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Abstract: In the generalized minimal supergravity (GmSUGRA) scenario, we systemat-

ically study the supersymmetry breaking scalar masses, Standard Model fermion Yukawa

coupling terms, and trilinear soft terms in SU(5) models with the Higgs fields in the 24

and 75 representations, and in SO(10) models where the gauge symmetry is broken down

to the Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge symmetry, SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L gauge symmetry, George-Glashow SU(5) × U(1)′ gauge symmetry,

flipped SU(5) × U(1)X gauge symmetry, and SU(3)C × SU(2)L × U(1)1 × U(1)2 gauge

symmetry. Most importantly, we for the first time consider the scalar and gaugino mass

relations, which can be preserved from the unification scale to the electroweak scale under

one-loop renormalization group equation running, in the SU(5) models, the Pati-Salam

models and flipped SU(5) × U(1)X models arising from SO(10) models. With such inter-

esting relations, we may distinguish the minimal supergravity (mSUGRA) and GmSUGRA

scenarios if the supersymmetric particle spectrum can be measured at the LHC and ILC.

Thus, it provides us with another important window of opportunity at the Planck scale.

http://arxiv.org/abs/1006.5559v2
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1. Introduction

Supersymmetry naturally solves the gauge hierarchy problem of the Standard Model (SM).

The unification of the three gauge couplings SU(3)C , SU(2)L and U(1)Y in the super-

symmetric Standard Model at about 2 × 1016 GeV [1] strongly suggests the existence of

Grand Unified Theories (GUTs). In addition, supersymmetric GUTs such as SU(5) [2] or

SO(10) [3] models give us deep insights into the other SM problems such as the emergence

of the fundamental forces, the assignments and quantization of their charges, the fermion

masses and mixings, and beyond. Although supersymmetric GUTs are attractive it is chal-

lenging to test them at the Large Hadron Collider (LHC), the future International Linear

Collider (ILC), and other experiments.

In traditional supersymmetric SMs supersymmetry is broken in the hidden sector and

the supersymmetry breaking effects can be mediated to the observable sector via gravity [4],

gauge interactions [5, 6], or super-Weyl anomaly [7, 8, 9], or other mechanisms. However,

the relations between the supersymmetric particle (sparticle) spectra and the fundamental

theories can be very complicated and model dependent. An important observation is

that compared to the supersymmetry breaking soft masses of squarks and sleptons (scalar

masses), gaugino masses have a simpler form and are less model dependent [10, 11]. In

the minimal supergravity (mSUGRA) scenario [4] supersymmetry breaking is mediated by

gravity and gauge couplings and gaugino masses are unified at the GUT scale. Thus, a

relation holds between the the gauge couplings and the gaugino masses at the GUT scale

MGUT:

1

α3
=

1

α2
=

1

α1
, (1.1)

M3

α3
=

M2

α2
=

M1

α1
, (1.2)

where α3, α2, and α1 ≡ 5αY /3 (M3, M2, and M1) are gauge couplings (gaugino masses)

for the SU(3)C , SU(2)L, and U(1)Y gauge symmetries, respectively. Because Mi/αi are

constant under renormalization group evolution, the gaugino mass relation in Eq. (1.2) is

valid from the GUT scale to the electroweak scale at one loop. Two-loop renormalization

group effects on gaugino masses are very small, thus, we can test this gaugino mass relation

at the LHC and ILC where the gaugino masses can be measured [12, 13]. Recently, con-

sidering GUTs with high-dimensional operators [5, 10, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]

and F-theory GUTs with U(1) fluxes [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35], two of

us (TL and DN) proposed the generalized mSUGRA (GmSUGRA) scenario, and studied

the generic gaugino mass relations and defined their indices [36]. The gaugino mass re-

lations and their indices have also been studied for general gauge and anomaly mediated

supersymmetry breaking in GUTs with vector-like particles [37].

In this paper, we consider the supersymmetry breaking scalar masses and trilinear

soft terms in the GmSUGRA. We briefly review GUTs and consider the general grav-

ity mediated supersymmetry breaking. With the high-dimensional operators including
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the GUT Higgs fields, we systematically calculate the supersymmetry breaking scalar

masses, SM fermion Yukawa coupling terms, and trilinear soft terms in SU(5) models

with GUT Higgs fields in the 24 and 75 representations, and in SO(10) models where the

gauge symmetry is broken down to the Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge

symmetry, SU(3)C × SU(2)L × SU(2)R × U(1)B−L gauge symmetry, George-Glashow

SU(5) × U(1)′ gauge symmetry, flipped SU(5)× U(1)X gauge symmetry [38, 39, 40], and

SU(3)C × SU(2)L × U(1)1 × U(1)2 gauge symmetry. We examine the scalar and gaugino

mass relations, which are valid from the GUT scale to the electroweak scale under one-loop

renormalization group running, in the SU(5) models, the Pati-Salam models and flipped

SU(5)× U(1)X models arising from the SO(10) model. With these relations, we may dis-

tinguish the mSUGRA and GmSUGRA scenarios if the supersymmetric particle spectrum

can be measured at the LHC and ILC.

This paper is organized as follows. In Section 2, we briefly review four-dimensional

GUTs. In Section 3, we explain the general gravity mediated supersymmetry breaking.

In Section 4, we discuss the scalar masses, the SM fermion Yukawa coupling terms, and

trilinear soft terms in the SU(5) model. For models arising from SO(10), we derive the

scalar masses in Section 5, and the SM fermion Yukawa coupling terms and trilinear soft

terms in Section 6. In Section 7 we consider the scalar and gaugino mass relations. Section 8

contains our conclusions.

2. Brief Review of Grand Unified Theories

In this Section we explain our conventions. In supersymmetric SMs, we denote the left-

handed quark doublets, right-handed up-type quarks, right-handed down-type quarks, left-

handed lepton doublets, right-handed neutrinos and right-handed charged leptons as Qi,

U c
i , D

c
i , Li, N

c
i , and Ec

i , respectively. Also, we denote one pair of Higgs doublets as Hu and

Hd, which give masses to the up-type quarks/neutrinos and the down-type quarks/charged

leptons, respectively.

First, we briefly review the SU(5) model. We define the U(1)Y hypercharge generator

in SU(5) as follows

TU(1)Y = diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
. (2.1)

Under SU(3)C × SU(2)L ×U(1)Y gauge symmetry, the SU(5) representations are decom-

posed as follows

5 = (3,1,−1/3) ⊕ (1,2,1/2) , (2.2)

5 = (3,1,1/3) ⊕ (1,2,−1/2) , (2.3)

10 = (3,2,1/6) ⊕ (3,1,−2/3) ⊕ (1,1,1) , (2.4)

10 = (3,2,−1/6) ⊕ (3,1,2/3) ⊕ (1,1,−1) , (2.5)

24 = (8,1,0) ⊕ (1,3,0) ⊕ (1,1,0) ⊕ (3,2,−5/6) ⊕ (3,2,5/6) . (2.6)

There are three families of the SM fermions whose quantum numbers under SU(5) are

F ′
i = 10, f

′

i = 5̄, N c
i = 1 , (2.7)
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where i = 1, 2, 3 for three families. The SM particle assignments in F ′
i and f̄ ′

i are

F ′
i = (Qi, U

c
i , E

c
i ) , f

′

i = (Dc
i , Li) . (2.8)

To break the SU(5) gauge symmetry and electroweak gauge symmetry, we introduce

the adjoint Higgs field and one pair of Higgs fields whose quantum numbers under SU(5)

are

Φ′ = 24 , h′ = 5 , h
′
= 5̄ , (2.9)

where h′ and h
′
contain the Higgs doublets Hu and Hd, respectively.

Second, we briefly review the flipped SU(5) × U(1)X model [38, 39, 40]. The gauge

group SU(5) × U(1)X can be embedded into SO(10). We define the generator U(1)Y ′ in

SU(5) as

TU(1)Y′
= diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
. (2.10)

The hypercharge is given by

QY =
1

5
(QX −QY ′) . (2.11)

There are three families of the SM fermions whose quantum numbers under SU(5) ×
U(1)X are

Fi = (10,1), f̄i = (5̄,−3), l̄i = (1,5), (2.12)

where i = 1, 2, 3. The particle assignments for the SM fermions are

Fi = (Qi,D
c
i , N

c
i ) , f i = (U c

i , Li) , li = Ec
i . (2.13)

To break the GUT and electroweak gauge symmetries, we introduce two pairs of Higgs

fields whose quantum numbers under SU(5)× U(1)X are

H = (10,1) , H = (10,−1) , h = (5,−2) , h = (5̄,2) , (2.14)

where h and h contain the Higgs doublets Hd and Hu, respectively.

Moreover, the flipped SU(5) × U(1)X models can be embedded into SO(10). Under

the SU(5)×U(1)X gauge symmetry, the SO(10) representations are decomposed as follows

10 = (5,−2)⊕ (5,2) , (2.15)

16 = (10,1) ⊕ (5,−3)⊕ (1,5) , (2.16)

45 = (24,0) ⊕ (1,0) ⊕ (10,−4) ⊕ (10,4) . (2.17)

Third, we briefly review the Pati-Salam model. The gauge group is SU(4)C×SU(2)L×
SU(2)R which can also be embedded into SO(10). There are three families of the SM

fermions whose quantum numbers under SU(4)C × SU(2)L × SU(2)R are

FL
i = (4,2,1) , FRc

i = (4,1,2) , (2.18)
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where i = 1, 2, 3. Also, the particle assignments for the SM fermions are

FL
i = (Qi, Li) , FRc

i = (U c
i ,D

c
i , E

c
i , N

c
i ) . (2.19)

To break the Pati-Salam and electroweak gauge symmetries, we introduce one pair

of Higgs fields and one bidoublet Higgs field whose quantum numbers under SU(4)C ×
SU(2)L × SU(2)R are

Φ = (4,1,2) , Φ = (4,1,2) , H ′ = (1,2,2) , (2.20)

where H ′ contains one pair of the Higgs doublets Hd and Hu.

