve for F2,0 in

terms of derivatives of F0,2 and F1,1 (as well as the dimension-one torsion which appears

via d0). The remaining components of the Bianchi identity are then trivially satisfied. At

dimension three-halves, we have I2,1, but if the lower-dimensional identities are satisfied

then t0I2,1 = 0 ⇒ I2,1 = 0; similarly, at dimension two we find that I3,0 = 0 if all of the

lower-dimensional identities are satisfied.

Given that the Bianchi identity for F2 is satisfied there is one further cohomological

obstruction to be overcome at level two. The Bianchi identity has the form I4 = dF3−(F2)
2,

and the consistency condition is dI4 = 0 if I3 = 0. The lowest component of I4 is I0,4 and

has dimension zero, specifically,

I0,4 = t0F1,2 − F0,2F0,2 . (2.15)
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Now t0I0,4 = 0, but H0,4
t need not be trivial. So in order to be able to solve (2.15) when

I0,4 is set equal to zero, the second term on the right must be cohomologically trivial to

match the first one.

The forms at any level will fall into representations of the duality group which we shall

call Rℓ, so that R2 must be in the symmetric product of R1 with itself. In general this

will give rise to several irreducible representations, so that the constraint we arrive at will

be on the possible R2 representations for which I0,4 is soluble, i.e. for which the second

term on the right in (2.15) is cohomologically trivial. This constraint is often called the

supersymmetry constraint.

The analysis for the higher components of I4 and all of the higher-degree Bianchi

identities is straightforward provided the supersymmetry constraint is fulfilled. As de-

scribed above one can apply cohomological methods to the consistency conditions on the

Bianchi identities and use the fact that there are no t0-cohomological obstructions to show

that the remaining identities simply allow us to solve for the non-zero components of the

field strength forms. In other words the only non-trivial Bianchi identity components are

I0,3, I1,2 at level one and I0,4 at level two. All of the higher components for all levels are

then satisfied by solving for the dimension-zero, one-half and one components of the various

field strength forms in terms of those already given, i.e. in terms of the supergravity fields.

The analysis for IIB in D = 10 is similar [32]. In this case the lowest level is two

while Hp,q
t = 0 for p ≥ 2. When the Bianchi identities for the three-form field-strengths

are satisfied then all the higher-degree ones can be satisfied by solving for the components

of the higher-degree forms. There are no further constraints or non-trivial consistency

conditions on the fields to worry about. A similar situation obtains in D = 11, where the

lowest level is three and Hp,q
t = 0 for p ≥ 3. In this case there are only two levels, ℓ = 3

and ℓ = 6 and no duality group.

For the IIA case the lowest level is one while the Ht cohomology groups vanish for

p ≥ 2. If the Bianchi identity for F2 (a singlet) is satisfied, the Bianchi identity for the

next level should be I4 = dF3 −F2F2, with dI4 = 0. In this case F0,2 6= 0 and is not exact,

but it is not difficult to show that F 2
0,2 is not t0-exact. This means that I0,4 = 0 cannot be

satisfied as it stands and the only way out is to allow a constant in front of the F 2
2 term

which is then chosen to vanish, in other words, the Bianchi identity for F3 should also be

gauge-trivial, dF3 = 0. This is allowed because H1,2
t 6= 0. So in the IIA case there are two

generating forms at levels one and two. Given that the Bianchi identities for both of these

are satisfied one can easily show that those for all of the forms generated from them are as

well and that their components are specified by them [63].

To conclude this section we give two examples for which the superspace method can

be used straightforwardly to find the representations of the forms including some of the

OTT ones.

2.5 Examples

In this subsection we explicitly work out the form representations for two examples, IIB

supergravity in D = 10 and D = 3, N = 16 supergravity. In the first case the duality

group is SL(2,R), which is rather easy to work with, so that the problem is tractable
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by hand. This example allows us to demonstrate explicit agreement with the Borcherds

algebra predictions for the form representations and their multiplicities even beyond the

spacetime limit. In the second case the duality group is E8, and the dimensionalities of

the representations rapidly become rather large with increasing form degree. On the other

hand, we only need to go up to level four to accommodate all the forms with non-vanishing

field strengths in supergravity.

D = 10 IIB. For IIB the generating forms are two-forms in the doublet representation of

SL(2,R); the corresponding field strengths are a doublet FM
3 . The superspace formulation

of the theory was given in [64], the dual physical forms were added in [65, 66] and the

components of the full set of field strengths up to degree eleven were written down in [67];

the CBIs are

dFM
3 = 0 ,

dF5 = εMNFM
3 FN

3 ,

dFM
7 = FM

3 F5 ,

dFMN
9 = F

(M
3 F

N )
7 ,

dFMNP
11 = F

(M
3 F

NP)
9 ,

dFM
11 = εNPF

N
3 FPM

9 +
3

4
F5F

M
7 . (2.16)

It is rather simple to see that these equations are indeed consistent. It is also easy to

explicitly work out the first few OTT forms [32]. For ℓ = 12 we find three possible

representations,

dFMNPQ
13 = F

(M
3 F

NPQ)
11 ,

dFMN
13 = εPQF

P
3 FQMN

11 +
8

15
F

(M
3 F

N )
11 +

2

5
F5F

MN
9 ,

dF13 = εMNFM
3 FN

11 +
3

8
εMNFM

7 FN
7 , (2.17)

and only a little work has to be done to fix the coefficients by consistency. At ℓ = 14

we find that there are again three possible representations, but that this time there are

degeneracies,

dFMNPQR
15 = F

(M
3 F

NPQR)
13 ,

dFMNP
15 = aεQRF

Q
3 FRMNP

13 + bF
(M
3 F

NP)
13 + cF5F

MNP
11 + dF

(M
7 F

NP)
9 ,

dFM
15 = eεNPF

N
3 FPM

13 + fFM
3 F13 + gF5F

M
11 + hεNPF

N
7 FPM

9 . (2.18)

At first sight it looks as if there can be four fifteen-form field strengths in both the

quadruplet and doublet representations, but the consistency conditions imply that there are
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only two of each. Note that, although the thirteen-form field strengths are identically zero

in supergravity, not all of the forms in the bilinear terms on the right-hand sides of (2.17)

are because (F ∧ F )10,4 has dimension zero, so that it is not entirely trivial that these

Bianchi identities are satisfied. In fact, this is the case, by the cohomological argument

that we have discussed above.

The above results are summarised in the table below, where the numbers in brackets

denote multiplicities. The representations and degeneracies agree with those computed

for the positive roots of a Borcherds superalgebra known as the Slansky algebra. This

algebra appeared in the physics literature some time ago in a different context [68], and

was discussed in the supergravity context in [3, 35].

Level k Form degree ℓ = 2k sl(2) representation(s)

1 2 2

2 4 1

3 6 2

4 8 3

5 10 4+2

6 12 5+3+1

7 14 6+4(2)+2(2)

D = 3. The forms for D = 3 maximal supergravity were discussed in a superspace

setting in [34], up to level four, but some representations that did not appear in gauged

supergravity were omitted. We include them here for completeness and also because this

is another case that can be computed by elementary means using the CBIs. At level one

we have the generating forms in the adjoint (248) of e8 and at level two there are three

representations in the two-fold symmetric product of the adjoint, 1+ 3875+ 27000. The

last of these is excluded by the supersymmetry constraint because the Bianchi identity

I4 = dF3 − (F2F2) (2.19)

has no solution for the (0, 4) component if the right-hand side is in the 27000 representa-

tion. To make this clearer we write out I0,4 explicitly using α = 1, 2 for spinor indices and

i = 1, . . . , 16 for internal SO(16) vector indices (α → αi). We have t0F1,2 = F0,2F0,2 or

− iδij(γ
a)αβFaγkδl = FαiβjFγkδl , (2.20)

where total symmetrisation over the four spinor-index pairs is understood. Now since F0,2

and F1,2 can only contain scalar fields we must have

Fαiβj ∼ εαβFij and Faαiβj ∼ (γa)αβGij (2.21)

where Fij is antisymmetric and Gij is symmetric. Of course, these objects also carry e8
indices which can be projected onto so(16) representations, only the tensorial ones being

relevant in this case. Now the 27000 representation contains an so(16) representation

that has the symmetries of the Weyl tensor. This object does not drop out of the right-

hand side of (2.20) when one symmetrises over the joint indices, but clearly cannot be
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contained on the left. Thus we conclude that this representation is not allowed. On the

other hand, the 3875 contains the 1820 representation of so(16). This is totally skew

on four vector indices. But since the right-hand side of (2.20) must be totally symmetric

on the four joint αi-type indices it follows that the two-component spinor indices must be

totally antisymmetric. Hence this representation drops out of the Bianchi identity implying

that the 3875 representation is indeed allowed at level two.

The possible representations at level three will be contained in the tensor product

248⊗ (1+ 3875) = 248+ 3875+ 147250 . (2.22)

The 248 was left out of the discussion given in [34] because the gauged models were

restricted to those with the embedding tensor in the 3875, but it is allowed as has been

pointed out elsewhere [27]. The Bianchi identity is

dFM
4 = aF

〈MN〉
3 F2N + bF3F

M
2 , (2.23)

where 〈MN〉 denotes the symmetrised product of two 248 representations projected onto

the 3875, and a, b are constants. Since dF3 ∼ F2F2, applying d to (2.23) yields the

symmetrised product of three 248s projected onto the 248 from both terms on the right-

hand side. As the 248 appears only once in this triple product it follows that there is a

unique choice of constants (up to an overall scale that can be absorbed into FM
4 ) such

that (2.23) is consistent. The non-zero components of all of the forms up to level four,

except for this one, were given in [34]. For FM
4 the possible non-zero components are F2,2

and F3,1, since F4,0 is identically zero. We have

FM
2,2 → FM

abγkδl ∼ (γab)γδF
M
kl , (2.24)

where FM
kl is symmetric on kl. But the 248 branches into 120+128 in so(16), so FM

kl = 0.

On the other hand, at dimension one-half we have

FM
3,1 → FM

abcδl ∼ εabc(Σl)
IJ ′

ΛδJ ′VI
M , (2.25)

where I, I ′ are so(16) Weyl spinor indices, both running over 128 values, ΛαI′ is the physical

spinor field, and VI
M is the matrix of scalar fields projected onto the spinor representation.

(The other component is Vij
M in the 120 of so(16).)

At level four the possible representations are in the tensor product of the 248 with

the level-three representations, or in the antisymmetric product of two level-two represen-

tations, corresponding to the Bianchi identities dF5 = F2F4 + F3F3. After a little group

theory, and taking the consistency conditions into account, we find that the allowed repre-

sentations at level four are

248(2) + 3875+ 30380(2) + 147250+ 779247+ 6696000 , (2.26)

where the numbers in brackets denote the degeneracies.

We shall not give explicit details of the forms in the other maximal theories here, i.e.

for 3 < D < 10, but the representations (up to level D + 1) are tabulated in appendix A.
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However, since for these cases Hp,q
t = 0 unless p = 0, it follows that solving the level-one

and -two identities, (in fact, it is only necessary to solve I0,3, I1,2 and I0,4), means that all

the higher ones are automatically guaranteed to be consistent and soluble by the general

arguments we have given.4

3 Half-maximal supergravity theories

3.1 Supergravity and vector multiplets

In this section we study half-maximal supergravity coupled to vector supermultiplets in

dimensions three to ten. This topic was studied in components in [10], but here we give

a slightly different approach based on the superspace formalism. The models we discuss

are N = 1, D = 10 supergravity coupled to n vector multiplets and the lower-dimensional

ones obtained from this by dimensional reduction.5 In D = 10− k dimensions, k ≤ 5, the

physical bosonic component fields consist of the graviton, the dilaton, a two-form gauge

field, n+2k vectors (of which k belong to the supergravity multiplet) and k(n+k) scalars.

The duality group is R+ × SO(k, n+ k) and the scalars belong to the coset with isometry

group SO(k) × SO(n + k), where the former is the local R-symmetry group factor of the

superspace structure group. In D = 4 dimensions the two-form can be dualised to another

scalar so that there is an extra SL(2,R) factor in the duality group (but on the other hand

no R
+ factor), with this scalar and the dilaton in the coset U(1)\SL(2,R). In D = 3

dimensions the vectors can be dualised to scalars so that we have 8(n+ 8) of them in the

coset (SO(8) × SO(n + 8))\SO(8, n + 8). The special case of D = 6b, where the vector

multiplets are replaced by tensors, is not derivable from D = 10 and needs a separate

treatment (see section 3.5 below).6

One way of thinking about the on-shell theory is to start from an off-shell supergravity

multiplet with 128 + 128 components [70, 71]. This multiplet is dual to a supercurrent

multiplet which is conformal in D = 4 [72] but not in higher dimensions [73, 74]. It is,

however, local, except in D = 10 [75, 76]. In D = 10 the supergravity multiplet consists

of the graviton, a six-form gauge field (dual to the two-form potential) and the gravitino,

with constraints on the curvature scalar and the spin-one-half part of the gravitino field-

strength (and therefore not fully off-shell, but in the D = 10 case only). For 5 ≤ D ≤ 9

the off-shell bosons consist of the graviton, a set of non-abelian SO(k) gauge fields and a

(D − 4)-form potential (dual to the supergravity two-form), together with some auxiliary

scalars, SIJK = S[IJK], totally antisymmetric on the SO(k) vector indices, and a set of

antisymmetric tensors NabI = N[ab]I at dimension one, as well as dimension-two scalar

fields CIJ which are symmetric and traceless. The fermions are the gravitino and a set of

(k−1) sixteen-component dimension-three-halves spinors. This multiplet does not contain

4The level-two forms in D = 4, which transform under the 133 of e7, were given explicitly in [69].
5We can take n ≥ −k in D = 10− k dimensions, D ≥ 4 and n ≥ −8 in D = 3. From an algebraic point

of view the special cases are those for which the duality algebra so(k, n+ k) is split. We shall discuss this

further in section 4.
6Following [10] we use the notation 6a and 6b for the supergravity theories with (1,1) and (2,0) super-

symmetry in six dimensions.
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the dilaton, the physical two-form or the dilatino which are therefore introduced via the

form sector of the theory. Note that the absence of the dilaton and the dilatino implies

that the dimension-zero torsion is flat and that the dimension one-half torsion is zero, a

situation that can be maintained when we go on-shell. In D = 4, since the gravitino is

superconformal, there are also four dimension-one-half spinors [77]. In D = 3 it is also

possible to use an off-shell superconformal multiplet in the supergravity sector [33, 78–80].

