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Abstract: This paper focuses on supergravity duals of BPS states in N = 4 super Yang-

Mills. In order to describe these duals, we begin with a sequence of breathing mode

reductions of IIB supergravity: first on S3, then S3 × S1, and finally on S3 × S1 × CP 1.

We then follow with a complete supersymmetry analysis, yielding 1/8, 1/4 and 1/2 BPS

configurations, respectively (where in the last step we take the Hopf fibration of S3). The

1/8 BPS geometries, which have an S3 isometry and are time-fibered over a six-dimensional

base, are determined by solving a non-linear equation for the Kähler metric on the base.

Similarly, the 1/4 BPS configurations have an S3 × S1 isometry and a four-dimensional

base, whose Kähler metric obeys another non-linear, Monge-Ampère type equation.

Despite the non-linearity of the problem, we develop a universal bubbling AdS description

of these geometries by focusing on the boundary conditions which ensure their regularity.

In the 1/8 BPS case, we find that the S3 cycle shrinks to zero size on a five-dimensional

locus inside the six-dimensional base. Enforcing regularity of the full solution requires

that the interior of a smooth, generally disconnected five-dimensional surface be removed

from the base. The AdS5 × S5 ground state corresponds to excising the interior of an S5,

while the 1/8 BPS excitations correspond to deformations (including topology change) of

the S5 and/or the excision of additional droplets from the base. In the case of 1/4 BPS

configurations, by enforcing regularity conditions, we identify three-dimensional surfaces

inside the four-dimensional base which separate the regions where the S3 shrinks to zero

size from those where the S1 shrinks.

We discuss a large class of examples to show the emergence of a universal bubbling AdS

picture for all 1/2, 1/4 and 1/8 BPS geometries.

Keywords: AdS-CFT Correspondence, M-Theory, Superstring Vacua, Gauge-gravity

correspondence.
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1. Introduction

In its most straightforward incarnation, AdS/CFT duality is a relation between N = 4

super-Yang Mills theory and IIB string theory on AdS5 × S5. This system has been

extensively studied, and recently there has been much progress in the study of various

sectors of this correspondence. In general, some of the best understood aspects of this

duality naturally arise through the use of supersymmetry. A particularly striking example

of this was realized in a remarkable paper by Lin, Lunin and Maldacena (LLM) [1], which

constructed explicit regular 1/2 BPS states in IIB supergravity and demonstrated their

relation to the free fermion picture of the corresponding 1/2 BPS sector of the N = 4

super-Yang Mills theory [2, 3].

Based on the correspondence with chiral primaries satisfying ∆ = J , LLM examined

all regular 1/2 BPS states with SO(4) × SO(4) isometry in IIB supergravity with only

the metric and self-dual five-form turned on. Because of this S3 × S3 isometry, explicit

construction of such 1/2 BPS ‘bubbling AdS’ configurations may be simplified by working

in an effective four-dimensional theory of the form

e−1L4 = e3H

[
R +

15

2
∂H2 − 3

2
∂G2 − 1

4
e−3(H+G)F 2

µν + 12e−H cosh G

]
. (1.1)

The four-dimensional metric, two scalars H and G, and the 2-form field strength Fµν are

related to their ten-dimensional counterparts according to [1, 4, 5]

ds2
10 = gµνdxµdxν + eH(eGdΩ2

3 + e−GdΩ̃2
3),

F(5) = (1 + ∗10)F(2) ∧ Ω3. (1.2)

Since the supersymmetric bubbling configurations preserve a time-like Killing vector ∂/∂t,

the construction further simplifies into a three dimensional one. The result is that all

such 1/2 BPS states are describable in terms of a single harmonic function Z = 1
2 tanh G

satisfying the linear equation [1]
(

∂2
1 + ∂2

2 + y∂y
1

y
∂y

)
Z(x1, x2, y) = 0. (1.3)

– 2 –
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The resulting ten-dimensional metric is then of the form

ds2
10 = −h−2(dt + ω)2 + h2(dx2

1 + dx2
2 + dy2) + y(eGdΩ2

3 + e−GdΩ̃2
3) (1.4)

where h−2 = 2y cosh G.

The bubbling picture arises through the observation that regularity of the metric (1.4)

demands that only one of the three-spheres collapses (in an appropriate manner) as y → 0.

The necessary boundary conditions are then simply

Z(x1, x2, y = 0) = ±1

2
. (1.5)

These boundary conditions allow the y = 0 boundary plane to be identified with the fermion

droplet phase-space plane [1], and the complete form of Z may then be obtained through

an appropriate Green’s function solution to (1.3). In fact, a key feature of this 1/2 BPS

bubbling AdS5 × S5 construction is precisely the linearity of the governing equation (1.3).