The Pati-Salam model can be embedded into SO(10) as well. Under SU(4)C ×
SU(2)L × SU(2)R gauge symmetry, the SO(10) representations are decomposed as fol-

lows

10 = (6,1,1) ⊕ (1,2,2) , (2.21)

16 = (4,2,1) ⊕ (4,1,2) , (2.22)

45 = (15,1,1) ⊕ (1,3,1) ⊕ (1,1,3) ⊕ (6,2,2) . (2.23)

3. General Gravity Mediated Supersymmetry Breaking

The supegravity scalar potential can be written as [4]

V = M4
∗ e

G
[
Gi(G−1)jiGj − 3

]
+

1

2
Re
[
(f−1)abD̂

aD̂b
]
, (3.1)

where M∗ is the fundamental scale, D-terms are

D̂a≡−Gi(T a)jiφj = −φj∗(T a)ijGi , (3.2)

and the Kähler function G as well as its derivatives and metric Gj
i are

G ≡ K

M2
∗

+ ln

(
W

M3
∗

)
+ ln

(
W ∗

M3
∗

)
, (3.3)

Gi =
δG

δφi
, Gi =

δG

δφ∗
i

, Gj
i =

δ2G

δφ∗
i δφj

, (3.4)

where K is Kähler potential and W is superpotential.

Because the gaugino masses have been studied previously [36], we only consider the

supersymmetry breaking scalar masses and trilinear soft terms in this paper. To break

supersymmetry, we introduce a chiral superfield S in the hidden sector whose F term ac-

quires a vacuum expectation value (VEV), i .e, 〈S〉 = θ2FS . To calculate the scalar masses

and trilinear soft terms, we consider the following superpotential and Kähler potential

W =
1

6
yijkφiφjφk + α

S

M∗

(
1

6
yijkφiφjφk

)
, (3.5)

K = φ†
iφi + β

S†S

M2
∗

φ†
iφi , (3.6)
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where yijk, α, and β are Yukawa couplings. Thus, we obtain the universal supersymmetry

breaking scalar mass m0 and trilinear soft term A of mSUGRA

m2
0 = β

|FS |2
M2

∗

, A = α
FS

M∗

. (3.7)

When we break the GUT gauge symmetry by giving VEV to the Higgs field Φ, we can

have the general superpotential and Kähler potential

W =
1

6
yijkφiφjφk +

1

6

(
hijk

Φ

M∗
φiφjφk

)
+ α

S

M∗

(
1

6
yijkφiφjφk

)

+α′ T

M∗

(
1

6
yijk

Φ

M∗

φiφjφk

)
, (3.8)

K = φ†
iφi +

1

2
h′φ†

i

(
Φ

M∗
+

Φ†

M∗

)
φi + β

S†S

M2
∗

φ†
iφi +

1

2
β′T

†T

M2
∗

φ†
i

(
Φ

M∗
+

Φ†

M∗

)
φi , (3.9)

where hijk, α′, β′ and h′ are Yukawa couplings, and T can be S or another chiral superfield

with non-zero F term, i .e, 〈T 〉 = θ2FT . Therefore, after the GUT gauge symmetry is

broken by the VEV of Φ, we obtain the non-universal supersymmetry breaking scalar

masses and trilinear soft terms, which will be studied in the following. For simplicity, we

assume h′ = 0 in the following discussions since we can redefine the fields and the SM

fermion Yukawa couplings.

4. Scalar Masses and Trilinear Soft Terms in the SU(5) Model

First, we study the supersymmetry breaking scalar masses. In order to construct gauge

invariant high-dimensional operators, we need the decompositions of the following tensor

products

5̄⊗ 5 = 1⊕ 24 , (4.1)

10⊗ 10 = 1⊕ 24⊕ 75 . (4.2)

Thus, the adjoint Higgs field can give scalar masses to both F ′
i and f

′

i, while the Higgs

field in the 75 representation can only give soft masses to F ′
i . The VEVs of the Higgs field

Φ24 in the adjoint representation are expressed as 5× 5 and 10 × 10 matrices

〈Φ24〉 = v

√
3

5
diag

(
−1

3
,−1

3
,−1

3
,
1

2
,
1

2

)
, (4.3)

〈Φ24〉 = v

√
3

5
diag(−2

3
, · · · ,−2

3︸ ︷︷ ︸
3

,
1

6
, · · · , 1

6︸ ︷︷ ︸
6

, 1) , (4.4)
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which are normalized to c = 1/2 and c = 3/2, respectively. Thus, we obtain the following

scalar masses

m2
Q̃i

= (mU
0 )

2 +

√
3

5
β′
10

1

6
(mN

0 )2 , (4.5)

m2
Ũc
i

= (mU
0 )

2 −
√

3

5
β′
10

2

3
(mN

0 )2 , (4.6)

m2
Ẽc

i

= (mU
0 )

2 +

√
3

5
β′
10(m

N
0 )2 , (4.7)

m2
D̃c

i

= (mU
0 )

2 +

√
3

5
β′
5̄

1

3
(mN

0 )2 , (4.8)

m2
L̃i

= (mU
0 )

2 −
√

3

5
β′
5̄

1

2
(mN

0 )2 , (4.9)

where we introduced

(mU
0 )

2 ≡ β

M2
∗

F ∗
SFS , (mN

0 )2 =
v

M3
∗

F ∗
TFT . (4.10)

Because the second non-universal terms are proportional to the hypercharge for each

fields, we obtain general relations among the supersymmetry breaking scalar masses

YLi
m2

D̃c
i

− YDc
i
m2

L̃i

YLi
− YDc

i

=
YUc

i
m2

Q̃i

− YQi
m2

Ũc
i

YUc
i
− YQi

=
YEc

i
m2

Q̃i

− YQi
m2

Ẽc
i

YEc
i
− YQi

=
YUc

i
m2

Ẽc
i

− YEc
i
m2

Ũc
i

YUc
i
− YEc

i

,

which give the scalar mass relations at the GUT scale MU

3m2
D̃c

i

+ 2m2
L̃i

= 4m2
Q̃i

+m2
Ũc
i

= 6m2
Q̃i

−m2
Ẽc

i

= 2m2
Ẽc

i

+ 3m2
Ũc
i

. (4.11)

Next, we consider the Higgs field Φ
[ij]
kl in the 75 representation. Because the Higgs

fields Φ24 and Φ
[ij]
kl belong to the decomposition of the tensor product representation of

10× 10, their VEVs must be orthogonal to each other. Thus, we obtain the VEV of Φ
[ij]
kl

in terms of the 10× 10 matrix

〈Φ[ij]
kl 〉 =

v

2
√
3
diag


 1, · · · , 1︸ ︷︷ ︸

3

,−1, · · · ,−1︸ ︷︷ ︸
6

, 3


 . (4.12)

So we obtain scalar masses

m2
Q̃i

= (mU
0 )

2 − β′
75

2
√
3
(mN

0 )2 ,

m2
Ũc
i

= (mU
0 )

2 +
β′
75

2
√
3
(mN

0 )2 ,

m2
Ẽc

i

= (mU
0 )

2 + 3
β′
75

2
√
3
(mN

0 )2 ,

m2
D̃c

i

= m2
L̃i

= (mU
0 )

2 , (4.13)
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which respect the scalar mass relation at MU

m2
Ẽc

i

+m2
Q̃i

= 2m2
Ũc
i

. (4.14)

Second, we study the supersymmetry breaking trilinear soft terms. For simplicity,

we assume that the Yukawa couplings are diagonal. To get the possible high-dimensional

operators for the trilinear soft terms, we need to consider the decompositions of the tensor

products for the SM fermion Yukawa coupling terms [41]

10⊗ 10⊗ 5 = (5̄⊕ 45⊕ 50)⊗ 5

= (1⊕ 24)⊕ (24 ⊕ 75⊕ 126)⊕ (75 ⊕ 175′) , (4.15)

10⊗ 5̄⊗ 5̄ = 10⊗ (10⊕ 15) = (1⊕ 24⊕ 75)⊕ (24⊕ 126) . (4.16)

Because the Higgs fields in the 126, 126 and 175′ do not have the SU(3)C × SU(2)L
singlets [41], we do not consider them in the following discussions. Thus, we only consider

the Higgs fields in the 24 and 75 representations.