The strategy is to go on-shell by introducing the scalars, vectors and higher-degree

form fields and by imposing suitable constraints on the components of the field-strength

forms.7 The dilaton appears in the dimension-zero component of the three-form field-

strength (F1,2) dual to the (D − 3)-form field-strength in the off-shell multiplet. The

dimension-zero component of the latter is an appropriate gamma-matrix but contains no

dilatonic factor in this approach; this corresponds to choosing a brane-frame rather than

the string or Einstein frames.8 The non-dilatonic scalars (for D > 4) are taken to belong

to the coset (SO(k)×SO(n+k))\SO(k, n+k). Let VA
M = (VI

M, VI′
M) denote the matrix

of scalar fields in the vector representation of SO(k, n+ k), where I and I ′ are respectively

SO(k) and SO(k + n) vector indices, and M is a vector index for SO(k, n+ k). As usual,

we define

dVV−1 = P +Q , (3.1)

where Q is a composite connection taking its values in so(k) ⊕ so(n + k) and P takes its

values in the quotient algebra. The Maurer-Cartan equation gives

R+DP = −P ∧ P , (3.2)

where R is the so(k) ⊕ so(n + k) curvature, D is the so(k) ⊕ so(n + k) covariant deriva-

tive with connection Q, and where so(k) is identified with the R-symmetry part of the

superspace structure algebra. The right-hand side takes its values in so(k) ⊕ so(n + k),

so DP = 0. In indices we write P IJ ′

. There is a constraint on P at dimension one-half

that reads

PαJK′ = (ΣJρ)αK′ , (3.3)

where ΣJ is a suitable spin matrix, α is a sixteen-component spinor index and where we

have not explicitly exhibited the SO(k) spinor indices. The spinors ρ belong to the vector

multiplets. It follows from this and from (3.2) that the dimension-one SO(k) curvature

components are determined as bilinears in these fermions. In particular, this allows us to

solve for the dimension-one auxiliary fields in terms of the physical ones. This is turn will

determine the higher-dimensional auxiliaries on-shell.

3.2 Forms

The basic field-strength forms are those for the vector multiplets, FM
2 , and the (D−3)-form,

FD−3, that appears in the off-shell supergravity multiplet. Their duals are the three-form

7There is an extensive literature on on-shell N = 1, D = 10 supergravity in superspace. See, for

example, [49, 81, 82] and for more recent reviews [83, 84].
8For example, in D = 10 the six-form potential couples to a five-brane whose seven-form field-strength

has F5,2 = −iΓ5,2, whereas the string frame would have F1,2 = −iΓ1,2.
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field strength, F3, of the supergravity two-form potential and the duals of the vector fields,

FM
D−2. This set of forms generates all the rest, although we know that there must be forms,

FD−1 and FMN
D−1 , dual to the scalars in the 1 + representations of the duality group.

The basic Bianchi identities are, for D > 4:

dFM
2 = 0 , dF3 = F2 · F2 ,

dFD−3 = 0 , dFM
D−2 = FD−3F

M
2 . (3.4)

We then find that the (D − 1)-form field strengths Bianchis (i.e. level (D − 2)) are, as

expected,

dFD−1 = FD−2 · F2 − FD−3F3 ,

dFMN
D−1 = 2F

[M
D−2F

N ]
2 . (3.5)

The details of the higher-level forms vary slightly with dimension, but they are all fixed by

the basic Bianchi identities (3.4) above. At level (D − 1) we have

dFM
D = FMN

D−1 F2N − FM
D−2F3 + FD−1F

M
2 ,

dFMNP
D = 3F

[MN
D−1 F

P]
2 , (3.6)

at level D,

dFD+1 = FM
D F2M − FD−1F3 ,

dFMN
D+1 = FMNP

D F2P + 2F
[M
D F

N ]
2 − FMN

D−1 F3 ,

dFMNPQ
D+1 = 4F

[MNP
D F

Q]
2 , (3.7)

and at level (D + 1),

dFM
D+2 = FMN

D+1 F2N + FD+1F
M
2 − FM

D F3 ,

dFMNP
D+2 = FMNPQ

D+1 F2Q + 3F
[MN
D+1 F

P]
2 − FMNP

D F3 ,

dFMNPQR
D+2 = 5F

[MNPQ
D F

R]
2 . (3.8)

This last set of forms is over the top, but not all of them are necessarily zero in supergravity.

The dimension-zero component of a (D + 2)-form is FD,2 and has to be of the form of a

spacetime epsilon tensor multiplied by a symmetric 16×16 matrix that carries no spacetime

vector indices. The R-symmetry factor in this must match the index of the form. As a

simple example, consider FM
11 in D = 9. The non-zero component is FM

9,2 ∼ ε9,0Γ0,2V1
M,

where Γ0,2 is symmetric.

The forms in D = 7, 6a, 5 consist of the above sets together with some additional ones

which we now describe. In D = 6a, 7 there are extra forms at level (D−1) given by Bianchi

identities dFM
D = FD−3F

M
D−2 and dFD = FD−3FD−3 respectively. These correspond to

deformations of type p = 2 and p = 3 in the nomenclature of [10]. For example, in D = 7
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we have FD−3 = F4 and it is clear that F4F4 is closed. But it is also exact as one can see by

using cohomology. This means that the super seven-form L7 = F7−A3F4, where F4 = dA3,

is closed and so determines, via the ectoplasm formalism [85, 86], a superinvariant given

as the integral over spacetime of the top component of L7 in a coordinate basis. This has

dimension one and so gives rise to a massive deformation if we include a mass parameter

in L7. In D = 6a the new six-form leads to a possible deformation of type p = 2 where

a two-form acquires mass. Both types of term affect the higher-degree forms but do not

change the cohomological argument given above for solubility of the complete set of Bianchi

identities. In fact, terms of this type also exist in higher dimension but they are over the

top; they occur at level (D + 1) in D = 8, 9 and level (D + 3) in D = 10.

In D = 5, FD−2 is another two-form, so that in this case all of the forms are generated

from the level-one forms. The same is true in D = 4 and D = 3. In the former case vectors

are in the representation (2, ) of the duality group while in D = 3 the scalars and vectors

are dual to each other. This implies that the level-one forms can be taken to be in the

adjoint representation of SO(8, 8 + n), i.e. .

We give all of the forms and their Bianchi identities, for D > 3 up to level (D + 1),

and for D = 3 up to level D, in appendix B.

3.3 Half-maximal cohomology

In order to analyse the Bianchi identities we shall need the cohomology for half-maximal

superspaces which we now briefly review following [55].

In N = 1, D = 10 superspace, with the dimension-zero torsion taking the same form

as in flat superspace, the Hp,q
t groups are more complicated than in the maximal case due

to the fact that there is both a string and a five-brane. There are therefore non-trivial

groups for p ≤ 5. The ones associated with the five-brane are given by

Hp,q
t = Hq−2

t (Λ5−pT0) , p ∈ {1, 2, 3, 4, 5}, q ≥ 2 , (3.9)

while the ones associated with the string are H1,1
t , which can be identified with sections

of the odd tangent bundle, and H1,2
t which is given by functions. In addition, H0,q

t := Hq
t

is just the usual space of q-th rank pure spinors. The notation Hq−2
t (Λ5−pT0) denotes the

space of (0, q−2)-forms taking their values in Λ5−pT0, where T0 is the even tangent bundle,

modulo two equivalences. The first is just the action of t0 with respect to the (q−2) spinor

indices, while the second is given by an operation that we describe below. These spaces

can be presented in terms of irreducible representations of the Lorentz group [60].

Informally, these results can be understood as follows. For the string, the associated

gamma-matrix is Γ1,2, the symmetric 16× 16 matrix with one vector index considered as a

(1, 2)-form. Clearly this can only lead to cohomology with p = 1. The space H1,1
t consists

of elements of the form

ωaβ = (Γa)αβλ
β . (3.10)

Clearly such a (1, 1)-form is t0-closed, using the identity t0Γ1,2 = 0, because the latter can

be written with explicit symmetrisation over only three of the spinor indices, but it is not

exact. A non-trivial element of H1,2
t just has the form Γ1,2f where f is any function, as one
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can easily check. It might be thought that one could define non-trivial groups in a similar

fashion for q > 2, but this is not the case because t0Γ1,2 = 0. For example, a three-form

ω1,3 = Γ1,2λ0,1 is certainly closed but can be rewritten as t0ρ2,1 where ρabγ ∼ (Γabλ)γ .

The five-brane is associated with the symmetric five-index matrix Γ5,2 which can be

considered as a (5, 2)-form. A t0-closed (p, q)-form, for 1 ≤ p ≤ 5, can be written ωp,q =

Γ5,2λ
5−p,0
0,q−2 where the notation indicates that the upper indices on λ are even and are to be

contracted with indices on the gamma-matrix, while the lower indices are purely odd. If

we change λ by t0ρ
5−p,0
1,q−4, i.e. ignoring the upper indices on λ, then ωp,q will change by a t0

term. We can also change λ by a term of the form ρ
[a1...a5−p−1|γ|
(α1...αq−1

(Γa5−p])αq)γ which will also

change ωp,q by a t0 factor (see [55] for more details).

For D < 10 there are no strings with sixteen supersymmetries, so the cohomology can

be obtained by dimensional reduction from the five-brane sector. In 5 ≤ D ≤ 10 dimensions

the non-zero cohomology groups are Hp,q
t for p ≤ (D − 5), and q > 1 if p > 0. For D ≤ 5

we only have H0,q
t which is similar to the maximal case for D ≤ 9.

3.4 Solving the Bianchi identities

In this subsection we shall show that all of the consistent Bianchi identities can be solved

with the aid of cohomology. This means that the complete sets of forms for all half-maximal

theories are compatible with supersymmetry. Since zero is the lowest dimension for which

a Bianchi identity component can be non-zero in supergravity, the highest level at which

there is a non-trivial Bianchi component is ℓ = D− 3, for D ≥ 5; it is ID−5,4. Beyond this

level, the Bianchi identities, provided they are consistent, will automatically be soluble as

we saw in the maximal case.

To illustrate this we consider the case D = 10. The non-trivial Bianchi identity

components are

ℓ = 1 I3 : I0,3 I1,2

ℓ = 2 I4 : I0,4 I1,3 I2,2

ℓ = 3 I5 : I1,4 I2,3 I3,2

ℓ = 4 I6 : I2,4 I3,3 I4,2

ℓ = 5 I7 : I3,4 I4,3 I5,2

ℓ = 6 I8 : I4,4 I5,3

ℓ = 7 I9 : I5,4 , (3.11)

where the columns correspond to dimension zero, one-half and one respectively.

At level one the Bianchi identities function in the same way as they do for SYM. FM
0,2

has to be zero as it does not contain a Lorentz scalar; I0,3 requires FM
1,1 to be t0-closed, but

not exact (otherwise it could be redefined away), which is where the cohomology groupH1,1
t

fits in, and I1,2 = d1F1,1 + t0F2,0, the same as in the flat case. This therefore determines

F2,0 in terms of the odd derivative of the spin-one-half field, ρ, in F1,1 and constrains the

other components in the spinorial derivative of ρ to vanish.
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The level-two Bianchi identity involves the field-strength for the supergravity two-

form, F3, which we recall is not in the (partially) off-shell supergravity multiplet. It

equates dF3 with F2 · F2, but the latter only contributes starting at I2,2 because there

are no scalars in D = 10 SYM. The dimension-zero component I0,4 = t0F1,2, so that

F1,2 = −iΓ1,2S + Γ5,2X
4, where S is a function of the dilaton, explicitly, S = exp(−2φ

3 ),

and X is a four-form which must be set to zero because the only dimension-zero fields

are scalars. Again, the remaining S-term is cohomologically non-trivial as it should be.

At dimension one-half we then have −iΓ1,2d1S + t0F2,1 = 0, but this is clearly satisfied

because the first term is indeed t0-exact as we remarked previously. So Fabγ ∼ (γabλ)γ
where λ = DαS is the dilatino. Given that I0,4 = I1,3 = 0 we have

t0I2,2 = 0 ⇒ I2,2 = t0J3,0 + Γ5,2K
3
,0 (3.12)

so that in principle there are two even three-form components. These give linear relations

between F3,0, the bilinear in the SYM fermions (coming from F1,1 ·F1,1) and a three-index

field Gabc in the dimension-one torsion. This is the dual of the seven-form field strength

in the off-shell supergravity multiplet. Clearly these two relations cannot be independent,

but this is not obviously the case; it is necessary to carry out the actual computation. The

presence of the dimension-one torsion in this equation arises from the term d0F1,2, since

d0 acting on a fermion gives Daλβ + Taβ
γλγ .

Now we know that there are no fields at levels 3, 4 or 5 in D = 10, but it is never-

theless interesting to understand this from a cohomological point of view. It is easy to

see that the only consistent Bianchi identities are gauge-trivial, i.e. dFℓ+1 = 0, ℓ = 3, 4, 5.

Considering the dimension-zero Bianchis we have t0Fℓ−1,2 = 0, which has the non-trivial

solution Fℓ−1,2 = Γ5,2X
6−ℓ. However, there are no dimension-zero fields in the theory that

are not scalars, so that all of these components must vanish. The dimension one-half and

one Bianchi identities then imply that the remaining components of these field-strengths

are also zero.

The level-six Bianchi identity is dF7 = 0. As F7 is contained in the off-shell supergravity

multiplet the non-trivial solution to I4,4 = 0 has to be F5,2 = −iΓ5,2, since the dilaton is

not present off-shell. I5,3 = 0 is t0F6,1 = 0, which implies F6,1 = 0, while at dimension one

we find that F7,0 is the spacetime dual of Gabc (because d0F5,2 includes the dimension-one

torsion). Finally, the level-seven identity I5,4 is trivial because F0,2 = 0. This completes the

analysis since the remaining, cohomologically trivial, Bianchi identity components simply

determine the remaining unknown components of the various field-strengths in terms of

the physical fields and their duals. In particular, this analysis proves that the forms are

compatible with supersymmetry and that it is not necessary to check the supersymmetry

algebra on the component fields.

The analysis goes through in exactly the same fashion for D < 10, although there are

fewer non-trivial Bianchis to consider because of the non-trivial cohomology limit ℓ = D−3,

for D > 4. For D = 3, 4, 5 the only non-trivial Bianchi identity components are I0,3 and

I0,4, as in the case of maximal supergravity for D < 10.

In the half-maximal case the fact that F3 is a singlet is, of course, due to supersymme-

try, but one can argue that this must be the case by solubility of the Bianchi identities for
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D < 9. To see this, let us consider the dimension-zero component of the putative Bianchi

identity dFMN
3 = FM

2 FN
2 where we allow for the possibility of a level-two term in the

symmetric, traceless representation. It reads:

t0F
MN
1,2 = FM

0,2F
N
0,2 . (3.13)

Now F0,2 and F1,2 must be scalar fields multiplied by appropriate gamma-matrices. If

we write the D = 10 gamma-matrices as Γa = (Γa,ΓI), where a = 0, . . . , (D − 1), and

I = D, . . . , (D + k − 1), in D = (10− k) dimensions, it is clear that we must have

FM
0,2 = (ΓI)0,2VI

M ,

FMN
1,2 = Γ1,2f

MN (3.14)

up to constants, where Γ1,2 denotes the D-dimensional gamma-matrix considered as a

(1, 2)-form, VI
M denotes part of the scalar field matrix and fMN is a function of the

scalar fields that is to be determined. The relation t0Γ1,2 = 0 in D = 10 translates to

t0Γ1,2 + (ΓI)0,2(ΓI)0,2 = 0 in D = (10 − k) dimensions. This implies that (3.13) can only

be solved for the singlet representation if D < 9.