This linearity is natural from the free fermion picture on the gauge theory side of the

duality, and at first sight may be thought of as a consequence of the BPS (i.e. no force)

condition. However, this is not necessarily the case, as for example 1/2 BPS configurations

in 11-dimensional supergravity with SO(3)× SO(6) isometry are described by a Toda-type

equation, which is non-linear [1]. Nevertheless, even in this case, the bubbling picture

survives in terms of boundary conditions corresponding to either the S2 or S5 shrinking

on the y = 0 boundary plane.

Given the elegant bubbling description for 1/2 BPS configurations in both the gauge

theory and string theory side of the AdS/CFT correspondence, it is natural to extend the

above LLM investigation to both 1/4 BPS [6 – 10] and 1/8 BPS [11 – 13] configurations.

While there are several possibilities for obtaining reduced supersymmetry, we are primarily

interested in backgrounds with multiple commuting R-charges turned on. For N = 4 super-

Yang Mills, as well as the dual description of IIB on AdS5 × S5, the relevant supergroup

is PSU(2, 2|4), which admits the bosonic subgroup SO(2, 4) × SO(6). On the gravity

side, states may be labeled by (∆, S1, S2) for energy and spin in AdS5 and (J1, J2, J3) for

angular momentum on S5. Focusing on the chiral primaries, we take s-wave states in AdS5

satisfying ∆ = J1 + J2 + J3. Given that the BPS condition takes the form

∆ ≥ ±gS1 ± gS2 ± J1 ± J2 ± J3 (1.6)

(with an even number of minus signs, and with g the inverse radius of AdS5), we see that

the generic state with three non-vanishing R-charges preserves 1/8 of the supersymmetries.

When J3 = 0, the eigenvalues of the Bogomol’nyi matrix pair up, and we are left with a

1/4 BPS state. Finally, when J2 = J3 = 0, the system reduces to the familiar 1/2 BPS

case.

When gravitational backreaction is taken into account, the turning on of J1, J2 and

J3 in succession breaks the isometries of the five-sphere from SO(6) to SO(4), SO(2) and

finally the identity. Combining this with the unbroken SO(4) isometry of s-wave states in

– 3 –
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AdS5, the natural family of backgrounds we are interested in takes the form

supersymmetries chiral primary isometry

1/2 BPS ∆ = J1 S3 × S3

1/4 BPS ∆ = J1 + J2 S3 × S1

1/8 BPS ∆ = J1 + J2 + J3 S3

(1.7)

In this paper, our main interest is the supergravity description of such backgrounds. The

1/2 BPS case was of course the subject of LLM [1] and related investigations. The other

two cases have generally received less attention. However, the invariant tensor analysis

of [14 – 17] has recently been applied towards the construction of supergravity backgrounds

corresponding to these two cases. Backgrounds with S3 × S1 isometry were initially ex-

amined in [18], and subsequent gauging of the U(1) isometry was considered in [19]. In

addition, solutions preserving an S3 isometry (corresponding to the 1/8 BPS case) may be

obtained by double analytic continuation of the AdS3 solutions investigated in [20], as it

was later done in [21]. (Note that 1/4 BPS and 1/8 BPS solutions of a different nature

were also investigated in [4] and [22], respectively.)

In both cases of S3 isometry [20] and S3 × S1 isometry [18, 19], the invariant tensor

analysis and resulting description of the backgrounds are essentially complete. However,

unlike for LLM geometries, in these cases the supersymmetry analysis is not particularly

constructive. For example, it was found in [20] that 1/8 BPS configurations with an S3

isometry may be written using a metric of the form

ds2
10 = −e2α(dt + ω)2 + e−2αhijdxidxj + e2αdΩ2

3, (1.8)

where hij is a Kähler metric of complex dimension three. In the end, the invariant tensor

analysis does not provide an actual procedure for obtaining this metric short of solving a

non-linear equation on its curvature [20]

¤6R = −RijR
ij +

1

2
R2. (1.9)

Similarly, the 1/4 BPS analysis of [18, 19] leads to a non-linear equation of Monge-Ampère

type related to the properties of the Kähler metric on a base of complex dimension two.

Although the presence of such non-linear equations complicates the analysis of 1/4 and

1/8 BPS states, it is nevertheless possible to develop a robust picture of bubbling AdS even

without complete knowledge of the supergravity solution. The main point here is that the

supergravity backgrounds are determined not only by the imposition of local conditions

such as (1.9), but also by the boundary conditions. In particular, turning back to the LLM

case, we recall that the droplet picture really originates from the LLM boundary condi-

tions (1.5) imposed to ensure regularity of the geometry and not directly from the harmonic

function equation (1.3). The LLM boundary conditions Z(x1, x2, 0) = ±1/2 ensure that

the metric remains smooth wherever either of the S3 factors collapses to zero size. Likewise,

1/4 BPS configurations preserving an S3 × S1 isometry have potential singularities in the

metric whenever either the S3 or S1 collapses. Avoiding such singularities then demands

similar boundary conditions: Z(xi, y = 0) = ±1/2, where this time i = 1, . . . , 4 and

ds2
10 = −h−2(dt + ω)2 + y−1e−Ghijdxidxj + h2dy2 + y(eGdΩ2

3 + e−G(dψ + A)2). (1.10)

– 4 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

Note that h−2 = 2y cosh G is unchanged from the LLM case. What is different, however, is

that now the metric hij (as well as the function G) appears rather complicated, and does

not admit an easy construction.