For the Higgs field Φ24 in the 24 representation, we consider the following superpo-

tential for the additional contributions to the Yukawa coupling terms and trilinear soft

terms

W ⊃
(
hUiǫmnpql(F ′

i )mn(F
′
i )pq(h

′)k(Φ24)
k
l + h′Uiǫmnpkl(F ′

i )mn(F
′
i )pq(h

′)k(Φ24)
q
l

+hDEi(F ′
i )mn(f

′

i ⊗ h
′
)ml
Sym(Φ24)

n
l + h′DEi(F ′

i )mn(f
′

i ⊗ h
′
)ml
Asym(Φ24)

n
l

)

+α′ T

M∗

(
yUiǫmnpql(F ′

i )mn(F
′
i )pq(h

′)k(Φ24)
k
l

+y′Uiǫmnpkl(F ′
i )mn(F

′
i )pq(h

′)k(Φ24)
q
l + yDEi(F ′

i )mn(f
′

i ⊗ h
′
)ml
Sym(Φ24)

n
l

+y′DEi(F ′
i )mn(f

′

i ⊗ h
′
)ml
Asym(Φ24)

n
l

)
, (4.17)

where the subscripts Sym and Asym denote the symmetric and anti-symmetric products

of two 5̄ representations. After Φ24 acquires a VEV, we obtain the Yukawa coupling terms

in the superpotential

W ⊃ v

M∗

√
3

5

(
−2hUiQiU

c
i Hu − h′UiQiU

c
i Hu

−1

6
h′DEiQiD

c
iHd − h′DEiLiE

c
iHd

)
. (4.18)

We also obtain the supersymmetry breaking trilinear soft terms

−L ⊃ α′FT v

M2
∗

√
3

5

(
−2yUiQ̃iŨ

c
i Hu − y′UiQ̃iŨ

c
i Hu

−1

6
y′DEiQ̃iD̃

c
iHd − y′DEiL̃iẼ

c
iHd

)
. (4.19)

As a double check, we can obtain these results by choosing the VEVs of 24 dimensional

Higgs field Φ24 as appropriate 5× 5 and 10× 10 matrices.
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We can write the VEV of the 75 dimensional Higgs field Φ
[ik]
jl as [10]

〈Φ[ik]
jl 〉 =

v

2
√
3

[
∆

[i
cj∆

k]
cl + 2∆

[i
wj∆

k]
wl −

1

2
δ
[i
j δ

k]
l

]
, (4.20)

where

∆c = diag( 1, 1, 1, 0, 0) , ∆w = diag( 0, 0, 0, 1, 1) . (4.21)

We consider the following superpotential for the additional contributions to the Yukawa

coupling terms and trilinear soft terms

W ⊃
(
hUiǫmnpjl(F ′

i )mn(F
′
i )pq(h

′)kΦ
[qk]
jl + h′Uiǫjlpqk(F ′

i )mn(F
′
i )pq(h

′)kΦ
[mn]
jl

+hDEi(F ′
i )mn(f

′

i)
p(h

′
)qΦ[mn]

pq

)
+ α′ T

M∗

(
yUiǫmnpjl(F ′

i )mn(F
′
i )pq(h

′)kΦ
[qk]
jl

+y′Uiǫjlpqk(F ′
i )mn(F

′
i )pq(h

′)kΦ
[mn]
jl + yDEi(F ′

i )mn(f
′

i)
p(h

′
)qΦ[mn]

pq

)
. (4.22)

After Φ
[ik]
jl acquires a VEV, we obtain the Yukawa coupling terms in the superpotential

W ⊃ v

M∗

1

2
√
3

(
−h′DEiQiD

c
iHd + 3h′DEiLiE

c
iHd

)
, (4.23)

and the supersymmetry breaking trilinear soft terms

−L ⊃ α′FT v

M2
∗

1

2
√
3

(
−y′DEiQ̃iD̃

c
iHd + 3y′DEiL̃iẼ

c
iHd

)
. (4.24)

These results can also be obtained by considering the VEV of 75 dimensional Higgs field

as an appropriate 10×10 matrix. Due to the arbitrariness of the coefficients in the Yukawa

coupling terms and the trilinear soft terms, we will not discuss the relations among the

trilinear soft terms.

5. Scalar Masses in the SO(10) Model

In order to calculate the scalar masses, we need to decompose the tensor product of 16⊗16

which gives

16⊗ 16 = 1⊕ 45⊕ 210 . (5.1)

Thus we need to consider the Higgs fields in the 45 and 210 representations to determine

the scalar masses. The SO(10) gauge symmetry can be broken down to the Pati-Salam

SU(4)C × SU(2)L × SU(2)R gauge symmetry by the Higgs fields in the 45, 210, and 770

representations, and can be (further) broken down to the SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L gauge symmetry by the Higgs field in the (15,1,1) component of the SU(4)C ×
SU(2)L × SU(2)R under the 45 and 210 representations. In addition, the SO(10) gauge

symmetry can be broken down to the Georgi-Glashow SU(5)×U(1)′ and flipped SU(5)×
U(1)X gauge symmetries by the Higgs fields in the 45 and 210 representations, and can be

(further) broken down to the SU(3)C × SU(2)L ×U(1)1 ×U(1)2 gauge symmetries by the

Higgs field in the (24,0) component of the SU(5) × U(1) under the 45 representation, or

by the (24,0) or (75,0) component under the 210 representation. Thus, in the following,

we consider these breaking chains.
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5.1 The Pati-Salam Model

From the decomposition of the 16 dimensional spinor representation under the SU(4)C ×
SU(2)L ×SU(2)R gauge symmetry, we obtain the VEV (of the (1,1,1) component) of the

210 dimensional Higgs field Φ210 in terms of the 16× 16 matrix

< Φ210 >=
v

2
√
2
diag( 1, · · · , 1︸ ︷︷ ︸

8

,−1, · · · ,−1︸ ︷︷ ︸
8

) , (5.2)

with the normalization c = 2. From this we get the scalar masses

M2(F̃L
i ) = (mU

0 )
2 +

v

2
√
2
β′
210

v|FT |2
M3

∗

, (5.3)

M2(F̃Rc
i ) = (mU

0 )
2 − v

2
√
2
β′
210

v|FT |2
M3

∗

. (5.4)

In components, we have

m2
Q̃i

= (mU
0 )

2 +
v

2
√
2
β′
210

v|FT |2
M3

∗

,

m2
Ũc
i

= (mU
0 )

2 − v

2
√
2
β′
210

v|FT |2
M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 − v

2
√
2
β′
210

v|FT |2
M3

∗

,

m2
D̃c

i

= (mU
0 )

2 − v

2
√
2
β′
210

v|FT |2
M3

∗

,

m2
L̃i

= (mU
0 )

2 +
v

2
√
2
β′
210

v|FT |2
M3

∗

. (5.5)

5.2 The SU(3)C × SU(2)L × SU(2)R × U(1)B−L Model

The SO(10) gauge symmetry can be broken down to the SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L symmetry by giving VEVs to the (15,1,1) components of the Higgs field in the

45 and 210 representations of SU(4)C×SU(2)L×SU(2)R. The decomposition of 16 under

the SU(3)C × SU(2)L × SU(2)R × U(1)B−L group is

16 = (3,2,1,1/6)⊕ (1,2,1,−1/2)⊕ (3̄,1, 2̄,−1/6)⊕ (1,1, 2̄,1/2) . (5.6)

First, let us consider the Higgs field Φ45 in the 45 representation. The VEV of Φ45

can be written in terms of a 16× 16 matrix as follows

〈Φ45〉 =
v

2
√
6
diag( 1, 1, 1,−3︸ ︷︷ ︸

2

,−1,−1,−1, 3︸ ︷︷ ︸
2

) , (5.7)

which is normalized as c = 2. Thus, the scalar masses are

m2
Q̃i

= (mU
0 )

2 +
v

2
√
6
β′
45

v|FT |2
M3

∗

,
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m2
Ũc
i

= (mU
0 )

2 − v

2
√
6
β′
45

v|FT |2
M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 +
3v

2
√
6
β′
45

v|FT |2
M3

∗

,

m2
D̃c

i

= (mU
0 )

2 − v

2
√
6
β′
45

v|FT |2
M3

∗

,

m2
L̃i

= (mU
0 )

2 − 3v

2
√
6
β′
45

v|FT |2
M3

∗

. (5.8)

Second, we consider the Higgs field Φ210 in the 210 representation. The VEV of Φ210

in terms of a 16× 16 matrix is

〈Φ210〉 =
v

2
√
6
diag( 1, 1, 1,−3︸ ︷︷ ︸

4

) , (5.9)

which is normalized as c = 2. Thus, the scalar masses are

m2
Q̃i

= (mU
0 )

2 +
v

2
√
6
β′
210

v|FT |2
M3

∗

,

m2
Ũc
i

= (mU
0 )

2 +
v

2
√
6
β′
210

v|FT |2
M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 − 3v

2
√
6
β′
210

v|FT |2
M3

∗

,

m2
D̃c

i

= (mU
0 )

2 +
v

2
√
6
β′
210

v|FT |2
M3

∗

,

m2
L̃i

= (mU
0 )

2 − 3v

2
√
6
β′
210

v|FT |2
M3

∗

. (5.10)

5.3 The Georgi-Glashow SU(5)× U(1)′ and Flipped SU(5)× U(1)X Models

The SO(10) gauge symmetry can also be broken down to the SU(5)×U(1) gauge symmetry

by the 45 and 210 dimensional Higgs fields Φ45 and Φ210. The decomposition of the 16

spinor representation under SU(5) × U(1) is

16 = (10, 1)⊕ (5̄, − 3)⊕ (1, 5) . (5.11)

First, we consider the Higgs field Φ45. From Eq. (5.11), we obtain the VEV of Φ45 in

terms of a 16× 16 matrix

〈Φ45〉 =
v

2
√
10

diag(−3, · · · ,−3︸ ︷︷ ︸
5

, 1, · · · , 1︸ ︷︷ ︸
10

, 5) , (5.12)

which is normalized as c = 2. Consequently, we obtain the scalar masses in the Georgi-

Glashow SU(5)× U(1)′ and flipped SU(5)× U(1)X models:

• The Georgi-Glashow SU(5)× U(1)′ Model

M2(F̃ ′
i ) = (mU

0 )
2 + β′

45

v|FT |2
2
√
10M3

∗

,

– 11 –



M2(f̃
′

i) = (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

,

M2(Ñ c
i ) = (mU

0 )
2 + 5β′

45

v|FT |2
2
√
10M3

∗

. (5.13)

In components, we have

m2
Q̃i

= (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

m2
Ũc
i

= (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

m2
D̃c

i

= (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

,

m2
L̃i

= (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

. (5.14)

In this paper, we will not consider the scalar masses for right-handed sneutrinos

because the heavy Majorana neutrino masses will give the dominant contributions.