3.5 D = 6b supergravity

The D = 6b theory has (2, 0) supersymmetry as opposed to the (1, 1) supersymmetry of the

6a case discussed above. The vector multiplets are replaced by tensor multiplets, so to get

the same number of degrees of freedom we shall need (n+ 4) of these. The physical fields

of the full theory consist of the graviton, 5(n+5) scalars, (n+10) two-forms with anti-self-

dual field-strengths, together with the gravitino and (n+5) sixteen-component spin-one-half

fields. Note that there is no dilaton or dilatino. The duality group is SO(5, n+ 5) and the

scalars belong to the coset of this group defined by the isotropy group SO(5)× SO(n+ 5).

In a covariant formalism in which the isotropy group is local the superspace torsion is flat

for dimension less than one.

The free 6b tensor multiplet is conformal and so gives rise to a superconformal current

multiplet [87]. We can therefore start from an off-shell conformal supergravity multiplet in

this case. Its components are the graviton, the (2, 0) gravitino, the SO(5) gauge fields, a

set of five dimension-one self-dual three-forms (not field strengths), five sixteen-component

dimension three-halves auxiliary fermions and fourteen dimension-two scalars. We can go

on-shell from this starting point by introducing the physical scalars as in (3.1) and (3.2),

and the field-strength forms for the tensor gauge fields. The SO(5) gauge fields are then

determined as composite, while the other auxiliaries can also be found in terms of the

physical fields. For example, the self-dual dimension-one three-forms must vanish on-

shell. Note that since the conformal theory is formulated in conventional superspace there

will be other fields in the conformal supergeometry that can be gauged away by higher-

dimensional components of the scale superfield parameter. For example, at dimension one,

we should expect to find fields corresponding to the θ2 components of a scalar superfield,

i.e. a set of 1+5 anti-self-dual tensors and 10 vectors. These fields are given as fermion

bi-linears on-shell.
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The dimension-one-half component of the one-form P IJ ′

is constrained in a similar

fashion to (3.3); we have

DαiVI
M(V−1)MJ ′ = PαiIJ ′ = (γI)i

jραjJ ′ . (3.15)

The forms in this theory are generated by the tensors at level two. The field-strengths

are three-forms FM
3 obeying the Bianchi identity

dFM
3 = 0 . (3.16)

From this one can easily see that the remaining consistent Bianchi identities are at levels

four and six, although there are also OTT forms starting at level eight. Since the latter are

zero in supergravity we shall not consider them further here. The Bianchi identities are

dFMN
5 = FM

3 FN
3 ,

dFMN ,P
7 = FMN

5 FP
3 . (3.17)

Consistency requires that the totally antisymmetric part of FMN ,P
7 must be zero leaving

two irreducible representations, mixed symmetry and vector.

To show that these Bianchi identities can be satisfied on-shell we can again make use

of cohomological methods. For D = 6b the Hp,q
t groups are empty for p > 1 but can be

non-zero for p = 0, 1. The p = 1 case corresponds to the existence of membranes. In

fact there are five of these arising from the fact that ΓI
1,2, I = 1, . . . 5, is t0-closed but not

exact. Here

(ΓI
a)αβ → (ΓI

a)αiβj = (γI)ij(γa)αβ (3.18)

in a two-step notation, with α, β = 1, . . . , 4 being six-dimensional chiral spinor indices and

i, j = 1, . . . , 4 being Sp(2) indices. Since there is no non-trivial cohomology for p > 1 it

follows that the only components of the Bianchi identities that need to be checked are I0,4
and I1,3 at level two. The former is

t0F
M
1,2 = 0 (3.19)

since FM
0,3 = 0 (it has negative dimension). This must have a cohomologically non-trivial

solution because otherwise FM
1,2 could be set to zero by a field redefinition of the potential

AM
2,0. So the solution must be

FM
1,2 = −i(ΓI)1,2VI

M , (3.20)

where the scalar matrix VA = (VI
M,VI′

M) as in the other cases. Given that I0,4 = 0

and that dI4 = 0 it follows that t0I1,3 = 0. But this is not satisfied automatically due to

cohomology and so I1,3 = 0 has to be examined directly. It reads

(ΓI)1,2d1VI
M + t0F

M
2,1 = 0 , (3.21)

where we have made use of (3.20) and the fact that the dimension one-half torsion is trivial.

Disregarding for the moment the duality vector index, we see that the first term contains
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two representations of Sp(2), whereas the second term only has one, the four-dimensional

spin representation. So the gamma-traceless SO(5) vector-spinor representation in d1VI
M

has to be set to zero,

DαiVI
M = (γI)ijρ

jM
α . (3.22)

This is similar to the usual constraint for the tensor multiplet, the difference being that

there are only (n + 5) sixteen-component dimension one-half spinors, so that if we con-

tract (3.22) with (V−1)M
J we get zero (i.e. the spinors are ραI′) in accordance with (3.15).

The higher-dimensional components of I4 and all of the components of the higher-level

Bianchi identities can now be solved by specifying the non-zero components of the field-

strength forms with no further constraints arising.

4 Algebras from forms

The set of consistent Bianchi identities written in the form

dFℓ+1 =
∑

m+n=ℓ

Fm+1Fn+1 (4.1)

gives rise directly to an algebraic structure, namely a co-algebra f∗ dual to a Lie super-

algebra f. This is a Z2-graded vector space together with a co-product, a linear map

d : f∗ → f∗ ∧ f∗ (Z2-graded antisymmetry) that extends to a Z2-graded derivation of the

exterior algebra of f∗ satisfying the nilpotency condition d2 = 0 (equivalent to the Jacobi

identity for f).

In the supergravity context the vector space f∗ is spanned by all the field-strength

forms, and thus also has a Z+-grading consistent with the Z2-grading. For the dual Lie

superalgebra f this means

f =
⊕

ℓ∈Z, ℓ≥1

fℓ = f(0) ⊕ f(1) (4.2)

where the level ℓ is the degree of the corresponding potential form and the even and odd

parts of f correspond to even and odd ℓ.

In this section we shall try to identify the Lie superalgebras f dual to the co-algebras

determined by the CBIs as subalgebras of Borcherds superalgebras. We shall also consider

gf, the semi-direct sum of the duality algebra g and f, with the adjoint action of g on f

given by the representations Rℓ that the forms at level ℓ transform under.

As a special case of a Kac-Moody algebra g is generated by 3r Chevalley generators

ei, fi and hi (i = 1, 2, . . . , r) modulo the Chevalley relations

[hi, ej ] = aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhj (4.3)

and the Serre relations

(ad ei)
1−2aij/aii(ej) = (ad fi)

1−2aij/aii(fj) = 0 , (4.4)

where aij is the (symmetrised) Cartan matrix of g. When extending g to gf we add

one more Chevalley generator for each irreducible representation of generating forms, and
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demand it to be a lowest-weight vector of that representation, with respect to the adjoint

action of g. In the case of only one irreducible representation of generating forms, we

denote the corresponding generator by e0. Acting with the hi and fi generators on e0 we

then get

[fi, e0] = 0 , [hi, e0] = −pie0 , (4.5)

where pi are the Dynkin labels of the representation, and we recognize (4.5) as some of the

additional relations generalising (4.3) to

[hI , eJ ] = BIJeJ , [hI , fJ ] = −BIJfJ , [eI , fJ ] = δIJhJ (4.6)

(I = 0, 1, . . . , r), where Bij = aij and B0i = Bi0 = −pi. The remaining entry B00 of the

matrix BIJ can then be chosen such that it satisfies the conditions for a Cartan matrix

of a Borcherds superalgebra B (see appendix D), and (4.6) are the associated Chevalley

relations. In the case of more than one irreducible representation of generating forms,

each of them corresponds to an additional diagonal entry in the Cartan matrix, but each

pair of them also corresponds to two (equal) additional off-diagonal entries that have to

be determined.

In the construction of the Borcherds superalgebra we must also include a Chevalley

generator f0 for each e0 (and a Cartan element h0 = [e0, f0]), extending gf to negative

levels symmetrically around level zero (so that R−1 is the representation conjugate to R1).

However, in section 6 we will consider a a different extension, leading to a tensor hierarchy

algebra [40], which is in some respects better suited for applications to gauged supergravity.

Each Chevalley generator eI of B is a root vector corresponding to a simple root βI ,

and defines a Z-grading of B. This is a decomposition into a direct sum of subspaces

labelled by integer levels kI such that eI and fI are at level 1 and −1, respectively, and

all the other Chevalley generators at level zero. From all these different Z-gradings of B,

one for each simple root βI , we can obtain a single one, for which the levels are given by

ℓ =
∑

I vIkI , where vI is an integer assigned to each simple root βI . Following [35, 37] we

call vI the V-degree of βI . When we extend g to B we let the simple roots βi of g have

V-degree zero, while the additional ones, corresponding to irreducible representations of

generating forms, have positive V-degrees given by the form degrees of the corresponding

potential forms.

As shown in [3, 35] it is always possible to choose the additional entries in the Cartan

matrix, and the V-degrees of the additional simple roots, such that fℓ = Bℓ for all ℓ > 0, and

thus f is the subalgebra of B corresponding to positive levels. While, as described above,

the V-degrees and the additional off-diagonal entries of type B0i = Bi0 are directly given by

the degrees of the generating forms and the Dynkin labels of the corresponding irreducible

representations, it is less trivial to choose the additional diagonal entries, and the off-

diagonal entries corresponding to pairs of additional simple roots, such that the additional

Serre relations precisely correspond to the supersymmetry constraint on the representations

Rℓ. In fact, the choice is not always unique, but there is always a distinguished choice from

the point of view of oxidation, in the sense that the Borcherds superalgebra relevant for the
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D-dimensional theory can be embedded into the one relevant for the (D − 1)-dimensional

theory [37].

The results of the considerations described here are presented in table 1 (for maxi-

mal supergravity) and table 2 (for half-maximal supergravity with |n| ≤ 1). Instead of

displaying the Cartan matrices themselves we have given the corresponding V-diagrams,

which contain the same information in a much more compact way, and at the same time

the information about the V-degrees. A V-diagram of a Borcherds superalgebra (or, more

generally, a contragredient Lie superalgebra) B is a Dynkin diagram of a Kac-Moody alge-

bra A of the same rank as B, where node I is labelled by the corresponding V-degree vI if

vI 6= 0. From the Dynkin diagram one first obtains the Cartan matrix AIJ of A and then,

taking the V-degrees into account, the V-diagram gives the Cartan matrix BIJ of B by

BIJ = AIJ − w(vI , vJ) , (4.7)

where w is a symmetric map w : Z×Z → Z defined by w(a, b) = a(b+1) for 0 ≤ a ≤ b and

w(−a, b) = w(a,−b) = −w(a, b). A more general discussion of V-degrees and V-diagrams

can be found in appendix D. In the following two subsections we will instead give explicit

examples of A and B in some cases.

Before going into details about the Borcherds superalgebras relevant for (half-)maximal

supergravity in different dimensions we mention that, besides the subsequent embeddings

of them into each other, each of them can also be extended to a Borcherds superalgebra D

which is the same for different D [37]. For maximal supergravity it has the V-diagram

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 (4.8)

and can be obtained from the Kac-Moody algebra E11 by adding an odd null root to

the simple roots. Like any other Borcherds superalgebra D can also be considered as

a contragredient Lie superalgebra, for which the conditions on the Cartan matrix are

less restrictive (see appendix D). As a consequence, it does not have a unique Cartan

matrix, but different ones that can be obtained from each other by so-called generalised

Weyl transformations. The different Cartan matrices are naturally associated to different

dimensions D so that the Cartan matrix of the B subalgebra can be obtained by just

removing rows and columns. As can be seen in table 1 for the maximal case this amounts

to removing a chain of nodes from the V-diagram, where the last one corresponds to a

simple root with V-degree −1. Continuing the rightmost column of table 1 by generalised

Weyl transformations, one would end up with the “distinguished” V-diagram (4.8) of D

corresponding to D = 0.

4.1 Maximal supergravity

For maximal supergravity in D dimensions with 3 ≤ D ≤ 7 the generating forms are at

level one and transform under a single irreducible representation R1 of the simple duality

group E11−D. Thus we add a simple root of V-degree one with a corresponding Chevalley
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D V-diagram of B V-diagram of D

11
3

❞

❞

−1

3

❞ ❞✟✟✟
❞ ❞

❞

❞ ❞ ❞ ❞ ❞ ❞

10

IIA
❞

1

2

❞

❞

1 −1

2

❞ ❞�� ❞ ❞

❞

❞ ❞ ❞ ❞ ❞ ❞

10

IIB
❞❞

2

❞

2

−1

❞ ❞�� ❞ ❞

❞

❞ ❞ ❞ ❞ ❞ ❞

9
1

❞ ❞

❞

1

❞ ❞ ❞ ❞ ❞

❞

❞ ❞ ❞ ❞ ❞ ❞

1 −1

1

8
❞ ❞ ❞

❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

7
❞

❞

❞ ❞ ❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

6
❞

❞

❞ ❞ ❞ ❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

5
❞

❞

❞ ❞ ❞ ❞ ❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

4
❞

❞

❞ ❞ ❞ ❞ ❞ ❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

3
❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞

1

❞

❞

❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞ ❞

1 −1

Table 1. V-diagrams of the Borcherds superalgebras B and D relevant for maximal supergravity in

D dimensions. The Cartan matrices of the Borcherds superalgebras can be obtained from those of

the corresponding Kac-Moody algebras by (4.7). Note that the Borcherds superalgebra D does not

depend on D, but there are different V-diagrams of the same algebra D corresponding to the various

cases. On the other hand, the Borcherds superalgebras B are different subalgebras of D, depending

on D. (The rightmost column, continued to D = 0, contains the same information as figure 3

in [37], but there Dynkin diagrams were used instead of V-diagrams, with coloured nodes, multiple

lines and some entries in the Cartan matrix written out explicitly to avoid sign ambiguities.)
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generator e0, and since the V-degree is an odd integer, e0 is an odd element in the resulting

Borcherds superalgebra B. The Cartan matrix BIJ of B will have the form

BIJ =

(

B00 B0i

Bi0 Bij

)

(4.9)

discussed above, where the Dynkin labels of R1 (with the opposite sign) constitute the row

B0i and the column Bi0, and Bij = aij is the (symmetrised) Cartan matrix of g. It remains

to determine B00. At level two it is easy to show that [e0, e0] is the lowest weight state for

an irreducible representation which is not allowed by the supersymmetry constraint, i.e.

for which (F0,2)
2 is not t0-exact. We therefore have the constraint [e0, e0] = 0, which in

turn, considered as a Serre relation, leads to B00 = 0. The V-diagram of B is the Dynkin

diagram of e11−D+1, with the node added to the Dynkin diagram of e11−D labelled by the

V-degree v0 = 0.