• The Flipped SU(5) × U(1)X Model

M2(F̃i) = (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

M2(f̃ i) = (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

,

M2(̃li) = (mU
0 )

2 + 5β′
45

v|FT |2
2
√
10M3

∗

. (5.15)

In components, this gives

m2
Q̃i

= (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

m2
Ũc
i

= (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 + 5β′
45

v|FT |2
2
√
10M3

∗

,

m2
D̃c

i

= (mU
0 )

2 + β′
45

v|FT |2
2
√
10M3

∗

,

m2
L̃i

= (mU
0 )

2 − 3β′
45

v|FT |2
2
√
10M3

∗

. (5.16)

Second, let us consider the Higgs field Φ210. Because the VEVs of Φ45 and Φ210 are

orthogonal to each other, we obtain the VEV of Φ210 in terms of the 16× 16 matrix

< Φ >=
v

2
√
5
diag( 1, · · · , 1︸ ︷︷ ︸

5

,−1, · · · ,−1︸ ︷︷ ︸
10

, 5) , (5.17)

– 12 –



which is normalized as c = 2. From this, we obtain the scalar masses in the Georgi-Glashow

SU(5) × U(1)′ and flipped SU(5)× U(1)X models:

• The Georgi-Glashow SU(5)× U(1)′ Model

M2(F̃ ′
i ) = (mU

0 )
2 − β′

210

v|FT |2
2
√
5M3

∗

,

M2(f̃
′

i) = (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

,

M2(Ñ c
i ) = (mU

0 )
2 + 5β′

210

v|FT |2
2
√
5M3

∗

. (5.18)

In components

m2
Q̃i

= (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

m2
Ũc
i

= (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

m2
D̃c

i

= (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

,

m2
L̃i

= (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

. (5.19)

• The Flipped SU(5) × U(1)X Model

M2(F̃i) = (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

M2(f̃ i) = (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

,

M2(̃li) = (mU
0 )

2 + 5β′
210

v|FT |2
2
√
5M3

∗

. (5.20)

In components

m2
Q̃i

= (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

m2
Ũc
i

= (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

,

m2
Ẽc

i

= (mU
0 )

2 + 5β′
210

v|FT |2
2
√
5M3

∗

,

m2
D̃c

i

= (mU
0 )

2 − β′
210

v|FT |2
2
√
5M3

∗

,

m2
L̃i

= (mU
0 )

2 + β′
210

v|FT |2
2
√
5M3

∗

. (5.21)
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5.4 The SU(3)C × SU(2)L × U(1)1 × U(1)2 Model

The SO(10) gauge symmetry can also be broken down to SU(3)C×SU(2)L×U(1)1×U(1)2
by VEVs of the (24,0) component Higgs field which is in the 45 representation under

SU(5)×U(1), or by the (24,0) or (75,0) component Higgs fields in the 210 representation.

First, we consider the Higgs field Φ45 in the 45 representation. The VEV of Φ45 is

〈Φ45〉 = v

√
3

5
diag(

1

3
,
1

3
,
1

3
,−1

2
,−1

2
,
1

6
, · · · , 1

6︸ ︷︷ ︸
6

,−2

3
,−2

3
,−2

3
, 1, 0) , (5.22)

which is normalized to c = 2.

Thus, we obtain the scalar masses in the Georgi-Glashow SU(5) × U(1)′ and flipped

SU(5) × U(1)X models:

• The Georgi-Glashow SU(5)× U(1)′ Model

m2
Q̃i

= (mU
0 )

2 +

√
3

5
β′
45

1

6
(mN

0 )2 ,

m2
Ũc
i

= (mU
0 )

2 −
√

3

5
β′
45

2

3
(mN

0 )2 ,

m2
Ẽc

i

= (mU
0 )

2 +

√
3

5
β′
45(m

N
0 )2 ,

m2
D̃c

i

= (mU
0 )

2 +

√
3

5
β′
45

1

3
(mN

0 )2 ,

m2
L̃i

= (mU
0 )

2 −
√

3

5
β′
45

1

2
(mN

0 )2 , (5.23)

where (mU
0 )

2 and (mN
0 )2 are given in Eq. (4.10).

• The Flipped SU(5) × U(1)X Model

m2
Q̃i

= (mU
0 )

2 +

√
3

5
β′
45

1

6
(mN

0 )2 ,

m2
Ũc
i

= (mU
0 )

2 +

√
3

5
β′
45

1

3
(mN

0 )2 , (5.24)

m2
Ẽc

i

= (mU
0 )

2 ,

m2
D̃c

i

= (mU
0 )

2 −
√

3

5
β′
45

2

3
(mN

0 )2 ,

m2
L̃i

= (mU
0 )

2 −
√

3

5
β′
45

1

2
(mN

0 )2 . (5.25)

Second, we consider the Higgs field Φ24
210

in the (24,0) component of the 210 repre-

sentation that acquires a VEV as follows

〈Φ24

210〉 =
v√
5
diag(−1,−1,−1,

3

2
,
3

2
,
1

6
, · · · , 1

6︸ ︷︷ ︸
6

,−2

3
,−2

3
,−2

3
, 1, 0) , (5.26)
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which is normalized to c = 2. From this, we obtain the scalar masses in the Georgi-Glashow

SU(5) × U(1)′ and the flipped SU(5) × U(1)X models:

• The Georgi-Glashow SU(5)× U(1)′ Model

m2
Q̃i

= (mU
0 )

2 +
1√
5
β′24
210

1

6
(mN

0 )2 ,

m2
Ũc
i

= (mU
0 )

2 − 1√
5
β′24
210

2

3
(mN

0 )2 ,

m2
Ẽc

i

= (mU
0 )

2 +
1√
5
β′24
210(m

N
0 )2 ,

m2
D̃c

i

= (mU
0 )

2 − 1√
5
β′24
210(m

N
0 )2 ,

m2
L̃i

= (mU
0 )

2 +
1√
5
β′24
210

3

2
(mN

0 )2 . (5.27)

• The Flipped SU(5) × U(1)X Model

m2
Q̃i

= (mU
0 )

2 +
1√
5
β′24
210

1

6
(mN

0 )2 ,

m2
Ũc
i

= (mU
0 )

2 − 1√
5
β′24
210(m

N
0 )2 ,

m2
Ẽc

i

= (mU
0 )

2 ,

m2
D̃c

i

= (mU
0 )

2 − 1√
5
β′24
210

2

3
(mN

0 )2 ,

m2
L̃i

= (mU
0 )

2 +
1√
5
β′24
210

3

2
(mN

0 )2 . (5.28)

Third, we consider that the (75,0) component Higgs field Φ75
210

in the 210 represen-

tation acquires a VEV as follows

〈Φ75

210〉 =
v

3
diag( 0, 0, 0, 0, 0,−1, · · · ,−1︸ ︷︷ ︸

6

, 1, 1, 1, 3, 0) , (5.29)

which is normalized to c = 2. From this, we obtain the following scalar masses in the

Georgi-Glashow SU(5)× U(1)′ and the flipped SU(5) × U(1)X models:

• The Georgi-Glashow SU(5)× U(1)′ Model

m2
Q̃i

= (mU
0 )

2 − 1

3
β′75
210(m

N
0 )2 ,

m2
Ũc
i

= (mU
0 )

2 +
1

3
β′75
210(m

N
0 )2 ,

m2
Ẽc

i

= (mU
0 )

2 + β′75
210(m

N
0 )2 ,

m2
D̃c

i

= (mU
0 )

2 ,

m2
L̃i

= (mU
0 )

2 . (5.30)

– 15 –



• The Flipped SU(5) × U(1)X Model

m2
Q̃i

= (mU
0 )

2 − 1

3
β′75
210(m

N
0 )2 ,

m2
Ũc
i

= (mU
0 )

2 ,

m2
Ẽc

i

= (mU
0 )

2 ,

m2
D̃c

i

= (mU
0 )

2 +
1

3
β′75
210(m

N
0 )2 ,

m2
L̃i

= (mU
0 )

2 . (5.31)

6. The Yukawa Coupling Terms and Trilinear Soft Terms in the SO(10)

Model

There are several kinds of the renormalizable Yukawa coupling terms for the SM fermions

in the SO(10) model. For example, we can use 120 or 126 Higgs fields to obtain reasonable

SM fermion masses and mixings. In this paper we choose the simplest Higgs field H10 in

the SO(10) fundamental representation. To obtain the non-renormalizable contributions

to the Yukawa coupling terms and trilinear soft terms, we need to know the decompositions

of the tensor product 16⊗ 16⊗ 10 [41]

16⊗ 16 = 10⊕ 120⊕ 126 , (6.1)

16⊗ 16⊗ 10 = (1⊕ 45⊕ 54)⊕ (45⊕ 210⊕ 945)⊕ (210 ⊕ 1050) . (6.2)

Because the 945 and 1050 representations do not have SU(5)×U(1) or SU(4)C×SU(2)L×
SU(2)R singlets [41], we only consider the Higgs fields in the 45, 54 and 210 representa-

tions.

6.1 The Pati-Salam Model

The SO(10) gauge symmetry can be broken down to the Pati-Salam SU(4)C × SU(2)L ×
SU(2)R gauge symmetry by giving VEVs to the Higgs fields in the 54 and 210 represen-

tations.

For the Higgs field Φ54 in the 54 representation, we can write the VEV in terms of a

10× 10 matrix

〈Φ54〉 =
v

2
√
15

diag( 2, · · · , 2︸ ︷︷ ︸
6

,−3, · · · ,−3︸ ︷︷ ︸
4

) , (6.3)

which is normalized to c = 1.

To calculate the additional contributions to the Yukawa coupling terms and trilinear

soft terms, we consider the following superpotential

W ⊃ 1

M∗
hi(16i ⊗ 16i)

m
10(Φ54)mn10

n + α′ T

M2
∗

yi(16i ⊗ 16i)
m
10(Φ54)mn10

n . (6.4)
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After Φ54 acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ −hi
3v√
15M∗

[QiU
c
i Hu + LiN

c
i Hu +QiD

c
iHd + LiE

c
iHd] . (6.5)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ −yi
3FT v√
15M2

∗

[
Q̃iŨ

c
i Hu + L̃iÑ

c
i Hu + Q̃iD̃

c
iHd + L̃iẼ

c
iHd

]
. (6.6)

For the Higgs field Φ210 in the 210 representation, we can write the VEV in terms of

a 16× 16 matrix

〈Φ210〉 =
v

2
√
2
diag( 1, · · · , 1︸ ︷︷ ︸

8

,−1, · · · ,−1︸ ︷︷ ︸
8

) , (6.7)

which is normalized to c = 2. We consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k + h′i(16i ⊗ 16i)
mnlpq
126

(Φ210)mnlp10q

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k

+y′i(16i ⊗ 16i)
mnlpq
126

(Φ210)mnlp10q

]
. (6.8)

We can show that the above superpotential will not contribute to the SM fermion Yukawa

coupling terms and trilinear soft terms.

6.2 The SU(3)C × SU(2)L × SU(2)R × U(1)B−L Model

The SO(10) gauge symmetry can also be broken down to SU(3)C × SU(2)L × SU(2)R ×
U(1)B−L by giving VEVs to the (15, 1, 1) components of the Higgs fields in the 45 and

210 representations under SU(4)C × SU(2)L × SU(2)R.

For the Higgs field Φ45 in the 45 representation, we can write the VEV in terms of a

10 × 10 matrix as follows

〈Φ45〉 =
v

2
√
6
diag( 2, · · · , 2︸ ︷︷ ︸

3

,−2, · · · ,−2︸ ︷︷ ︸
3

, 0, · · · , 0︸ ︷︷ ︸
4

) , (6.9)

which is normalized as c = 1.

To calculate the additional contributions to the Yukawa coupling terms and trilinear

soft terms, we consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

m
10(Φ45)mn10

n + h′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

m
10(Φ45)mn10

n + y′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]
. (6.10)

We can show that the above superpotential will not contribute to the SM fermion Yukawa

coupling terms and trilinear soft terms.
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For the Higgs field Φ210 in the 210 representation, we can write the VEV in terms of

a 16× 16 matrix as follows

〈Φ210〉 =
v

2
√
6
diag( 1, 1, 1,−3︸ ︷︷ ︸

4

) , (6.11)

which is normalized as c = 2. We consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k + h′i(16i ⊗ 16i)
mnlpq
126

(Φ210)mnlp10q

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k

+y′i(16i ⊗ 16i)
mnlpq
126

(Φ210)mnlp10q

]
. (6.12)

After Φ210 acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ h′i
v√
6M∗

[QiU
c
i Hu − 3LiN

c
i Hu +QiD

c
iHd − 3LiE

c
iHd] . (6.13)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ y′i
FT v√
6M2

∗

[
Q̃iŨ

c
i Hu − 3L̃iÑ

c
i Hu + Q̃iD̃

c
iHd − 3L̃iẼ

c
iHd

]
. (6.14)

6.3 The Georgi-Glashow SU(5)× U(1)′ Model

The SO(10) gauge symmetry can be broken down to the Georgi-Glashow SU(5) × U(1)′

gauge symmetry by giving VEVs to the Higgs fields in the 45 and 210 representations.

For the Higgs field Φ45 in the 45 representation, we can write the VEV as a 10× 10

matrix:

〈Φ45〉 =
v√
10

diag( 1, · · · , 1︸ ︷︷ ︸
5

,−1, · · · ,−1︸ ︷︷ ︸
5

) , (6.15)

where the normalization is c = 1. Using the conventions in [42] we obtain the non-zero

components

(Φ45)12 = (Φ45)34 = (Φ45)56 = (Φ45)78 = (Φ45)90 =
v√
10

. (6.16)

To calculate the additional contributions to the Yukawa coupling terms and trilinear soft

terms, we consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

m
10(Φ45)mn10

n + h′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

m
10(Φ45)mn10

n + y′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]
. (6.17)

Note that 120 is anti-symmetric representation, the h′i and y′i terms will not contribute

to the SM fermion Yukawa coupling terms and trilinear soft terms. After Φ210 acquires a

VEV, we obtain the additional contributions to the Yukawa coupling terms

W ⊃ hi
2v√
10M∗

[QiU
c
i Hu + LiN

c
i Hu −QiD

c
iHd − LiE

c
iHd] . (6.18)
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The extra supersymmetry breaking trilinear soft terms are

−L ⊃ yi
2FT v√
10M2

∗

[
Q̃iŨ

c
i Hu + L̃iÑ

c
i Hu − Q̃iD̃

c
iHd − L̃iẼ

c
iHd

]
. (6.19)

For the Higgs field Φ210 in the 210 representation, we can write the VEV in the form

of a 16× 16 matrix as follows

〈Φ210〉 =
v

2
√
5
diag( 1, · · · , 1︸ ︷︷ ︸

5

,−1, · · · ,−1︸ ︷︷ ︸
10

, 5) , (6.20)

where the normalization is c = 2. This VEV can be written in components as follows

(Φ210)1234 = (Φ210)1256 = (Φ210)1278 = (Φ210)1290 = (Φ210)3456 = (Φ210)3478

= (Φ210)3490 = (Φ210)5678 = (Φ210)5690 = (Φ210)7890 = − v

2
√
5
. (6.21)

We consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k + h′i(16i ⊗ 16i)
mnlkp
126

(Φ210)mnlk10p

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

mnl
120(Φ210)mnlk10

k

+y′i(16i ⊗ 16i)
mnlkp
126

(Φ210)mnlk10p

]
. (6.22)

After Φ45 acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ h′i
v√
5M∗

[3LiN
c
i Hu −QiU

c
i Hu] . (6.23)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ y′i
FT v√
5M2

∗

[
3L̃iÑ

c
i Hu − Q̃iŨ

c
i Hu

]
. (6.24)

6.4 The Flipped SU(5)× U(1)X Model

The discussion for the flipped SU(5) × U(1)X model is similar to those for the Georgi-

Glashow SU(5)× U(1)′ model except that we make the following transformations

Qi ↔ Qi , U c
i ↔ Dc

i , Li ↔ Li , N c
i ↔ Ec

i , Hd ↔ Hu . (6.25)

Therefore, for the Higgs field in the 45 representation, we obtain the additional con-

tributions to the SM fermion Yukawa coupling terms and trilinear soft terms

W ⊃ hi
2v√
10M∗

[QiD
c
iHd + LiE

c
iHd −QiU

c
i Hu − LiN

c
i Hu] , (6.26)

−L ⊃ yi
2FT v√
10M2

∗

[
Q̃iD̃

c
iHd + L̃iẼ

c
iHd − Q̃iŨ

c
i Hu − L̃iÑ

c
i Hu

]
. (6.27)

For the Higgs field in the 210 representation, we have

W ⊃ h′i
v√
5M∗

[3LiE
c
iHd −QiD

c
iHd] , (6.28)

−L ⊃ y′i
FT v√
5M2

∗

[
3L̃iẼ

c
iHd − Q̃iD̃

c
iHd

]
. (6.29)
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6.5 The SU(3)C × SU(2)L × U(1)1 × U(1)2 Model

The SO(10) gauge symmetry can be broken down to the SU(3)C ×SU(2)L×U(1)1×U(1)2
gauge symmetry by giving VEVs to the (24,0) component of the Higgs fields in the 45, 54

and 210 representations under SU(5)×U(1), or to the (75,0) component of the Higgs field

in the 210 representation. In this subsection, we only study the Yukawa coupling terms and

trilinear soft terms in the Georgi-Glashow SU(5) × U(1)′ model, i .e. the gauge symmetry

is SU(3)C ×SU(2)L ×U(1)Y ×U(1)′. The Yukawa coupling terms and trilinear soft terms

in the flipped SU(5) × U(1)X model can be obtained from those in the Georgi-Glashow

SU(5) × U(1)′ model by making the transformation in Eq. (6.25).