The D = 8 case is similar to the ones we have just discussed, the only difference being

that the duality group, SL(2,R) × SL(3,R), is not simple. The generating forms are still

at level one and transform under the product of the doublet and triplet representations of

the two simple subgroups. By similar reasoning to that used in the above cases we find

that the Cartan matrix of B in this case is

BIJ =











0 −1 −1 0

−1 2 0 0

−1 0 2 −1

0 0 −1 2











(4.10)

where the 2 × 2 matrix in the bottom right corner is the Cartan matrix of sl(3). The

V-diagram of B is the Dynkin diagram of sl(5) corresponding to the Cartan matrix

AIJ =











2 −1 −1 0

−1 2 0 0

−1 0 2 −1

0 0 −1 2











(4.11)

with the node corresponding to the first row and column labelled by the V-degree v0 = 1.

The situation is different for D ≥ 9. For D = 9 we have two irreducible representations

of generating forms, both at level one, which are the doublet and singlet representations of

sl(2). This suggests that we should introduce two odd algebra generators, e0, e0′ , that trans-

form under the doublet and singlet representations of sl(2), together with a corresponding

negative pair, f0, f0′ . Denoting the generators of sl(2) by {e1, f1, h1}, the corresponding

V-degrees are v0 = v0′ = 1 and v1 = 0. The duality algebra is the direct sum of sl(2)

and a one-dimensional Lie algebra spanned by a linear combination of h0 and h0′ . This

appearance of a singlet at level zero is thus a consequence of the fact that there are two

irreducible representations of generating forms, as we will see also in the half-maximal case

below. The supersymmetry constraint at level two implies that both [e0, e0] and [e0′ , e0′ ]

must vanish, whereas [e0, e0′ ] 6= 0. As a consequence we conclude that both B00 and B0′0′

– 26 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
2

must be zero, but there is no constraint on the off-diagonal entries B00′ and B0′0 more

than that they should be equal to each other and negative. As explained in [37] the dis-

tinguished choice from the point of view of oxidation is B00′ = B0′0 = −2, which gives the

Cartan matrix

BIJ =







0 −2 0

−2 0 −1

0 −1 2






(4.12)

where I = (0′, 0, 1). This can be written as BIJ = AIJ − w(vI , vJ), where

AIJ =







2 0 0

0 2 −1

0 −1 2






, (4.13)

and thus the V-diagram of B is the Dynkin diagram corresponding to this Cartan matrix

AIJ , with the first two nodes labelled by the V-degrees v0 = v0′ = 1.

In IIB supergravity the generating forms are at level two in the doublet of sl(2). This

means that we need two sets of algebraic generators, {eI , fI , hI}, I = (0, 1), where the

generator e0 is associated with the level-two potentials and the index 1 with the sl(2)

subalgebra. Thus the corresponding V-degrees are v0 = 2 and v1 = 0. The algebraic

elements for the level-two forms are e0 and [e1, e0], and we must have (ad e1)
2(e0) = 0 so

that we indeed have a doublet at this level. Clearly we also have [h0, e1] = −e1 since e0 is

taken to be a lowest weight vector, and the Cartan matrix therefore has the form

BIJ =

(

B00 −1

−1 2

)

. (4.14)

The representations that the forms transform under are the same whether one chooses B00

to be zero or any negative number. In [3, 35] it was assumed that B00 = 0 which gives

the Cartan matrix for the Slansky algebra discussed previously. In [32] it was argued that

B00 = 0 was desirable from a superspace point of view because in this case {e0, f0, h0}

generate a Heisenberg algebra, whereas if one were to take B00 to be negative, there would

be a second sl(2) subalgebra under which the whole algebra would split into infinite-

dimensional representations. It was argued in [32] that this would be unnatural because

these representations would necessarily involve different form degrees, but it is not clear

that this is a necessary restriction because the second sl(2) is not a symmetry of the theory

by itself. In [37] it was argued that B00 should be chosen to be −4 as this is required by

oxidation, and with this distinguished choice we can write BIJ = AIJ−w(vI , vJ), where AIJ

is the Cartan matrix of sl(3). The Dynkin diagram of sl(3), with the node corresponding

to e0 labelled by the V-degree v0 = 2, is the V-diagram of B.

In IIA supergravity there is no duality group, but the generating forms, which are at

level one and two, give rise to a Borcherds superalgebra B by themselves. As in D = 9

and IIB supergravity, B is not uniquely determined by the spectrum of forms, but there

is again a distinguished choice given by the V-diagram shown in table 1. Finally, in

D = 11, the three-form potential gives rise to the finite-dimensional Lie superalgebra
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osp(1|2). The single entry B00 in the Cartan matrix can be any nonzero integer, but since

the corresponding V-degree is v0 = 3, it is natural to choose B00 = 2− w(v0, v0) = −10.

4.2 Half-maximal supergravity

We can apply a similar analysis to the half-maximal theories, and derive a Borcherds

superalgebra B for any n and any D (such that k and n + k below are non-negative).

However, there is an important difference compared to the maximal case, as we shall now

explain.

We recall from section 3.1 that the duality algebra g for half-maximal supergravity is

either so(k, n + k) for k = 11 −D (if D = 3 or D = 6b) or the direct sum of so(k, n + k)

for k = 10 − D and a subalgebra which is either sl(2) (if D = 4) or one-dimensional

(otherwise). The subalgebra so(k, n+ k) is a real form of the complex Lie algebra Br (if n

is odd, r = k + n−1
2 ) or Dr (if n is even, r = k + n

2 ). If |n| ≤ 1, then this is the split real

form, and only in these cases so(k, n+ k) is directly given by its Cartan matrix aij as the

real Lie algebra generated by ei, fi, hi modulo the Chevalley-Serre relations (4.3)–(4.4). In

the other cases so(k, n + k) is instead spanned over the real numbers by complex linear

combinations of the basis elements in the complex Lie algebra Br or Dr (generated in the

same way as the split real form, but over the complex numbers). This of course also applies

to the Borcherds superalgebra B, obtained by adding simple roots to those of g, and its

Cartan matrix BIJ . However, the Chevalley generators associated to the additional simple

roots will always be genuine basis elements of B, so once so(k, n+ k) is identified as a real

subalgebra of Br or Dr, the procedure is the same as for maximal supergravity (where the

duality algebras are always split real forms). In table 2 we display the result in terms of

V-diagrams, for simplicity only for the split cases |n| ≤ 1. It is (hopefully) evident from

the table how it could be extended to include any other possible value of n, and also how

each V-diagram can be extended to a V-diagram of a Borcherds superalgebra D, like in

table 1. Below we also give some Cartan matrices for n = 0 explicitly.

For D = 3, the situation is very similar to 3 ≤ D ≤ 7 in the maximal case. There is

just one generator e0 to be added to those of the duality algebra g. It can be taken to be a

lowest-weight vector for the adjoint representation of g, and the supersymmetry constraint

implies that [e0, e0] = 0. Thus BIJ has the form of (4.9) with B00 = 0 and B0i = −pi
where pi are the Dynkin labels of the adjoint representation of g.

For D = 4 the situation resembles that of D = 8 maximal supergravity since the

duality group is a product. The Cartan matrix, for the case n = 0, is

BIJ =





























0 −1 −1 0 0 0 0 0

−1 2 0 0 0 0 0 0

−1 0 2 −1 0 0 0 0

0 0 −1 2 −1 0 0 0

0 0 0 −1 2 −1 0 0

0 0 0 0 −1 2 −1 −1

0 0 0 0 0 −1 2 0

0 0 0 0 0 −1 0 2





























. (4.15)
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D
V-diagram of B for |n| ≤ 1

n = −1 n = 0 n = 1
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❞
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❞ ❞
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Table 2. V-diagrams of the Borcherds superalgebras B relevant for half-maximal supergravity in

D dimensions with |n| ≤ 1. The Cartan matrices of the Borcherds superalgebras can be obtained

from those of the corresponding Kac-Moody algebras by (4.7). The black nodes represent short

roots of the corresponding Kac-Moody algebras, see appendix D. The table should be compared to

table 2 in [10] (but note that black nodes are used differently there).
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For D ≥ 5 the half-maximal case is similar to D = 9 in the maximal case, in that there

is an extra odd generator e0 in the vector representation of the duality group and a second

additional generator e0′ at level ℓ = (6 − k), as reflected in the V-diagram in table 2. In

this case B00 = 0 but both B00′ = B0′0 and B0′0′ are nonzero (although the nodes 0 and 0′

are not connected to each other in the V-diagram). As an example let us consider D = 7,

again with n = 0. The duality algebra in this case is R ⊕ so(3, 3) and the Cartan matrix

AIJ can be determined from the V-diagram to be

AIJ =















2 0 0 0 0

0 2 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2















, (4.16)

where the first row corresponds to the level-three root vector e0′ and the second to the level-

one one, e0. The Cartan matrix for the Borcherds superalgebra BIJ = AIJ − w(vI , vJ) is

therefore

BIJ =















−10 −4 0 0 0

−4 0 −1 0 0

0 −1 2 −1 −1

0 0 −1 2 0

0 0 −1 0 2















. (4.17)

5 The Borcherds-Kac-Moody correspondence

In the preceding section we saw that the Lie algebra g of the duality group inD-dimensional

(half-)maximal supergravity can be extended by adding simple roots with positive V-

degrees to the simple roots βi of g (which have V-degree zero). This corresponds to

adding rows and columns to the Cartan matrix aij of g. We did this in two ways, leading

to the Cartan matrix AIJ of a Kac-Moody algebra A, and to the Cartan matrix BIJ of

a Borcherds superalgebra B. The two Cartan matrices are related to each other by the

relation (4.7).

In this section we will consider a further extension of A, a Kac-Moody algebra C,

obtained by adding an Ad = sl(d + 1) algebra, whose Dynkin diagram form a “gravity

line” of d nodes, where d is an arbitrary positive integer. For any simple root αI of A with

V-degree vI ≥ 0, the corresponding node is then connected with a single line to the vI -th

node of the Dynkin diagram of sl(d + 1) (counted from one of the ends) if vI ≥ 1, and

disconnected from it if vI = 0 or vI > d. In the same way as for B we get a Z-grading of

C, with the overall level given by ℓ =
∑

I vIkI , where kI is the level with respect to αI .

However, now we have at each level ℓ not only a representation of g, but each representation

of g also comes together with a representation of sl(d+1). In particular the antisymmetric

product of ℓ fundamental representations of sl(d+ 1) appears at level ℓ, for 1 ≤ ℓ ≤ d+ 1.

It has been known that in the cases of (half-)maximal supergravity in D dimensions

with split duality algebras g the representation of g that comes together with this anti-

symmetric product of ℓ fundamental sl(d+ 1) representations precisely coincides with the
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representation Rℓ of g at level ℓ in B, up to level ℓ = d+1. Thus the form spectrum up to

D-form potentials can be derived from the Kac-Moody algebra C with d = D − 1, which

is E8
+++ = E11 for maximal supergravity, and B7

+++, D8
+++, B8

+++ for half-maximal

supergravity with n = −1, 0, 1, respectively [6, 8–10].9 However, if we are also interested

in the forms at level (D + 1), then E11 is not enough; we need to take d = D and go

to E12. This continues to infinity, so in order to include all the representations Rℓ one

would need to consider Kac-Moody algebras of infinite rank, although they are all still

contained in the (finite rank) Borcherds superalgebra B. An advantage of this correspon-

dence is that the representations Rℓ can be computed recursively using the denominator

formula for Borcherds superalgebras, which efficiently can be rewritten in terms of partition

functions [88].

The aim of this section is to show that the above correspondence holds also in the most

general case with an arbitrary Kac-Moody algebra g, extended to a Borcherds superalgebra

B and to Kac-Moody algebras A and C in the way described above, by adding simple roots

with positive V-degrees and an sl(d+1) algebra. The case where there is only one additional

simple root, with V-degree v0 = v, is illustrated in figure 1. If furthermore v0 = 1 we have

the special case already proven in [38].

The idea is to consider both B and C as subalgebras of a contragredient Lie superalgebra

D (already mentioned in the preceding section). In the case of only one simple root β0 of B

with positive V-degree v0 = v ≥ 1, the V-diagram of D is shown in figure 1. There it is also

assumed that (α0, α0) = 2, since the nodes corresponding to α0 and β0 are white, but they

can also be black or correspond to any other value of the diagonal entry A00 = (α0, α0) in

the Cartan matrix of A (see appendix D for our conventions for colouring the nodes). In the

case of more than one simple root of B with positive V-degree, each of the corresponding

nodes is connected with a single line to the same node in the V-diagram of D, corresponding

to the simple root δ0 with V-degree −1. In all cases relevant for maximal supergravity in

D dimensions, the V-diagrams of D are given explicitly in the right column of table 1. In

fact, D is the same for different D, but described by different V-diagrams.

It is clear that B is a subalgebra of D, since the V-diagram of B is obtained by removing

nodes from that of D. The embedding of C into D is less obvious, but can be understood

by setting

α0 = β0 + vδ0 + (v − 1)δ1 + (v − 2)δ2 + · · ·+ 2δv−2 + δv−1 , (5.1)

and γι = δι for ι = 1, 2, . . . , d (where δ0, δ1, . . . , δd are the additional simple roots of D

according to figure 1). We then get

(α0, α0) = (β0, β0) + w(v, v) (5.2)

and (α0, αι) = −διv as we should, and α0 also satisfies the same inner product relations

with the roots of g as β0. In the case of more than one simple root of B with positive

9Note that although we set d = D − 1, the Kac-Moody algebra C is the same for any D, since the

Borcherds superalgebras B that we start with also depend on D.
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V-degree, we can let β0′ be another one, with V-degree v′ = v0′ ≥ 1 and a corresponding

simple root α0′ of C, and we find that (5.2) can be generalised to include this case,

(α0, α0′) = (β0, β0′) + w(v, v′) (5.3)

for the inner product of α0 and α0′ . It remains to show that the linear combination (5.1)

of simple roots of D indeed itself is a root of D. This will be done below.

It is convenient to extend the Ad = sl(d + 1) subalgebra of D to gl(d + 1), including

the Cartan element corresponding to the simple root δ0, with the basis elements Ka
b

(a, b = 0, 1, . . . , d) and the commutation relations

[Ka
b,K

c
d] = δb

cKa
d − δd

aKc
b . (5.4)

Then we have hι = Kι
ι −Kι−1

ι−1 for the Cartan elements of the sl(d+1) subalgebra,

and if a 6= b, then Ka
b is a root vector corresponding to the root δb+1 + δb+2 + · · ·+ δa (if

b < a), or −δa+1− δa+2−· · ·− δb (if a < b). Furthermore, we let Ea and Fa be root vectors

in D corresponding to the root δ0 + δ1 + · · ·+ δa and its negative, respectively, such that

[Ka
b, Fc] = −δc

aFb , [Ka
b, E

c] = δb
cEa , [Ea, Fb] = Ka

b − δabK , (5.5)

where

K = Ka
a = −

1

d

(

(d+ 1)h0 + d h1 + · · ·+ 2hd−1 + hd
)

. (5.6)

From now on, we simplify the discussion by restricting to the case of only one simple

root β0 of B with positive V-degree v0 = v ≥ 1, illustrated in figure 1, but it is straightfor-

ward to extend it to the general case. Thus the formula ℓ =
∑

I vIkI simplifies to ℓ = vk,

and the two different Z-gradings of B that we consider differ only by the factor v. For the

Chevalley generator e0 corresponding to β0 we thus have k = 1 and ℓ = v, and for all other

Chevalley generators ei, corresponding to all other simple roots, we have k = ℓ = 0.