First, for the Higgs field Φ45 in the 45 representation, we can write the VEV in the

form of a 10× 10 matrix as follows

〈Φ45〉 = v

√
3

5
diag(

1

3
,
1

3
,
1

3
,−1

2
,−1

2
,−1

3
,−1

3
,−1

3
,
1

2
,
1

2
) , (6.30)

which is normalized to c = 1. It can also be written in components as follows

3(Φ45)12 = 3(Φ45)34 = 3(Φ45)56 = −2(Φ45)78 = −2(Φ45)90 = v

√
3

5
. (6.31)

To calculate the additional contributions to the Yukawa coupling terms and trilinear soft

terms, we consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

m
10(Φ45)mn10

n + h′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

m
10(Φ45)mn10

n + y′i(16i ⊗ 16i)
mnl
120(Φ45)mn10l

]
. (6.32)

After Φ45 acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ hi
v

2M∗

√
3

5
[QiU

c
i Hu + LiN

c
i Hu −QiD

c
iHd − LiE

c
iHd] . (6.33)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ yi
FT v

2M2
∗

√
3

5

[
Q̃iŨ

c
i Hu + L̃iÑ

c
i Hu − Q̃iD̃

c
iHd − L̃iẼ

c
iHd

]
. (6.34)

The new contributions to the low-energy Yukawa coupling terms and trilinear soft terms

are the same as the SU(5)× U(1)′ models.

Second, for the Higgs field Φ54 in the 54 representation, we can write the VEV in the

form of a 10× 10 matrix as follows

〈Φ54〉 = v

√
3

5
diag(

1

3
,
1

3
,
1

3
,−1

2
,−1

2
,
1

3
,
1

3
,
1

3
,−1

2
,−1

2
) , (6.35)

which is normalized to c = 1. We consider the following superpotential

W ⊃ 1

M∗
hi(16i ⊗ 16i)

m
10(Φ54)mn10

n + α′ T

M2
∗

yi(16i ⊗ 16i)
m
10(Φ54)mn10

n . (6.36)
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After Φ54 acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ −hi
v

2M∗

√
3

5
[QiU

c
i Hu + LiN

c
i Hu +QiD

c
iHd + LiE

c
iHd] . (6.37)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ −yi
FT v

2M2
∗

√
3

5

[
Q̃iŨ

c
i Hu + L̃iÑ

c
i Hu + Q̃iD̃

c
iHd + L̃iẼ

c
iHd

]
. (6.38)

Third, we consider that the (24,0) component of the Higgs field Φ24
210

in the 210

representation obtains a VEV. We can write its VEV in the 16× 16 matrix as follows

〈Φ24

210〉 =
v√
5
diag(−1,−1,−1,

3

2
,
3

2
,
1

6
, · · · , 1

6︸ ︷︷ ︸
6

,−2

3
,−2

3
,−2

3
, 1, 0) , (6.39)

which is normalized to c = 2. In components we have

6(Φ24

210)1278 = 6(Φ24

210)3478 = 6(Φ24

210)5678 = 6(Φ24

210)1290

= 6(Φ24

210)3490 = 6(Φ24

210)5690 = −3

2
(Φ24

210)1234

= = −3

2
(Φ24

210)1256 = −3

2
(Φ24

210)3456 = (Φ24

210)7890 =
v√
5
. (6.40)

We consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

mnl
120(Φ

24

210)mnlk10
k + h′i(16i ⊗ 16i)

mnlpq
126

(Φ24

210)mnlp10q

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

mnl
120(Φ

24

210)mnlk10
k

+y′i(16i ⊗ 16i)
mnlpq
126

(Φ24

210)mnlp10q

]
. (6.41)

After Φ24
210

acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ h′i
v

M∗

1

6
√
5
[−3QiU

c
i Hu + 9LiN

c
i Hu − 5QiD

c
iHd + 15LiE

c
iHd] . (6.42)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ y′i
FT v

M2
∗

1

6
√
5

[
−3Q̃iŨ

c
i Hu + 9L̃iÑ

c
i Hu − 5Q̃iD̃

c
iHd + 15L̃iẼ

c
iHd

]
. (6.43)

Finally, we consider that the (75,0) component of the Higgs field Φ75
210

in the 210

representation obtains a VEV. We can write its VEV in the 16× 16 matrix as follows

〈Φ75

210〉 =
v

3
diag( 0, 0, 0, 0, 0,−1, · · · ,−1︸ ︷︷ ︸

6

, 1, 1, 1, 3, 0) , (6.44)
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which is normalized as c = 2. In components we have

(Φ75

210)1278 = (Φ75

210)3478 = (Φ75

210)5678 = (Φ75

210)1290

= (Φ75

210)3490 = (Φ75

210)5690 = −(Φ75

210)1234

= = −(Φ75

210)1256 = −(Φ75

210)3456 = −1

3
(Φ75

210)7890 = −v

3
. (6.45)

We consider the following superpotential

W ⊃ 1

M∗

[
hi(16i ⊗ 16i)

mnl
120(Φ

75

210)mnlk10
k + h′i(16i ⊗ 16i)

mnlpq
126

(Φ75

210)mnlp10q

]

+α′ T

M2
∗

[
yi(16i ⊗ 16i)

mnl
120(Φ

75

210)mnlk10
k

+y′i(16i ⊗ 16i)
mnlpq
126

(Φ75

210)mnlp10q

]
. (6.46)

After Φ75
210

acquires a VEV, we obtain the additional contributions to the Yukawa coupling

terms

W ⊃ h′i
v

3M∗

[−QiD
c
iHd + 3LiE

c
iHd] . (6.47)

The extra supersymmetry breaking trilinear soft terms are

−L ⊃ y′i
FT v

3M2
∗

[
−Q̃iD̃

c
iHd + 3L̃iẼ

c
iHd

]
. (6.48)

7. Scalar and Gaugino Mass Relations

In order to study the scalar and gaugino mass relations that are invariant under one-

loop renormalization group running, we need to know the renormalization group equations

(RGEs) of the supersymmetry breaking scalar masses and gaugino masses. For simplicity,

we only consider the one-loop RGE running since the two-loop RGE running effects are

small [35]. In particular, for the first two generations, we can neglect the contributions

from the Yukawa coupling terms and trilinear soft terms, and then the RGEs for the scalar

masses are [43]

16π2
dm2

Q̃j

dt
= −32

3
g23M

2
3 − 6g22M

2
2 − 2

15
g21M

2
1 +

1

5
g21S , (7.1)

16π2
dm2

Ũc
j

dt
= −32

3
g23M

2
3 − 32

15
g21M

2
1 − 4

5
g21S , (7.2)

16π2
dm2

D̃c
j

dt
= −32

3
g23M

2
3 − 8

15
g21M

2
1 +

2

5
g21S , (7.3)

16π2
dm2

L̃j

dt
= −6g22M

2
2 − 6

5
g21M

2
1 − 3

5
g21S , (7.4)

16π2
dm2

Ẽc
j

dt
= −24

5
g21M

2
1 +

6

5
g21S , (7.5)
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where j = 1, 2, and t = lnµ and µ is the renormalization scale. Also, S is given by

S = Tr[Yφi
m2(φi)] = m2

Hu
−m2

Hd
+ Tr[M2

Q̃i
−M2

L̃i
− 2M2

Ũc
i

+M2
D̃c

i

+M2
Ẽc

i

] . (7.6)

The one-loop RGEs for gauge couplings gi and gaugino masses Mi are

d

dt
gi =

1

16π2
big

3
i ,

d

dt
Mi =

1

8π2
big

2
iMi , (7.7)

where g1 ≡
√
5gY /

√
3, and b1, b2 and b3 are one-loop beta functions for U(1)Y , SU(2)L,

and SU(3)C , respectively. For the supersymmetric SM, we have

b3 = −3 , b2 = 1 , b1 =
33

5
. (7.8)

Therefore, we obtain

d

dt

[
MSQj

YQj

]
=

d

dt

[
MSUj

YUc
j

]
=

d

dt

[
MSDj

YDc
j

]

=
d

dt

[
MSLj

YLj

]
=

d

dt

[
MSEj

YEc
j

]
, (7.9)

where

MSQj = 4m2
Q̃j

+
32

3b3
M2

3 +
6

b2
M2

2 +
2

15b1
M2

1 , (7.10)

MSUj = 4m2
Ũc
j

+
32

3b3
M2

3 +
32

15b1
M2

1 , (7.11)

MSDj = 4m2
D̃c

j

+
32

3b3
M2

3 +
8

15b1
M2

1 , (7.12)

MSLj = 4m2
L̃j

+
6

b2
M2

2 +
6

5b1
M2

1 , (7.13)

MSEj = 4m2
Ẽc

j

+
24

5b1
M2

1 . (7.14)

In addition, we obtain the most general scalar and gaugino mass relations that are valid

from the GUT scale to the electroweak scale under one-loop RGE running for the first two

families

γQj

MSQj

YQj

+ γUc
j

MSUj

YUc
j

+ γDc
j

MSDj

YDc
j

+ γLj

MSLj

YLj

+ γEc
j

MSEj

YEc
j

= Co , (7.15)

where Co denotes the invariant constant under one-loop RGE running, and γQj
, γUc

j
, γDc

j
,

γLj
, and γEc

j
are real or complex numbers that satisfy

γQj
+ γUc

j
+ γDc

j
+ γLj

+ γEc
j

= 0 . (7.16)

In this paper, we shall study the following scalar and gaugino mass relations

CAB
o = 3m2

D̃c
j

+ 2m2
L̃j

− 4m2
Q̃j

−m2
Ũc
j

−
[
16

3b3
M2

3 +
3

b2
M2

2 − 1

3b1
M2

1

]
, (7.17)
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CAC
o = 3m2

D̃c
j

+ 2m2
L̃j

+m2
Ẽc

j

− 6m2
Q̃j

−
[
8

b3
M2

3 +
6

b2
M2

2 − 2

b1
M2

1

]
, (7.18)

CAD
o = 3m2

D̃c
j

+ 2m2
L̃j

− 3m2
Ũc
j

− 2m2
Ẽc

j

+

[
3

b2
M2

2 − 3

b1
M2

1

]
, (7.19)

CBC
o = m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

−
[

8

3b3
M2

3 +
3

b2
M2

2 − 5

3b1
M2

1

]
, (7.20)

CX
o = m2

Q̃j
+ 3m2

L̃j
+m2

Ẽc
j

− 2m2
Ũc
j

− 3m2
D̃c

j

−
[
32

3b3
M2

3 − 6

b2
M2

2 − 2

3b1
M2

1

]
. (7.21)

In short, we can obtain the scalar and gaugino mass relations that are valid from the GUT

scale to the electroweak scale at one loop. Such relations will be useful to distinguish

between the mSUGRA and GmSUGRA scenarios.

The scalar and gaugino mass relations can be simplified by the scalar and gaugino

mass relations at the GUT scale. Because the high-dimensional operators can contribute

to gauge kinetic functions after GUT symmetry breaking, the SM gauge couplings may not

be unified at the GUT scale. Thus, we will have two contributions to the gaugino masses

at the GUT scale: the universal gaugino masses as in the mSUGRA, and the non-universal

gaugino masses due to the high-dimensional operators. In particular, for the scenarios

studied in Refs. [17, 18, 19, 20, 21, 22, 23] where the universal gaugino masses are assumed

to be zero, i.e., Mi/αi = aiM
′
1/2, we obtain the gaugino mass relation at one loop [36]

M3

a3α3
=

M2

a2α2
=

M1

a1α1
. (7.22)

We can calculate the scalar and gaugino mass relations in the mSUGRA and GmSUGRA

scenarios, and compare them in different cases.

7.1 The SU(5) Model

In the following, we consider the RGE running for the scalar masses of the first two families

in the SU(5) model with the Higgs fields in the 24 and 75 representations.

• The SU(5) Model with a 24 Dimensional Higgs Field

Let us consider the scalar and gaugino mass relations CAB
o , CAC

o , CAD
o , and CBC

o

in the mSUGRA and GmSUGRA scenarios for the first two generations. In the

mSUGRA scenario with universal gaugino masses and scalar masses, we obtain the

CAB
o , CAC

o , CAD
o , and CBC

o as follows

(CAB
o )U = −116

99

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.23)

(CAC
o )U = −100

33

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.24)

(CAD
o )U =

28

11

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.25)

(CBC
o )U = −184

99

(
M2

1 (µ)

g41(µ)

)
g41(MU ) . (7.26)

– 24 –



In the GmSUGRA scenario, we consider the scenario in Refs. [17, 18, 19, 20, 21, 22,

23]. At the GUT scale we have

M3

2
=

M2

−3
=

M1

−1
. (7.27)

Thus, with Eq. (4.11) for the non-universal scalar mass relations at the GUT scale

in the GmSUGRA scenario, we obtain the scalar and gaugino mass relations

(CAB
o )NU = −1964

99

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.28)

(CAC
o )NU = −1420

33

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.29)

(CAD
o )NU =

292

11

(
M2

1 (µ)

g41(µ)

)
g41(MU ) , (7.30)

(CBC
o )NU = −2296

99

(
M2

1 (µ)

g41(µ)

)
g41(MU ) . (7.31)

Thus, with precise enough measurements, we may distinguish the mSUGRA and

GmSUGRA scenarios. In particular, we can consider the ratios of these one-loop RGE

invariant constants and then distinguish the mSUGRA and GmSUGRA scenarios, for

example, (CAC
o )U/(CAB

o )U = 2.586, while (CAC
o )NU/(CAB

o )NU = 2.169. Similarly, we

can discuss the other scalar and gaugino mass relations for the first two generations

in mSUGRA and GmSUGRA.

• The SU(5) Model with a 75 Dimensional Higgs Field

In the mSUGRA scenario with universal gaugino and scalar masses, we obtain the

one-loop RGE invariant constant CX
o at the GUT scale

(CX
o )U =

956

99

(
M2

3 (µ)

g43(µ)

)
g43(MU ) . (7.32)

In the GmSUGRA scenario with non-universal gaugino and scalar masses, we consider

the non-universal gaugino mass ratios in Refs. [17, 18, 19, 20, 21, 22, 23]

M3

1
=

M2

3
=

M1

−5
. (7.33)

With the non-universal scalar masses in Eq. (4.13), we obtain

(CX
o )NU =

5948

99

(
M2

3 (µ)

g43(µ)

)
g43(MU ) . (7.34)

Assuming that there are no threshold corrections from the electroweak scale to the

GUT scale, we can calculate the gauge couplings at the GUT scale and check these

scalar and gaugino mass relations if we know the low energy sparticle spectrum.
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7.2 The Pati-Salam Model from SO(10)

We consider the following SO(10) gauge symmetry breaking chain

SO(10) → SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L × SU(2)R × U(1)B−L

→ SU(3)C × SU(2)L × U(1)Y . (7.35)

Other symmetry breaking chains can be discussed similarly.

Let us explain our convention. We denote the gauge couplings for the SU(2)L, SU(2)R,

U(1)B−L, and SU(4)C gauge symmetries as g2L, g2R, g̃B−L (or traditional gB−L), and g4,

respectively. We denote the gaugino masses for the SU(2)L, SU(2)R, U(1)B−L, and SU(4)C
gauge symmetries as M2L, M2R, MB−L and M4, respectively. We denote the one-loop beta

functions for the SU(2)L, SU(2)R, U(1)B−L, and SU(4)C gauge symmetries as b2L, b2R,

b̃B−L and b4, respectively. In addition, we denote the universal supersymmetry breaking

scale as MS , the SU(2)R × U(1)B−L gauge symmetry breaking scale as MLR, and the

SU(4)C gauge symmetry breaking scale as MPS. Also, we denote the U(1)B−L charge for

the particle φi as Y
B−L
φi

.

The generator U(1)B−L in SU(4)C is

g̃B−LTB−L = gB−Ldiag

(
1

6
,
1

6
,
1

6
,−1

2

)
. (7.36)

So we can obtain the normalization of gB−L into SU(4)C

gB−L =

√
3

2
g̃B−L . (7.37)

Neglecting the Yukawa coupling terms and trilinear soft terms, we obtain the RGEs

for the scalar masses of the first two generations in the Pati-Salam model

16π2
dm2

F̃L
j

dt
= 4π

d

dt

[
−15

b4
M2

4 − 6

b2L
M2

2L

]
, (7.38)

16π2
dm2

F̃Rc
j

dt
= 4π

d

dt

[
−15

b4
M2

4 − 6

b2R
M2

2R

]
, (7.39)

which gives

d

dt

[
4m2

F̃L
j

+
15

b4
M2

4 +
6

b2L
M2

2L

]
= 0 , (7.40)

d

dt

[
4m2

F̃Rc
j

+
15

b4
M2

4 +
6

b2R
M2

2R

]
= 0 . (7.41)

The RGEs of the scalar masses for the first two generations in the SU(3)C × SU(2)L ×
SU(2)R × U(1)B−L model are

16π2
dm2

Q̃j

dt
= −32

3
g23M

2
3 − 6g22LM

2
2L − 1

3
g̃2B−LM

2
B−L +

1

2
g̃2B−LS

′ , (7.42)
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16π2
dm2

Ũc
j ,D̃

c
j

dt
= −32

3
g23M

2
3 − 6g22RM

2
2R − 1

3
g̃2B−LM

2
B−L − 1

2
g̃2B−LS

′ , (7.43)

16π2
dm2

L̃j

dt
= −6g22LM

2
2L − 3g̃B−LM

2
B−L − 3

2
g̃2B−LS

′ , (7.44)

16π2
dm2

Ẽc
j

dt
= −6g22RM

2
2R − 3g̃B−LM

2
B−L +

3

2
g̃2B−LS

′ , (7.45)

where

S′ = Tr[Y B−L
φi

m2(φi)] . (7.46)

We consider the following linear combination of the squared scalar masses

16π2 d

dt

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)

= 4π2 d

dt

[
32

3b3
M2

3 +
12

b2L
M2

2L − 20

3b1
M2

1

]
for MS < µ < MLR

= 4π2 d

dt

[
32

3b3
M2

3 +
12

b2L
M2

2L − 12

b2R
M2

2R − 8

3b̃B−L

M2
B−L

]

for MLR < µ < MPS

= 4π2 d

dt

[
12

b2L
M2

2L − 12

b2R
M2

2R

]
for MPS < µ < MU . (7.47)

From this, we obtain the scalar and gaugino mass relations which are exact from the GUT

scale to the supersymmetry breaking scale at one loop

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2L
M2

2L +
20

3b1
M2

1 = C1
o , (7.48)

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2L
M2

2L +
12

b2R
M2

2R

+
8

3b̃B−L

M2
B−L = C2

o , (7.49)

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 12

b2L
M2

2L +
12

b2R
M2

2R = C3
o . (7.50)

The differences between the constants C1
o and C2

o and between the constants C2
o and C3

o

are the threshold contributions from the extra particles due to gauge symmetry breaking.