Let eM be a basis of the level k = 1 subspace of B. The subspace at a general level k

is then spanned by elements

eMk···M1
= [eMk

, [eMk−1
, . . . , [eM2

, eM1
] · · · ]] . (5.7)

When we extend B to D these elements are eigenvectors under the action of the sl(d+ 1)

subalgebra,

[Ka
b, eMk···M1

] = −
ℓ

d
δb

aeMk···M1
⇒ [K, eMk···M1

] = −
ℓ

d
(d+ 1)eMk···M1

, (5.8)

while acting with Fa gives zero, and acting with Ea gives new elements, which we denote by

E a1···am
Mk···M1

= [Ea1 , [Ea2 , . . . , [Eam , eMk···M1
] · · · ]] . (5.9)

Since the elements Ea anticommute with each other, [Ea, Eb] = 0, the expression

E a1···am
Mk···M1

is totally antisymmetric in the upper indices. Thus it certainly vanishes for

m ≥ d+2, but the following lemma tells us that this in fact happens already for m ≥ ℓ+1.
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γ1 γ2 γv−1 γv γv+1 γd−1 γd

α0

✐ ✐ ✐✐✐ ✐ ✐

✐�❅
· · ·

g CA

δ1 δ2 δv−1 δv δv+1 δd−1 δd

δ0

✐ ✐ ✐✐✐ ✐ ✐

✐

✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✐v

−1

�❅
· · ·

g DB

β0

Figure 1. Illustration of how the Dynkin diagrams of the Kac-Moody algebras g, A and C, and

the V-diagrams of the Borcherds superalgebras B and D are related to each other in the general

case. The node corresponding to α0 or β0 can be connected to any number of nodes in the Dynkin

diagram of g (which is itself not visible in the figure) and the corresponding off-diagonal entries in

the Cartan matrix can take any negative values (symmetrically). The V-degree of δ0 is −1 and the

V-degree of β0 is v, as written next to the nodes, and all other simple roots have V-degree zero.

Thus δ0 is an odd null root, whereas β0 is odd if and only if v is an odd integer, and all the other

simple roots are always even. It also follows from the V-degrees that the length squared of the

simple root β0 is (β0, β0) = (α0, α0)− w(v, v) = (α0, α0)− v(v + 1), and its scalar product with δ0
is (β0, δ0) = (−1)− w(−1, v) = v. In the figure α0 and β0 are represented by a white node, which

means that (α0, α0) = 2, but α0 can also have a different length squared. In particular the node

can be black, which means that (α0, α0) = 1.

Lemma. For any element X = eMk···M1
XM1···Mk at level k in B, set

Xa1···am = [Ea1 , [Ea2 , . . . , [Eam , X] · · · ]] (5.10)

in C, where the indices a1, a2, . . . , am take m distinct values among 0, 1, . . . , d. For 1 ≤

m ≤ ℓ we have X a1···am = 0 if and only if X = 0, whereas for m ≥ ℓ + 1 we always have

X a1···am = 0.
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Proof. This is most easily shown by a calculation which is not sl(d+1) covariant (and thus

the repeated index a1 should not be summed over),

[Fa1 , X
a1···am ] = [[Fa1 , E

a1 ], X a2···am ] = [Ka1
a1 , X

a2···am ]− [K,X a2···am ]

=
(

−
ℓ

d
− (m− 1) +

ℓ

d
(d+ 1)

)

X a2···am = (ℓ+ 1−m)X a2···am . (5.11)

The lemma can now be proven by induction. �

Since in particular E a1···av
M is nonzero, the linear combination (5.1) of simple roots

is indeed a root of D and, identifying this root with α0, we can indeed consider C as a

subalgebra of D. The level k subspace of this subalgebra, with respect to α0, is spanned

by elements

[E a1···av
Mk

, [E av+1···a2v
Mk−1

, · · · , [E aℓ−2v+1···aℓ−v
M2

, E aℓ−v+1···aℓ
M1

] · · · ]], (5.12)

and the restricted subspace corresponding to the antisymmetric product of p fundamen-

tal representations is spanned by elements obtained from (5.12) by antisymmetrising the

upper indices,

[E [a1···av
Mk

, [E av+1···a2v
Mk−1

, · · · , [E aℓ−2v+1···aℓ−v
M2

, E aℓ−v+1···aℓ]
M1

] · · · ]]. (5.13)

By repeated use of the lemma and the Jacobi identity, it can be shown that (5.9) for m = ℓ

is proportional to (5.13), and thus that Xa1···αℓ is proportional to

[E [a1···av
Mk

, [E av+1···a2v
Mk−1

, · · · , [E aℓ−2v+1···aℓ−v
M2

, E aℓ−v+1···aℓ]
M1

] · · · ]]XM1···Mk .

(5.14)

It then follows from the lemma that X is zero if and only if (5.14) is zero, and we conclude

that the lower indices in eMk···M1
and (5.13) determine the same representation of g.

6 Gauging

6.1 Deformed Bianchi identities

In this section we consider the gauged version of the Bianchi identities, following the

discussion given in [41], but generalised to all (half-)maximal cases. We shall focus on the

standard case where the gauge algebra is a subalgebra of the duality algebra g (including a

one-dimensional algebra corresponding to shifts of the dilaton where appropriate). We shall

not discuss the gauging of the constant scaling (or trombone) symmetry of the equations of

motion, for which we refer to the literature, see, for example [89–92]. We shall also discuss

the solubility and supersymmetry of the gauged tensor hierarchies and briefly mention the

need to amend the superspace curvature. Gauging will involve a different extension of

the form algebra to the ones we have discussed above. To begin, we first reformulate the

ungauged system of Bianchi identities in terms of gf-valued forms. We define

Aℓ = eMℓ···M1
AM1···Mℓ

ℓ ,

Fℓ+1 = eMℓ···M1
FM1···Mℓ

ℓ+1 . (6.1)

– 34 –



J
H
E
P
0
5
(
2
0
1
5
)
0
3
2

We shall use the convention that odd elements in gf anti-commute with odd forms, so that

the potentials are all even objects while the field-strengths are all odd. We denote the

sums of all of these forms by A and F , with the sums starting from ℓ = 1. The consistent

Bianchi identities can then be rewritten as10

dF = −
1

2
[F, F ] . (6.2)

Consistency follows immediately by applying d to both sides and using (6.2) again followed

by the Jacobi identity.

At level (D− 1) the field-strength form is a D-form and so has a dual that is a 0-form.

In the ungauged case this object is constant, and, as it has dimension one, parametrises the

possible massive deformations of the theory. Its “virtual potential” would be at level minus

one, so this suggests incorporating such a level into the algebraic structure with R−1 =

R̄D−1, by spacetime duality. Note that this is different to the Borcherds superalgebra

extension of the form algebra which is symmetrical about level zero (in the sense that

R−1 = R̄1). In the cases where the forms are generated from the level-one forms, we

know that RD−1 is contained in (but is not identical to) the product R1 ⊗ adj, because

RD−2 ∼ adj. Here, adj denotes the adjoint representation. This holds for the maximal

theories in 3 ≤ D ≤ 9 and half-maximal theories in D ≤ 5. It also holds for half-maximal

theories in D = 8, 9, 10 because the second generating form, at level (D− 4), does not give

rise a new form at level (D− 1). For D = 6a, 7, there are additional forms at level (D− 1)

involving the level (D − 4)-form as we saw previously in section 3.2, but these actually

give rise to massive deformations of type p = 2, 3 [10], as we discussed there. There are

no gaugings in D = 10, 11 maximal or D = 6b half-maximal theories, so the net upshot is

that all gaugings are associated with elements in RD−1 that are contained in R1 ⊗ adj.11

Letting m , etc, denote indices running from 1 to dim g, we can write the dimension-zero

field-strength as ΘM
m , indicating that it is to be identified with the embedding tensor [16,

24, 25]. We can also introduce a basis for level minus-one, φm
M, which will be in the dual

representation. We can then form the single level minus-one element Θ := ΘM
m φm

M. We

have the commutation relations

[φm
M, eN ] = δN

⌈Mtm⌋ ,

[tm , φn
M] = fm⌊n

pφp
M⌉ − tmN

Mφn
N , (6.3)

where the diagonal brackets denote the projection from R1 ⊗ adj onto R−1 and where

[tm , eN ] = tmN
PeP , (6.4)

with tmN
P denoting the generators of g in the representation R1. In order to gauge the

theory we have to promote some of the abelian gauge fields to non-abelian ones. This is

10The sign change with respect to (2.6) is for later convenience.
11There are two massive deformations of D = 10 IIA supergravity; the Romans theory [93], and the

generalised Schwarz-Scherk reduction [94, 95], see also [90], for which there is no component Lagrangian.
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done with the help of the embedding tensor; we define the gauge field to be A := [A1,Θ].

Written out in more detail

A = [A1,Θ] = AM
1 ΘM

mtm . (6.5)

This shows that the generators of the Lie algebra g0 of the gauge group G0 ⊂ G are

XM = ΘM
mtm = [eM,Θ] . (6.6)

We demand that the embedding tensor be invariant under D:

DΘ = 0 ⇒ [XM,Θ] = 0 ⇒ [eM, [Θ,Θ]] = 0 , (6.7)

where we used the fact that ΘM
m is itself constant. This is assured if we set [Θ,Θ] = 0

so that the extended algebra is truncated at level minus-one. So there are two constraints

on the embedding tensor, the representation constraint specifying how R−1 sits inside

R1 ⊗ adj, and the quadratic constraint that follows from invariance under g0. These are,

of course, just the standard constraints imposed in gauging, see, for example [24–26].

The extension of gf to negative levels using spacetime duality rather than symmetry

about level zero gives the tensor hierarchy algebra (THA) [36], and the truncated version,

which includes the single element Θ at level minus one with [Θ,Θ] = 0 (and thus no other

non-zero elements at any negative levels) is very convenient for discussing the gauged

hierarchy [41], as we now demonstrate.

The gauge field A is at level zero and its field strength F = dA + A2 is given by

F = −[F2,Θ]. We claim that the following deformed Bianchi identities are consistent if

the corresponding ungauged ones are:

DF = −
1

2
[F, F ] + [F,Θ]− [F2,Θ] , (6.8)

where the F s start at level one as before. The last term in (6.8) is necessary because the

set of Bianchi identities starts at DF2 = [F3,Θ].

To check the consistency of (6.8) we apply a second D to both sides. Since the last

term on the right is just F it is annihilated. On the left we get

D2F = [F,F ] = −[F, [F2,Θ]] . (6.9)

Applying D on the right-hand side we get terms with zero, one and two Θs. The former

vanish because they are the same as in the ungauged case, while the Θ2 terms also vanish

because they have the form [[F,Θ],Θ] ∼ [F, [Θ,Θ]] = 0. So we are left with the single Θ

terms. These are also easily seen to cancel with the contribution from the right-hand side

using the Jacobi identity. We therefore see that the consistent set of Bianchi identities in

an ungauged theory can be extended to the gauged case by means of the embedding tensor

interpreted as a level minus-one element of the truncated THA. Of course, the formulae

for the field-strengths also have to be deformed. In principle one can do this by deriving

the explicit expressions for the field-strength forms such that the Bianchi identities are

satisfied. However, it is more straightforward to reformulate everything in terms of the

truncated THA.
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6.2 All forms together

It was observed in the original papers [1, 2] that, if one thinks of the potentials together as

a gf-valued form, one can exponentiate to get a formal group element. Given this, one can

then derive a Maurer-Cartan equation which is equivalent to the set of Bianchi identities

for all of the field-strength forms and which is guaranteed to be consistent. Let us define

ĝ to be the Lie superalgebra obtained by appending the level minus-one element Θ to gf
(thus it is the truncated version of the THA discussed above), Ω to be the associative

superalgebra of forms and Uĝ the enveloping algebra for ĝ. The forms we are interested

in take can be considered to be elements of Ωĝ := Ω⊗ ĝ, while if we exponentiate we get

objects that lie in Ω⊗Uĝ. As stated above, we take odd forms to anti-commute with odd

elements of ĝ. We consider d to be a skew-derivation that acts from the right while there

is another one, LΘ, that takes the graded commutator of an object with Θ. Both of these

square to zero (as [Θ,Θ] = 0) and they anti-commute with each other. This means that

dΘ := d+ LΘ is also nilpotent.

Let us first consider the ungauged case where the extension by Θ is irrelevant. The

Bianchi identities written in the form dF = −1
2 [F, F ] can be considered to be a Maurer-

Cartan equation that is solved by setting

F = deAe−A . (6.10)

We can also find the gauge transformations given by the odd parameter Λ :=
∑

ℓ≥1 Λℓ−1,

where the individual parameters Λℓ−1 are (ℓ − 1)-form parameters at level ℓ. If we set

Z := δeA e−A then we find that F is gauge-invariant if dZ + [Z,F ] = 0. This equation is

easily seen to be solved by

Z = dΛ + [Λ, F ] . (6.11)

We can generalise this to the gauged case reasonably straightforwardly. We define A

as before but then put

F ′ := dΘe
A e−A . (6.12)

Since d2Θ = 0, we again have a Maurer-Cartan equation

dΘF
′ + F ′2 = 0 . (6.13)

F ′ in this case has a level-zero component which is just A = [A1,Θ], so F ′ = F +A, where

F is the sum of all the field-strength forms starting at level one. It is not difficult to show

that the Maurer-Cartan equation (6.13) is equivalent to the gauged Bianchi identities (6.8).

Since F 2 = 1
2 [F, F ], we have

0 = dΘF
′ + F ′2 = dΘF + dΘA+

1

2
[F +A, F +A]

= DF +
1

2
[F, F ] + [F,Θ] + dΘA+A2

= DF +
1

2
[F, F ] + [F,Θ] + F + [A,Θ]

= DF +
1

2
[F, F ] + [F,Θ]− [F2,Θ] , (6.14)
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where we used the facts that F = −[F2,Θ] and [A,Θ] = 0. This confirms the claim.