Thus, the three constants can be determined by matching the threshold contributions at

the symmetry breaking scales. The difference between C2
o and C3

o is

C2
o − C3

o = −
(

32

3b3
− 8

3b̃B−L

)
M2

3 (µ)

g23(µ)
g23(MPS) , (7.51)

which can be determined at the scale MPS. At this SU(3)C × U(1)B−L unification scale,

we have

M3

g23
=

MB−L

g̃2B−L

=
M4

g24
. (7.52)
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For mSUGRA with universal gaugino and scalar masses, we have

M3

g23
=

MB−L

g̃2B−L

=
M2L

g22L
=

M2R

g22R
=

M4

g24
. (7.53)

Thus, we can get the scalar and gaugino mass relations in supersymmetric Standard Models

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2L
M2

2 +
20

3b1
M2

1

=

(
8

3b̃B−L

− 32

3b3

)
M2

3 (µ)

g43(µ)
g43(MPS) +

20

3b1

M2
1 (µ)

g41(µ)
g41(MLR)

−
(

12

b2R
g42R(MLR) +

8

3b̃B−L

g4B−L(MLR)

)
M2

3 (µ)

g43(µ)
. (7.54)

If we know the low energy sparticle spectrum at the LHC and ILC and g21(MLR) from the

RGE running, we can get the coefficients

c =

(
8

3b̃B−L

− 32

b3

)
g43(MPS)−

(
12

b2R
g42R(MLR) +

8

3b̃B−L

g4B−L(MLR)

)
, (7.55)

by fitting the experimental data.

For GmSUGRA with non-universal gaugino and scalar masses, we consider the Higgs

field in the 210 representation whose singlet component (1,1,1) acquires a VEV. To give

mass to the gluino, we require that the universal gaugino mass be non-zero. From Eq. (5.5),

we obtain

m2
Ẽc

j

+m2
Ũc
j

− 2m2
Q̃j

= −
√
2β′

210

v|FT |2
M3

∗

. (7.56)

Thus, the constant combination in the supersymmetric Standard Model is

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2L
M2

2L +
20

3b1
M2

1

= −
√
2β′

210

v|FT |2
M3

∗

+

(
8

3b̃B−L

− 32

3b3

)
M2

3 (µ)

g43(µ)
g43(MPS) +

20

3b1

M2
1 (µ)

g41(µ)
g41(MLR)

−
(

12

b2R
g42R(MLR)

M2
2R(µ)

g42R(µ)
+

8

3b̃B−L

g4B−L(MLR)
M2

3 (µ)

g43(µ)

)
. (7.57)

Therefore, the scalar and gaugino mass relations in mSUGRA are different from those in

GmSUGRA. Moreover, we can break the SO(10) gauge symmetry down to the SU(3)C ×
SU(2)L×SU(2)R×U(1)B−L gauge symmetry by giving VEVs to the (15,1,1) components

of the Higgs field in the 45 and 210 representations under SU(4)C × SU(2)L × SU(2)R.

Because the discussions are similar, we will not present them here.
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7.3 The Flipped SU(5)× U(1)X Model from SO(10)

In the flipped SU(5)×U(1)X model with SO(10) origin, we have two-step gauge coupling

unification: the SU(3)C × SU(2)L gauge symmetry is unified at the scale M23, and then

the SU(5)×U(1)X gauge symmetry is unified at the scale MU . At the M23 scale, we have

the following gauge coupling relation

1

g12
=

24

25

1

g21X
+

1

25

1

g25
, (7.58)

where g1X and g5 are the gauge couplings for the U(1)X and SU(5) gauge symmetries,

respectively.

Our conventions in this section are as follows. We denote the gaugino masses for the

U(1)X and SU(5) gauge symmetries as M1X and M5, respectively. We denote the one-

loop beta functions for the U(1)X and SU(5) gauge symmetries as b1X and b5, respectively.

Also, we denote the U(1)X charge for the particle φi as Y
X
φi
. With this notation, the RGEs

for the scalar masses of the first two generations from the scale M23 to MU are

16π2
dm2

F̃j

dt
= −144

5
g25M

2
5 − 1

5
g21XM2

1X +
1

20
g21X S̃ , (7.59)

16π2

dm2
˜fj

dt
= −96

5
g25M

2
5 − 9

5
g21XM2

1X − 3

20
g21X S̃ , (7.60)

16π2
dm2

˜lj

dt
= −5g21XM2

1X +
1

4
g21X S̃ , (7.61)

where S̃ is

S̃ = Tr[Y X
φi
m2(φi)] . (7.62)

We consider the following scalar and gaugino mass relation

16π2 d

dt

(
m2

Ẽc
j

+m2
Ũc
j

− 2m2
Q̃j

)
(7.63)

= 4π2 d

dt

[
32

3b3
M2

3 +
12

b2
M2

2 − 20

3b1
M2

1

]
for MS < µ < M23 (7.64)

= 4π2 d

dt

[
192

5b5
M2

5 − 32

5b1X
M2

1X

]
for M23 < µ < MU . (7.65)

In the mSUGRA with universal gaugino and scalar masses, we have at the scale MU

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
−
(
192

5b5
M2

5 − 32

5b1X
M2

1X

)
(7.66)

= −
(
192

5b5
− 32

5b1X

)
M2

3 (µ)

g43(µ)
g43(MU ) . (7.67)

So we get the scalar and gaugino mass relation in supersymmetric Standard Models

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2
M2

2 +
20

3b1
M2

1
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= −
(

32

3b3
+

12

b2
− 192

5b5
+

32

5b1X

)
M2

3 (µ)

g43(µ)
g43(M23) +

20

3b1

M2
1 (µ)

g41(µ)
g41(M23)

−
(
192

5b5
− 32

5b1X

)
M2

3 (µ)

g43(µ)
g43(MU ) . (7.68)

In GmSUGRA with non-universal gaugino and scalar masses, we consider the Higgs

field in the 210 representation whose singlet component (1,0) acquires a VEV. For non-

universal gaugino masses, we consider the mass ratios in Refs. [17, 18, 19, 20, 21, 22, 23]

M5

−1
=

M1X

4
. (7.69)

With Eq. (5.21), we obtain at the scale MU

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
−
(
192

5b5
M2

5 − 32

5b1X
M2

1X

)
(7.70)

=
16√
5
β′
210

v|FT |2
M3

−
(
192

5b5
− 512

5b1X

)
M2

3 (µ)

g43(µ)
g43(MU ) . (7.71)

Thus, we obtain the scalar and gaugino mass relation in supersymmetric Standard Models

4

(
m2

Ũc
j

+m2
Ẽc

j

− 2m2
Q̃j

)
− 32

3b3
M2

3 − 12

b2
M2

2 +
20

3b1
M2

1

=
16√
5
β′
210

v|FT |2
M3

−
(
192

5b5
− 512

5b1X

)
M2

3 (µ)

g43(µ)
g43(MU )

−
(

32

3b3
+

12

b2
− 192

5b5
+

512

5b1X

)
M2

3 (µ)

g43(µ)
g43(M23) +

20

3b1

M2
1 (µ)

g41(µ)
g41(M23) . (7.72)

Therefore, the dependence on M2
3 (µ)/g

4
3(µ) in mSUGRA is indeed different from that in

GmSUGRA. Other gauge symmetry breaking chains can be discussed similarly.

8. Conclusions

In the GmSUGRA scenario with the high-dimensional operators containing the GUT Higgs

fields, we systematically studied the supersymmetry breaking scalar masses, SM fermion

Yukawa coupling terms, and trilinear soft terms in the SU(5) model with GUT Higgs fields

in the 24 and 75 representations, and in the SO(10) model where the gauge symmetry is

broken down to the Pati-Salam SU(4)C × SU(2)L × SU(2)R gauge symmetry, SU(3)C ×
SU(2)L×SU(2)R×U(1)B−L gauge symmetry, George-Glashow SU(5)×U(1)′ gauge sym-

metry, flipped SU(5) × U(1)X gauge symmetry, and SU(3)C × SU(2)L × U(1)1 × U(1)2
gauge symmetry. In addition, we considered the scalar and gaugino mass relations, which

can be preserved from the GUT scale to the electroweak scale under one-loop RGE run-

ning, in the SU(5) model, the Pati-Salam model and the flipped SU(5) × U(1)X model

arising from the SO(10) model. With such relations, we may distinguish the mSUGRA

and GmSUGRA scenarios if we can measure the supersymmetric particle spectrum at the

LHC and ILC. Thus, it provides us with another important window of opportunity at the

Planck scale.

Note added: after our paper was submitted, we noticed the paper [44], which also

studies the RGE invariants in the supersymmetric Standard Models.
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