We can define the gauge transformations in a similar way to the ungauged case, Setting

Z = δeA e−A, we find

δF = [F, [Λ0,Θ]] , (6.15)

δA = [dΛ0 + [Λ0, [A1,Θ]],Θ] . (6.16)

where

Z = dΘΛ− [Λ0,Θ] + [Λ, F ′] . (6.17)

We can identify [Λ0,Θ] as the gauge parameter for g0, so that the equations (6.16) show

that the gauge field A and the field-strength forms have the correct transformations. The

first few levels in the field-strengths and gauge transformations were given explicitly in [41]

and shown to agree with the formulae previously derived by a Noether-type method in, for

example, [24–26].

6.3 Inclusion of scalars

It is straightforward to include the scalar fields into the picture. This is most simply

accomplished by use of the matrix V ∈ G, rather than by fixing a gauge for the R-symmetry

group H. Recall that the duality group G acts rigidly on V to the right, while the local

R-symmetry group H acts on the left, V → h−1Vg. If we now set

Φ = d(VeA) e−AV−1 , (6.18)

then clearly dΦ+ Φ2 = 0. The Maurer-Cartan form Φ can be rewritten as

Φ = dVV−1 + VFV−1 . (6.19)

Now dVV−1 = P + Q, where Q is the composite connection for h, the Lie algebra of H,

while P , which takes its values in the quotient of g by h, can be considered as the one-form

field-strength tensor for the scalar fields. Note that Φ is invariant under G, so that we can

consider VFV−1 := F̃ to be the field-strength forms in the H-basis. The Maurer-Cartan

equation for Φ then gives

R+DP + P 2 = 0 ,

DF̃ + F̃ 2 + [F̃ , P ] = 0 , (6.20)

where R = dQ+Q2 is the h-curvature and D the h-covariant derivative.

The above discussion is applicable in the ungauged case. To include the scalars in the

gauged case we put

Φ = Θ+ dΘ(Ve
A) e−AV−1

= DVV−1 + V(Θ + F )V−1

= P +Q+ Θ̃ + F̃ , (6.21)
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where P,Q are the gauged counterparts of P,Q. The extra Θ-term on the first line is

necessary in order to obtain VΘV−1 on the second line.12 Conjugation with V converts Θ

and F from the G-basis to the H-basis as indicated on the third line. The A gauge-field

in D acting on the scalars comes from the level-zero term in dΘe
Ae−A. It is not difficult to

show that Φ satisfies a standard Maurer-Cartan equation dΦ+Φ2 = 0. Written out it gives

R+DP + P2 = −[F̃2,Θ] = VFV−1 ,

DF̃ + F̃ 2 + [F̃ ,P] + [F̃ℓ≥2, Θ̃] = 0 ,

DΘ̃ + [Θ̃,P] = 0 , (6.22)

where D = d + Q is the h-covariant derivative for the gauged theory, and R = dQ + Q2.

Note that the tilded quantities do not transform under G and, as a result, are also invariant

under G0.

6.4 Curvature deformations

In the ungauged theory one has local H and rigid G symmetries, but if the former is

included in the superspace structure group, the components of the torsion and curvature

tensors do not transform under G. In the gauged theory formulated as above there are local

G0 and H symmetries. Duality symmetry is lost, although it is still there formally due to

the spurionic nature of the embedding tensor. In the geometrical sector of the theory the

components of the torsion and curvature tensors transform covariantly under H, but are

formally invariant under G. Nevertheless there are deformations compared to the ungauged

case that start at dimension one (because Θ has dimension one). In order to accommodate

these in maximal supergravity theories it is necessary to amend the superspace tensors

appropriately, which implies, for D < 10, that there must be at least partially off-shell

extensions of the constraints that were imposed to go on-shell in the ungauged case. In

fact, one can see from the first of equations (6.22) that there must be dimension-one scalars

in the h-curvature and in DP that together fill out the representations of h contained in

the embedding tensor.

The simplest case is D = 3 where it is known that imposing the standard flat-

ness constraint on the dimension-zero torsion leads to an off-shell conformal supergrav-

ity multiplet [78]. The embedding tensor is in the 1 + 3875 of e8 which decomposes to

1+135+1820+1920′ under h = so(16), where 1920′ is a spinor representation (gamma-

traceless vector-spinor). The 1820 is an so(16) four-form which is the leading component

of the super Cotton tensor, while the 1+135 together make up a symmetric two-index ten-

sor. This is not in the conformal supergravity multiplet but is a θ2-component of a scalar

superfield that reflects the invariance of the conformal theory under local scale transfor-

mations. The 1920′ representation can be found in the dimension-one component of DP.

At dimension one-half one has PαiI ∝ (Σ)IJ ′ΛJ ′

α , where Λ is the physical fermion field,

α = 1, 2; i = 1, . . . , 16, and I, I ′ are 128-component Spin(16) indices. At dimension one,

DαiΛβJ ′ can therefore contain a term of the form εαβ multiplied by a Lorentz scalar in the

1920′ representation [34].

12This dressed version of the embedding tensor, Θ̃, is the original one, known as the T-tensor [16, 24, 25].
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The appropriate partially off-shell constraints for D > 3 are only known for D = 4 [42].

In this case the embedding tensor is in the 912 of e7 and the dimension-one scalars in the

torsion, curvature and DP relevant to gauging were identified in [34].

6.5 Supersymmetry

In this subsection we shall demonstrate that the full system of gauged Bianchi identities

is compatible with supersymmetry to all orders if the ungauged version is. Writing the

Bianchi identities in the form

I = dΘF
′ + F ′2 , (6.23)

and applying dΘ to this we find, after a short calculation,

DI = [F, I]− [I,Θ] . (6.24)

In the ungauged case, we had dI = [F, I], i.e. dI = 0 mod I, so that we could examine

each identity in sequence. This meant that if we had solved up to level ℓ = k, i.e. all Iℓ+2

up this level k are satisfied, then at the next level, we could use dIk+3 = 0 in order to

facilitate the analysis of its different (p, q)-form components. In the gauged case, however,

the second term on the right of (6.24) means that a little more care is required.

We can arrange the non-zero Bianchi identities in an array:

ℓ = 1 I3 : I0,3 I1,2 I2,1 I3,0

ℓ = 2 I4 : I0,4 I1,3 I2,2 I3,1 I4,0

ℓ = 3 I5 : I1,4 I2,3 I3,2 I4,1 I5,0

ℓ = 4 I6 : I2,4 I3,3 I4,2 I5,1 I6,0

ℓ = 5 I7 : I3,4 I4,3 : : :

ℓ = 6 I8 : I4,4 : : : : (6.25)

and so on, where the columns correspond to dimension zero, one-half, one, three-halves

and two respectively. The idea is to solve the set of identities for Ip,q starting at p = 0,

work through all of the qs and then go on to p = 1 and so on. In other words, starting

at the top unsolved row we solve for the next value of p and then work downwards on left

diagonal keeping p fixed but increasing q in a stepwise fashion. For example, if we have

solved for p = 0, 1 we then solve I2,1, I2,2, I2,3, I2,4 and then I3,0, I3,1, . . . and so on.

For maximal supergravity in 3 ≤ D ≤ 9, the claim is that, if we have solved I0,3
and I0,4, then all of the other non-trivial Bianchi identity components can be solved by

specifying the non-zero components of the field-strength forms. The solutions to I0,3 = 0

and I0,4 = 0 are the same as in the ungauged case because the deformation terms involve

a mass parameter. In particular I0,4 = 0 will be solvable if the supersymmetry constraint

is imposed. Now consider the (0, 4)-component of (6.24). It is

t0I1,2 = −[I0,4,Θ] , (6.26)
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as there is no I2. But since I0,4 = 0, t0I1,2 = 0 ⇒ I1,2 = t0J2,0. Thus I1,2 = 0 if we set

J2,0 = 0 which just allows us to identify F2,0. We now move on to I1,3. We have

t0I1,3 = [F0,2, I0,3]− [I0,5,Θ] . (6.27)

The first term on the right vanishes because we have assumed that I0,3 = 0, while the

second term vanishes because I0,5 = 0 identically in supergravity on dimensional grounds.

So t0I1,3 = 0 ⇒ I1,3 = t0J2,1, so we can solve this identity by setting J2,1 = 0 i.e. by finding

F2,1. Proceeding in this way, we find that all of the Bianchis are solvable if I0,3 = I0,4 = 0.

The difference with the ungauged case lies with the Θ term on the right of (6.24), but

because Θ has dimension one, this term has no effect if we solve the identities in the above

order. We therefore conclude that the full set of gauged Bianchi identities is consistent

with supersymmetry, and that there is therefore no need to make any explicit checks of the

supersymmetry transformations.13

The above analysis can be extended to the half-maximal case, although the cohomology

is more involved as we saw in the ungauged case.

7 Concluding remarks

In this paper we have presented a detailed analysis of the forms in (half-)maximal super-

gravity theories in dimensions D ≥ 3. The use of superspace methods has allowed us to

prove that all of the forms are consistent with supersymmetry and to directly construct

Lie superalgebras from the associated Bianchi identities. We then showed how these form

algebras could be extended to Borcherds superalgebras in the non-gauged case, by adding

negative levels symmetrically about level zero, and to (truncated) tensor hierarchy alge-

bras in the gauged case, by including a level minus-one generator, related to the embedding

tensor, in a way that is natural from the point of view of spacetime duality. In the latter

case the Maurer-Cartan form associated with the formal group obtained from the tensor

hierarchy algebra leads to a very simple description of the hierarchy of tensor gauge fields

for gauged supergravity theories.

We have shown that the Borcherds superalgebra B can be obtained from an associated

Kac-Moody algebra A by assigning V-degrees to the simple roots. A positive V-degree

of a simple root specifies both the form degree of a corresponding generating form, and

to which node in an additional “gravity line” we shall connect the corresponding node

in the Dynkin diagram of A when we extend it to a larger Kac-Moody algebra C. Of

course, neither of these interpretations is possible for negative V-degrees, but nevertheless

we saw that it is natural to allow simple roots of V-degree −1, when we consider both

B and C as subalgebras of a unifying Borcherds superalgebra D. This calls for a deeper

understanding of the V-degrees (and also of the map w, through which they enter in the

relation between A and B), and raises the question whether the simple root of V-degree −1

can be associated to the embedding tensor. The answer might be given by a construction

13For the D = 10 IIA case, the Romans massive deformation [93] was discussed from an algebraic point

of view in [96]. This can be viewed as a simple example of the truncated THA formalism. All the forms,

including the OTT ones, were discussed in a superspace framework in [32].
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of the tensor hierarchy algebra similar to the construction of the Borcherds superalgebra,

or optimally, a unified construction of both. However, such a construction still remains to

be found.

The fact that there are infinite-dimensional algebras that arise naturally in supergravity

theories raises the question of whether they continue to be relevant in the presence of string

theory corrections, and if so, in what way. In this paper we have shown that hierarchies

of forms extend naturally beyond the spacetime limit, and that even without higher-order

corrections, there can be non-zero field-strength forms with degree (D + 2). In [33] it

was argued that one could expect there to be higher-degree forms that will be turned on

in the presence of first-order α′ corrections in half-maximal D = 3 theories. So if these

algebras remain relevant one would certainly expect there to be non-zero forms with higher

and higher degrees as the powers of α′ are increased. It might also be that the algebras

themselves are deformed by α′ corrections. We certainly know that this happens in the

presence of anomalies, for example in D = 11 [97], or in the heterotic and type I string

theories in D = 10, but it might be the case that such corrections are more commonplace.

Moreover, in the presence of non-perturbative effects, one expects the continuous duality

symmetries to be replaced by discrete ones, although this in itself does not rule out the

possibility that these extended algebras remain relevant.
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A Maximal form spectrum

Below we list, up to ℓ = D+1, the representations Rℓ of the duality group g = e11−D that

the potential forms of degree ℓ transform under inD-dimensional maximal supergravity. As

we have discussed in the paper, these can be obtained by decomposing the corresponding

Borcherds superalgebra B (see table 1) with respect to the subalgebra g = e11−D. The mul-

tiplicities of the representations in the tables are equal to one if not written out explicitly.

D = 9 :

ℓ = k0 + k0′ 1 2 3 4 5 6 7 8 9 10

k0 1 0 1 2 2 3 4 3 4 4 5 4 5 5 6 6 5 5

k0′ 0 1 1 1 2 2 2 3 3 3 3 4 4 4 4 4 5 5

Rℓ 2 1 2 1 1 2 1 2 1 3 2 3 2 4 1 3 2 4

Dynkin

labels
1 0 1 0 0 1 0 1 0 2 1 2 1 3 0 2 1 3

multiplicity 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1
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D = 8 :

ℓ 1 2 3 4 5 6 7 8 9

Rℓ
(A1) 2 1 2 1 2 3 1 2 2 1 3 1 2 2 2

Rℓ
(A2) 3 3 1 3 3 1 8 3 6 3 3 15 1 8 10

Dynkin

labels
10

1
01

0
00

1
10

0
01

1
00

2
11

0
10

1
02

1
01

0
01

2
12

0
00

1
11

1
03

1

mult. 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1

D = 7 :

ℓ 1 2 3 4 5 6 7 8

Rℓ 10 5 5 10 24 15 40 5 45 70 5 45 70 105

Dynkin

labels
100
0

001
0

000
1

010
0

001
1

000
2

011
0

001
0

010
1

002
1

000
1

101
0

001
2

012
0

D = 6 :

ℓ 1 2 3 4 5 6 7

Rℓ 16c 10 16s 45 144s 10 126s 320 16s 144c 560s 720s

Dynkin

labels
1000
0

0001
0

0000
1

0010
0

0001
1

0001
0

0000
2

0011
0

0000
1

1001
0

0010
1

0002
1

D = 5 :

ℓ 1 2 3 4 5 6

Rℓ 27 27 78 351 27 1728 1 78 650 2430 5824

Dynkin

labels
10000

0
00001

0
00000

1
00010

0
00001

0
00001

1
00000

0

00000
1

10001
0

00000
2

00011
0

D = 4 :

ℓ 1 2 3 4 5

Rℓ 56 133 912 133 8645 56 912 6480 86184

Dynkin

labels
100000

0
000001

0
000000

1
000001

0
000010

0
100000

0
000000

1
100001

0
000001

1

D = 3 :

ℓ 1 2 3 4

Rℓ 248 1 3875 248 3875 147250
see below

Dynkin

labels
1000000

0
0000000

0
0000001

0
1000000

0
0000001

0
0000000

1
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D = 3 (continued):

ℓ 4

Rℓ 248 3875 30380 147250 779247 6696000

Dynkin

labels
1000000

0
0000001

0
0100000

0
0000000

1
1000001

0
0000010

0

multiplicity 2 1 2 1 1 1

B Half-maximal Bianchi identities

Universal sector. As we saw in section 3, there is a universal set of forms in half-

maximal theories with D > 4. This consists of the two-form field-strengths FM
2 , their

duals FM
D−2, the three-form field-strength of the supergravity two-form potential, F3, and

its dual FD−3, as well as the higher-degree forms they generate.

The basic Bianchi identities are, for D > 4:

dFM
2 = 0 , dF3 = F2 · F2 ,

dFD−3 = 0 , dFM
D−2 = FD−3F

M
2 . (B.1)

At level (D − 2) we have

dFD−1 = FD−2 · F2 − FD−3F3 ,

dFMN
D−1 = 2F

[M
D−2F

N ]
2 , (B.2)

at level (D − 1)

dFM
D = FMN

D−1 F2N − FM
D−2F3 + FD−1F

M
2 ,

dFMNP
D = 3F

[MN
D−1 F

P]
2 , (B.3)

at level D

dFD+1 = FM
D F2M − FD−1F3 ,

dFMN
D+1 = FMNP

D F2P + 2F
[M
D F

N ]
2 − FMN

D−1 F3 ,

dFMNPQ
D+1 = 4F

[MNP
D F

Q]
2 , (B.4)

and at level (D + 1),

dFM
D+2 = FMN

D+1 F2N + FD+1F
M
2 − FM

D F3 ,

dFMNP
D+2 = FMNPQ

D+1 F2Q + 3F
[MN
D+1 F

P]
2 − FMNP

D F3 ,

dFMNPQR
D+2 = 5F

[MNPQ
D+1 F

R]
2 . (B.5)
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In the following sections we give the Bianchi identities for all of the additional forms in

D > 4 as well as those for D = 4. The representations (although not the Bianchi identities)

up to level D were given in [10] (for n = 0). Here we include the first OTT level (D + 1)

as well. In the lists of representations the Young tableaux are taken to be irreducible,

i.e. traces removed, whereas in the Bianchi identities the tableaux occurring as subscripts

denote symmetry type and include traces. We distinguish such tableaux by hats.

D = 8, 9. In these two dimensions there are additional OTT forms at level (D + 1). In

D = 9 we have

dF11 = F6F6 , (B.6)

while in D = 8 we have

dFM
10 = F5F

M
6 . (B.7)

D = 7. The full set of extra forms in D = 7 is given by a singlet at level (D − 1) = 6,

a vector at level D = 7 and a singlet and two-form at level (D + 1) = 8. The Bianchi

identities for these forms are

dF7 = F4F4

dFM
8 = F7F

M
2 − FM

5 F4

dF9 = F8 · F2 − F7F3 + F6F4

dFMN
9 = 2F

[M
8 F

N ]
2 + FM

5 FN
5 . (B.8)

D = 6a. In D = 6a, FD−3 is another three-form which we denote F ′
3, with dF ′

3 = 0.

The additional forms consist of a vector at level (D − 1) = 5, forms in the representations

1+1+ + at level D = 6, and in the representations 4. +2. + at level (D+1) = 7,

the tableaux being taken as irreducible, i.e. traces removed. The Bianchi identities are:

dF ′M
6 = F ′

3F
M
4

dF ′
7 = F ′

6 · F2 + F5F
′
3

dF ′MN
7 = 2F ′[M

6 F
N ]
2 + FMN

5 F ′
3

dF̃MN
7 = 2F ′(M

6 F
N )
2 − FM

4 FN
4

dF ′MNP
8 = a(F ′[MN

7 F
P]
2 − F

[MN
5 F

P]
4 ) + b(FMNP

6 F ′
3 + 3F

[MN
5 F

P]
4 )

dFMN ,P
8 = (F ′MN

7 FP
2 − 2F̃

P[M
7 F

N ]
2 − FMN

5 FP
4 ) ̂

dF ′M
8 = F ′M

6 F ′
3

dF ′′M
8 = a

(

F ′
7F − 2M + F ′M

7 NF2N + FM
6 F ′

3 − F ′M
6 F3

)

+ b
(

F̃MN
7 F2N + F ′MN

7 F2N + FM
6 F ′

3 − 2F ′M
6 F3 + F5F

M
4

)

+ c
(

F ′
7F

M
2 + 2F ′′MN

7 F2N + FM
6 F ′

3 − 2F ′M
6 F3 + F5F

M
4 − FMN

5 F4N

)

.

(B.9)
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Here, the (double) primes are used to denote new forms in representations that are already

present in the standard set, and the tilde to distinguish a symmetric two-index represen-

tation (not traceless). The mixed symmetry three-index F is not traceless, and there are

three solutions to the last Bianchi identity, corresponding to the parameters a, b, c, one of

which is the trace of the mixed symmetry one. There are thus four new vectors at level

seven as well as the vector in the universal set.

D = 5. In five dimensions FD−3 = F2, so that all the forms are generated by the level-

one set in this case. The new forms in D = 5 are: at level (D − 1) = 4, ; at level D = 5,

2. + + ; and at level (D+1) = 6, + 2. + + +2. +3. + +3.1. The Bianchi

identities for the new forms are:

dFMN
5 = FMN

4 F2 − FM
3 FN

3

dFMNP
6 = 2F

[MN
5 F

P]
2 − FMNP

5 + F
[MN
4 F

P]
3

dFMN ,P
6 =

(

FMN
5 FP

2 − FMN
4 FP

3

)

̂

dFM
6 = FMN

5 F2N − 2FM
5 F2 + FMN

4 F3N + 2F4F
M
3

dFMNP,Q
7 =

(

FMNP
6 FQ

2 − 3F
[MN ,|Q|
6 F

P]
2 + FMNP

5 FQ
3

)

̂

dFMNPQ
7 = a

(

FMNPQ
6 F2 − 4F

[MNP
5 F

Q]
3 + 3F

[MN
4 F

PQ]
4

)

+ b
(

F
[MNP
6 F

Q]
2 + F

[MNP
5 F

Q]
3 − F

[MN
4 F

PQ]
4

)

dFMN ,PQ
7 =

(

2F
MN ,[P
6 F

Q]
2 + 2F

PQ,[M
6 F

N ]
2 + FMN

4 FPQ
4

)

̂

dFMN ,P
7 =

(

FMN ,P
6 F2 − FMN

5 FP
3

)

̂

dF̃MN
7 = a

(

F
(M
6 F

N )
2 + 2F

(M
5 F

N )
3 + FMP

4 FN
4 P + F

N )
2

)

+ b

(

F
P(M
6 ,PF

P(M,N )
6 F2P −

1

2
FMP
4 FN

4 P − F
P(M
6 ,PF

N )
2

)

dFMN
7 = a

(

4F
[M
6 F

N ]
2 + 3FMNP

6 F2P + 5FMN
6 F2

−2F
[M
5 F

N ]
3 − 2FMNP

5 F3P − 2FMN
5 F3 − 3FMN

4 F4

)

+ b
(

4F
[M|P|
6 ,PF

N ]
2 + 3FMNP

6 F2P + FMN
6 F2

−2F
[M
5 F

N ]
3 + 2FMNP

5 F3P − 2FMN
5 F3 + FMN

4 F4

)

+ c
(

2FMN ,P
6 F2P + FMNP

6 F2P + FMN
6 F2

− 2F
[M
5 F

N ]
3 − 2FMN

5 F3 + FMN
4 F4

)

(B.10)
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dF7 = a

(

F6F2 − FM
5 F3M −

1

4
F4 · F4 −

1

2
F4F4

)

+ b

(

F6 · F2 + 2F5 · F3 +
3

4
F4 · F4

)

+ c

(

FMP
6 ,PF2M −

1

4
F4 · F4

)

. (B.11)

Only one of the three singlets in the last Bianchi identity is independent, the other two

being related to the trace of F̃MN
7 and the double-trace of FMN ,PQ

7 . The single seven-form

in the vector representation of the duality group is the trace of FMN ,P
7 .

D = 4. In D = 4 the supergravity two-form can be dualised to a second scalar which

goes together with the dilaton in the coset U(1)\SL(2,R). The duality group is therefore

SL(2,R) × SO(k, n + k), and the forms carry indices for both groups. As in D = 5 all

of the forms are generated by the level-one set which consists of two-form field-strengths

FMr
2 , where r = 1, 2 is an SL(2,R) doublet index. At level three the forms fall into the

(SL(2,R), SO(k, n+ k)) representations (2, )+ (2, ). At level four the representations are

(3, ) + (3, ) + (3,1) + (1, ) + 2.(1, ). Up to level four the Bianchi identities are:

dFMr
2 = 0

dFMN
3 = FM

2 rF
N r
2

dF rs
3 = FMr

2 F2M
s

dFMr
4 = FMN

3 F2N
r − F rs

3 FM
2 s

dFMNPr
4 = 3F

[MN
3 F

P]r
2

dFMNPQ,rs
5 = 4F

[MNP(r
4 F

Q]s)
2

dFMNP,Q
5 = (FMNPr

4 FQ
2 r + 3F

[MN
3 F

P]Q
3 ) ̂

dFMN ,rs
5 = 2F

[M(r
4 F

N ]s)
2 + F

MNP(r
4 F2P

s) − FMN
3 F rs

3

dFMN
5 = 2F

[Mr
4 F

N ]
2 r − FMP

3 FN
3 P

dF rs
5 = 2F

M(r
4 F2M

s) + F rt
3 F s

3 t . (B.12)

The second five-form in the (1, ) representation is the trace of the mixed-symmetry five-

form. At level five the forms in the 4 of SL(2,R) fall into the representations + + of

SO(k, n+ k) and have the following consistent Bianchi identities:

dFMrst
6 = 2F

MN (rs
5 F2N

t) + F
(rs
5 F

Mt)
2 − F

M(r
4 F

st)
3

dFMNP
6 = F

MNPQ,(rs
5 F2Q

t) + 3F
[MN (rs
5 F

P]t)
2 − F

MNP(r
4 F

st)
3

dFMNPQRrst
6 = F

[MNPQ,(rs
5 F

R]t)
2 . (B.13)
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There are also forms in the 2 of SL(2,R). Their SO(k, n+k) representations are 3. +3. +

and 2. + + . The Bianchi identities for the first set are:

dFMr
6 = a

(

FMN ,rs
5 F2N s +

1

2
F rs
5 FM

2 s −
3

2
FN r
4 FM

3 N − FMs
4 F r

3 s −
3

4
FMNPr
4 F3NP

)

+ b

(

FMN
5 F2N

r + F rs
5 FM

2 s − FN r
4 FM

3 N −
1

2
FMs
4 F r

3 s

)

+ c

(

FMNP
5 ,PF2N

r +
1

2
FMNPr
4 F3NP

)

dFMNPr
6 = a

(

F
[MN
5 F

P]r
2 +

2

3
FMNPQrs
5 F2Qs + F

Q[MN
5 ,QF

P]r
2

−
1

3
FMNPs
4 F r

3s−F
[Mr
4 F

NP]
3 −F

MN|Q|r
4 F

P]
3 Q

)

+ b

(

F
[MN rs
5 F

P]
2 s−

5

3
FMNPQrs
5 F2Qs−3F

Q[MN
5 ,QF

P]r
2

+
5

6
FMNPs
4 F r

3s+
3

2
F

[Mr
4 F

NP]
3 +

3

2
F

MN|Q|r
4 F

P]
3 Q

)

+ c

(

−
3

2
FMNPQrs
5 F2Qs − 3F

Q[MN
5 ,QF

P]r
2 +

3

2
F

[MN|Q|r
4 F

P]
3 Q

)

dFMNPQRr
6 = F

[MNPQrs
5 F

R]
2 s + 3F

[MNPr
4 F

QR]
3 , (B.14)

while those for the second set are:

dFMN ,Pr
6 = a

(

FMNQ,P
5 F r

2Q − FMNQ
5 ,QF

Pr
2 + FMNQr

4 F3Q
P
)

̂

+ b

(

FMN rs
5 FP

2 s −
1

2
FMNQ
5 ,QF

Pr
2 −

1

2
FMN
5 FPr

2 − FPr
4 FMN

3

+ FMNQr
4 F3Q

P

)

̂

dFMNPQ,Rr
6 =

(

3FMNPQrs
5 FR

2 s − 8F
[MNP,|R|
5 F

Q]r
2 + 4F

[MNPr
4 F

Q]R
3

)

̂

dFMNP,RSr
6 =

(

2F
MNP,[R
5 F

S]r
2 − FMNPr

4 FRS
3

)

̂ . (B.15)

Although the traces in these representations are non-zero no additional ones to those listed

in the text are present.

D = 3. Finally, in D = 3, the vectors can be dualised to scalars. This implies that the

level-one forms should be in the adjoint representation of the duality group rather than the

vector representation, i.e. we have FMN
2 in the representation; the entire set of forms is
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generated from these. Up to level three the consistent Bianchi identities are:

dFMN
2 = 0

dFMNPQ
3 = 3F

[MN
2 F

PQ]
2

dF̃MN
3 = FMP

2 FN
2 P

dFMNPQR,S
4 = (5F

[MNPQ
3 F

R]S
2 ) ̂

dFMNP,Q
4 =

(

FMNP
3 RF

QR
2 − 3F̃

Q[M
3 FNP

2

)

̂

dF̃MN
4 = 2F̃

(M
3 PF

N )P
2 . (B.16)

The tableaux subscripts here represent symmetry type and include the trace represen-

tations and respectively. The last form is symmetric traceless. The representations for

level four are given in [33].

C Extended superspace

In this appendix we reformulate maximal supergravity theories for 3 ≤ D ≤ 9 in extended

superspaces, that is, superspaces with additional even co-ordinates that correspond to

“central” charges in the supersymmetry algebras. The number of these charges is equal

to the dimension of the R1 representation.14 The additional co-ordinates will be denoted

yM, and we shall assume that the structure group for the extended superspace is still

the product of the relevant spin group and R-symmetry group H. The basis forms will

be denoted EA := (EA, EA), where A denotes the representation R1 considered as a

representation of H. In this space we have torsion and curvature but no additional forms,

at least for the moment. We make the following assumptions:

1. TA and RA
B are unchanged from the standard superspace.

2. The non-zero components of TA are TAB
C and TAB

C .

3. All fields are annihilated by ∇A.

In addition the curvature RA
B is the same as the R-symmetry part of RA

B, i.e. the R-

symmetry curvature in the representation R1. The key new Bianchi identity is

DTA = EBRB
A . (C.1)

The (ABC) component of this is

∑

(ABC)

∇ATBC
D + TAB

ETEC
D + TAB

ETEC
D = 0 , (C.2)

14D = 4, N = 8 supergravity was formulated this way in [42, 98], see also [99].
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where the sum is graded cyclic. Defining FA = 1
2E

CEBTBC
A and the one-forms PA

B =

ECTCA
B, we see that this can be rewritten as

DFA = FBPB
A (C.3)

in ordinary superspace. The (ABC) component of (C.1) is

2∇[ATB]C
D + TAB

ETEC
D − 2T[A|C|

ETB]E
D = RAB,C

D . (C.4)

To interpret these equations we recall that the scalars in conventional superspace are given

by a matrix V that transforms under global G and local H transformations by V → h−1Vg.

The Maurer-Cartan form dVV−1 splits into an h-valued component Q, which we identify

with the internal part of the connection, and a quotient h\g-valued component P . The

Maurer-Cartan equation, resolved into isotropy and quotient algebra components, reads

R = −P 2 , DP = 0 , (C.5)

where R is the h curvature. Let us take V to be an element of G in the R1 representation,

so in indices we write VA
M. We then have DPA

B = 0 and

RA
B = −PA

CPC
B . (C.6)

The two-form field-strength FM obeys a trivial Bianchi identity, but if we define FA :=

FM(V−1)M
A we recover (C.3) while (C.4) can be rewritten as

RA
B +DPA

B + PA
CPC

B = 0 . (C.7)

This is equivalent to the two equations in (C.5) because R is h-valued and P takes its

values in the quotient. If we let M denote all of the coordinate indices in the extended

superspace we can see that the “sehrsupervielbein” EM
A has the form

EM
A =







EM
A AM

MEM
A

0 EM
A






, (C.8)

where we identify EM
A with (V−1)M

A, and where AM
M is the level-one potential.

D Borcherds and contragredient Lie superalgebras

In this appendix we give the general definitions of Borcherds and Kac-Moody (su-

per)algebras as special cases of contragredient Lie (super)algebras (the definitions in the

literature vary slightly). We explain how general Borcherds and contragredient Lie super-

algebras are constructed from their Cartan matrices, and introduce the V-diagrams, which

in turn completely specify the Cartan matrices that we consider in this paper.

For any real (r × r) matrix BIJ (I, J = 1, 2, . . . , r) and any subset S of the set R =

{1, 2, . . . , r} one can construct a Lie superalgebra B̃ generated by elements eI , fI and hI
modulo the Chevalley relations

[hI , eJ ] = BIJeJ , [hI , fJ ] = −BIJfJ , [eI , fJ ] = δIJhJ , (D.1)
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where the Chevalley generators eI and fI are both odd if I ∈ S, and both even otherwise.

It follows that the Cartan elements hI = [eI , fI ] are all even and commute with each

other, [hI , hJ ] = 0, spanning an abelian Cartan subalgebra H ⊂ B̃. The contragredient Lie

superalgebra B of rank r associated to the Cartan matrix BIJ is then obtained by factoring

out from B̃ the maximal ideal I that intersects H trivially, B = B̃/I [100, 101]. The

contragredient Lie superalgebra B is a Borcherds superalgebra if the Cartan matrix BIJ is

non-degenerate and symmetric with non-positive off-diagonal entries such that 2BIJ/BII ∈

Z if BII > 0, and furthermore 2BIJ/BII ∈ 2Z if in addition I ∈ S [102–104].15 A Borcherds

superalgebra B is a Kac-Moody superalgebra if BII > 0 for all I ∈ R.

If S is empty the Lie superalgebras defined here reduce to their Lie algebra analogues:

contragredient Lie algebras, Borcherds algebras and Kac-Moody algebras [105–107]. From

the Cartan matrix AIJ of a Kac-Moody algebra A we can obtain another matrix with all

diagonal entries equal to 2, by multiplying the row I in AIJ by 2/AII . The resulting matrix

defines a contragredient Lie algebra isomorphic to A but unlike AIJ it is not necessarily

symmetric. Usually this matrix is referred to as the Cartan matrix of a Kac-Moody al-

gebra A, and the matrix AIJ that we here call the Cartan matrix of A is then called the

symmetrized Cartan matrix. Accordingly, the Borcherds or Kac-Moody (super)algebras

that we consider are assumed to be symmetrizable.

The Kac-Moody algebras A that we consider furthermore have Cartan matrices

such that

min

{

∣

∣

∣
2
AIJ

AII

∣

∣

∣
,
∣

∣

∣
2
AJI

AJJ

∣

∣

∣

}

(D.2)

is equal to either zero or one. Any such Cartan matrix can be described (up to isomorphisms

of A) by a Dynkin diagram consisting of r nodes (where r is the rank of A) and

max

{

∣

∣

∣
2
AIJ

AII

∣

∣

∣
,
∣

∣

∣
2
AJI

AJJ

∣

∣

∣

}

(D.3)

lines connecting node I and node J , with an arrow pointing at node I if AII < AJJ . In

addition to these conventional rules, we also distinguish between the two cases AII = 1

and AII = 2, the only cases that appear for Cartan matrices of Kac-Moody algebras in

this paper, by painting node I black if AII = 1, and keep it white if AII = 2.16 Up to

isomorphisms, this painting does not give any more information about the Kac-Moody

algebra A than what is already given by the number of lines between the nodes and the

direction of the arrows. However, it fixes the overall normalization of each indecomposable

block of AIJ , which is important when we label the nodes by V-degrees and consider the

Dynkin diagram as a V-diagram of a Borcherds superalgebra, as will be explained below.

If B is a Borcherds superalgebra, then the ideal I of B̃ is generated by the Serre

relations, which are

(ad eI)
1−2BIJ/BII (eJ) = (ad fI)

1−2BIJ/BII (fJ) = 0 (D.4)

15Borcherds superalgebras are also known as Borcherds-Kac-Moody (BKM) superalgebras or generalised

Kac-Moody (GKM) superalgebras.
16This should not be confused with the use of black nodes in for example [3, 10, 35–37].
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for BII > 0 and I 6= J , and

[eI , eJ ] = [fI , fJ ] = 0 (D.5)

for BIJ = 0 (including the case I = J). The condition that the integers 2BIJ/BII be even

for BII > 0 and I ∈ S is needed for (D.4) to generate an ideal that intersects the Cartan

subalgebra H trivially in that case.

A nonzero element β in the dual space H∗ of the Cartan subalgebra H of a contra-

gredient Lie superalgebra B is a root if there is a nonzero element eβ in B, such that

[h, eβ ] = β(h)eβ for all h ∈ H. This element eβ is then the corresponding root vector. The

Cartan matrix BIJ defines a basis of H∗, consisting of simple roots βI , by βI(hJ) = BIJ .

Thus in particular the Chevalley generators eI and fI are root vectors corresponding to

the simple root βI and its negative −βI , respectively. Accordingly the simple roots can be

divided into even and odd ones. If the Cartan matrix BIJ is symmetric it also defines an

inner product in H∗, given by (βI , βJ) = BIJ , so that the diagonal value BII is the length

squared of the simple root βI .

Any contragredient Lie superalgebra B that we consider in this paper has a symmetric

Cartan matrix BIJ and is equipped with a map v : R → Z such that the subset S and its

complement in R are mapped to odd and even integers, respectively. The map v induces

a consistent Z-grading of B given by eI ∈ Bv(I) and fI ∈ B−v(I). This is a decomposition

of B into a direct sum of subspaces Bk for all integers k such that [Bi,Bj ] ⊆ Bk, and Bk

consists of even or odd elements if k is an even or odd integer, respectively. The map v

also induces a linear map v : H∗ → Z given by v(βI) = v(I). Following [35, 37] we call the

integer v(I) the V-degree of the simple root βI and we denote it simply by vI . Furthermore,

the Cartan matrix BIJ of the contragredient Lie superalgebra B can in all cases that we

consider be obtained from the Cartan matrix AIJ of a corresponding Kac-Moody algebra

A of the same rank r, equipped with the same map v : R → Z. The Cartan matrices of B

and A are then related by

BIJ = AIJ − w(vI , vJ) , (D.6)

where w is a symmetric map w : Z × Z → Z defined by w(a, b) = a(b + 1) for 0 ≤ a ≤ b

and w(−a, b) = w(a,−b) = −w(a, b). For example, in the simply-laced case, simple roots

of V-degree ±1 are odd null roots of B, whereas simple roots of V-degree zero remain even

and of length squared equal to two when we go from A to B. If only one of the simple

roots has a nonzero V-degree, then the off-diagonal entries of the Cartan matrix remain

unchanged. If the nonzero V-degrees are all positive (or all negative) then the off-diagonal

entries of the Cartan matrix remain non-positive, and B is a Borcherds superalgebra.

According to (D.6) the Borcherds superalgebra B can be completely specified by draw-

ing the Dynkin diagram of A and labelling the nodes by the V-degrees of the corresponding

simple roots. We call the result a V-diagram of B. It describes B very efficiently, but one

must bear in mind that two disconnected nodes in the V-diagram actually correspond to

a nonzero off-diagonal entry in the Cartan matrix of B if both V-degrees are nonzero.
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A fundamental Weyl reflection with respect to a simple root βJ of a contragredient Lie

algebra B with nonzero length, (βJ , βJ) 6= 0, is a linear transformation of H∗ given by

βI 7→ 2
(βI , βJ)

(βJ , βJ)
βJ = 2

BIJ

BJJ
βJ (D.7)

for any simple root βI . It is easy to see that a fundamental Weyl reflection is indeed a

reflection and thus preserves the inner product in H∗ and leaves the Cartan matrix of B

invariant. If (βJ , βJ) 6= 0 there is no fundamental Weyl reflection with respect to βJ , but

if in addition βJ is an odd root, then there is a generalised Weyl transformation [108, 109]

given by

βI 7→















−βI if I = J ,

βI + βJ if I 6= J and BIJ 6= 0 ,

βI if I 6= J and BIJ = 0 .

(D.8)

for the simple roots, and extended to the whole of H∗ by linearity. The generalised Weyl

transformation does not preserve the inner product in H∗, but maps the basis of simple

roots to another one, corresponding to a different Cartan matrix. In particular, if we start

with a Cartan matrix of a Borcherds superalgebra, and the second case in (D.8) appears,

then the new Cartan matrix will have positive off-diagonal entries and thus no longer

satisfy the conditions for a Cartan matrix of a Borcherds superalgebra (but still those

for a Cartan matrix of a contragredient Lie superalgebra). As before we can describe the

different Cartan matrices by V-diagrams. Any node labelled by V-degree vJ = 1 or vJ = −1

corresponds to an odd null root βJ , and thus to a generalised Weyl transformation. Since

we consider v as linear map from H∗ to the integers, the generalised Weyl transformation

also changes vJ = v(βJ) to v(−βJ) = −vJ . This is how the different V-diagrams of the

Borcherds superalgebra D in table 1 are obtained from each other.
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la Green-Schwarz, Phys. Lett. B 188 (1987) 335 [INSPIRE].

– 55 –

http://dx.doi.org/10.1088/1126-6708/2008/08/015
http://arxiv.org/abs/0805.4767
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.4767
http://dx.doi.org/10.1016/S0370-2693(01)00779-1
http://arxiv.org/abs/hep-th/0106153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0106153
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.022
http://arxiv.org/abs/hep-th/0307006
http://inspirehep.net/search?p=find+EPRINT+hep-th/0307006
http://dx.doi.org/10.1002/prop.200710390
http://arxiv.org/abs/hep-th/0702084
http://inspirehep.net/search?p=find+EPRINT+hep-th/0702084
http://dx.doi.org/10.1007/JHEP08(2011)146
http://arxiv.org/abs/1103.5053
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5053
http://dx.doi.org/10.1007/JHEP06(2012)177
http://arxiv.org/abs/1203.5585
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5585
http://dx.doi.org/10.1007/JHEP07(2011)071
http://arxiv.org/abs/1103.2730
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2730
http://dx.doi.org/10.1007/JHEP04(2012)078
http://arxiv.org/abs/1007.5241
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5241
http://dx.doi.org/10.1007/JHEP02(2012)066
http://arxiv.org/abs/1110.4892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4892
http://dx.doi.org/10.1007/JHEP03(2013)044
http://arxiv.org/abs/1301.1346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1346
http://dx.doi.org/10.1007/JHEP06(2012)003
http://arxiv.org/abs/1203.5107
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.5107
http://dx.doi.org/10.1007/JHEP03(2015)056
http://arxiv.org/abs/1502.00518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00518
http://dx.doi.org/10.1063/1.4858335
http://arxiv.org/abs/1305.0018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0018
http://dx.doi.org/10.1088/0264-9381/31/8/087001
http://arxiv.org/abs/1308.4972
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4972
http://dx.doi.org/10.1016/0550-3213(82)90349-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B199,309
http://dx.doi.org/10.1016/0370-2693(80)90662-0
http://inspirehep.net/search?p=find+J+Phys.Lett.,B91,61
http://dx.doi.org/10.1016/0370-2693(80)91002-3
http://inspirehep.net/search?p=find+J+Phys.Lett.,B91,384
http://dx.doi.org/10.1007/BF01546233
http://inspirehep.net/search?p=find+J+Z.Physik,C2,29
http://dx.doi.org/10.1016/S0370-2693(97)01261-6
http://arxiv.org/abs/hep-th/9707184
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707184
http://dx.doi.org/10.1016/0550-3213(94)90389-1
http://arxiv.org/abs/hep-th/9309143
http://inspirehep.net/search?p=find+EPRINT+hep-th/9309143
http://dx.doi.org/10.1016/0370-2693(87)91392-X
http://inspirehep.net/search?p=find+J+Phys.Lett.,B188,335


J
H
E
P
0
5
(
2
0
1
5
)
0
3
2

[50] M. Cederwall, B.E.W. Nilsson and D. Tsimpis, Spinorial cohomology and maximally

supersymmetric theories, JHEP 02 (2002) 009 [hep-th/0110069] [INSPIRE].

[51] P.S. Howe and D. Tsimpis, On higher order corrections in M-theory, JHEP 09 (2003) 038

[hep-th/0305129] [INSPIRE].

[52] P.S. Howe, Pure spinors lines in superspace and ten-dimensional supersymmetric theories,

Phys. Lett. B 258 (1991) 141 [Addendum ibid. B 259 (1991) 511] [INSPIRE].

[53] P.S. Howe, Pure spinors, function superspaces and supergravity theories in ten-dimensions

and eleven-dimensions, Phys. Lett. B 273 (1991) 90 [INSPIRE].

[54] N. Berkovits, ICTP lectures on covariant quantization of the superstring, hep-th/0209059

[INSPIRE].

[55] N. Berkovits and P.S. Howe, The cohomology of superspace, pure spinors and invariant

integrals, JHEP 06 (2008) 046 [arXiv:0803.3024] [INSPIRE].

[56] F. Brandt, Supersymmetry algebra cohomology I: definition and general structure,

J. Math. Phys. 51 (2010) 122302 [arXiv:0911.2118] [INSPIRE].

[57] F. Brandt, Supersymmetry algebra cohomology: II. Primitive elements in 2 and 3

dimensions, J. Math. Phys. 51 (2010) 112303 [arXiv:1004.2978] [INSPIRE].

[58] F. Brandt, Supersymmetry algebra cohomology III: Primitive elements in four and five

dimensions, J. Math. Phys. 52 (2011) 052301 [arXiv:1005.2102] [INSPIRE].

[59] F. Brandt, Supersymmetry algebra cohomology IV: Primitive elements in all dimensions

from D = 4 to D = 11, J. Math. Phys. 54 (2013) 052302 [arXiv:1303.6211] [INSPIRE].

[60] M.V. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries,

arXiv:1011.4731 [INSPIRE].

[61] M.V. Movshev, A. Schwarz and R. Xu, Homology of Lie algebra of supersymmetries and of
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