The bubbling AdS description of 1/8 BPS configurations is particularly interesting in

that it constitutes the most general case of turning on all three commuting R-charges.

Since the 1/8 BPS metric, given in (1.8), does not involve a y coordinate, there is no 1/8

BPS equivalent of an LLM y = 0 phase-space plane. Nevertheless, the Kähler base can be

given in terms of six real coordinates, xi, i = 1, . . . , 6. As highlighted in [23], it is natural to

associate these coordinates with the six real adjoint scalars of the dual N = 4 super-Yang

Mills theory. In this picture, the eigenvalue distribution from the matrix description maps

into configurations in R
6 corresponding to the degeneration locus of the S3 in AdS5. From

the gravity side, this indicates that the six-dimensional base has regions removed, with

the boundary of such regions dual to the eigenvalue distribution. The AdS5 × S5 ‘ground

state’ corresponds to removing a ball from the center of R
6, and the addition of dual giant

gravitons corresponds to removing other disconnected regions as well. Although the six-

dimensional metric becomes singular as one approaches the boundary, it must behave in

such a manner that, when combined with the shrinking S3, the full ten-dimensional metric

remains regular.

It is the aim of this paper to elucidate the bubbling picture of both 1/4 and 1/8 BPS

configurations that we have sketched above, and to justify the connection between boundary

conditions and droplets in an effective phase-space description of these geometries. Before

we do so, however, we present a unified treatment of the invariant tensor analysis for 1/8,

1/4 and 1/2 BPS configurations. In particular, based on symmetry conditions, we may start

with IIB supergravity with the self-dual five-form active, and perform a breathing mode

reduction to seven dimensions on S3. This seven-dimensional system is the natural place to

start from when discussing 1/8 BPS configurations. A further reduction on S1 brings the

system down to six dimensions (and allows a description of 1/4 BPS geometries). Because

of the abelian U(1) isometry, we allow a gauge field to be turned on in this reduction [19].

Finally, we may reduce this system to four dimensions on CP 1. A generic configuration

with S3 × S1 × CP 1 isometry will preserve 1/4 of the supersymmetries [22]. However, by

making use of the Hopf fibration of S3 as U(1) bundled over CP 1, we may recover the

round S3 × S3 background of LLM, thus giving rise to the 1/2 BPS system.

Following the chain of breathing mode reductions and the supersymmetry analysis, we

discuss how the bubbling AdS picture arises in the 1/4 and 1/8 BPS sectors. Essentially,

this is based on an investigation of the boundary conditions needed to maintain a smooth

geometry wherever any of the various spheres degenerate to zero size. Because of the diffi-

culty in providing a constructive method for obtaining the full supergravity backgrounds,

we will mainly support our arguments with a set of examples, which we treat separately

for the 1/8 BPS and 1/4 BPS cases. Readers who wish to skip the details of the breathing

mode reductions and invariant tensor analyses are invited to proceed directly to section 4,

where the bubbling AdS description is taken up.

The main technical results of this paper are presented in the following two sections. In

section 2, we perform a chain of breathing mode reductions, starting with S3, then adding

– 5 –
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S1 and finally adding CP 1. This allows us to write down effective seven, six and four-

dimensional theories governing 1/8, 1/4 and 1/2 BPS configurations, respectively. The

supersymmetry analysis is then taken up in section 3; this is intended to give a unified

treatment of [20, 18, 19], and [1], for the 1/8, 1/4 and 1/2 BPS cases, respectively, and

show how the ansatz of these three cases are embedded into each other. The remaining

parts of this paper are devoted to the development of the bubbling AdS description of

1/4 and 1/8 BPS states. In section 4, we present a brief summary of the supergravity

backgrounds, and then show how the LLM boundary conditions generalize to provide a

uniform droplet picture which survives the reduction from 1/2 BPS down to 1/4 and 1/8

BPS configurations. We then turn to examples of 1/8 BPS geometries in section 5 followed

by 1/4 BPS geometries in section 6. In section 7 we return to the local conditions on

the Kähler metric for 1/8 BPS configurations and investigate in particular the interplay

between boundary conditions and regularity of the metric. Finally, we conclude in section 8

with a summary of the 1/8 BPS droplet picture and how it also encompasses 1/4 and 1/2

BPS states as special cases. Various technical details are relegated to the appendices.

2. Breathing mode compactifications of IIB supergravity

The bosonic fields of IIB supergravity are given by the NSNS fields gMN , BMN and φ as

well as the RR field strengths F(1), F(3) and F+
(5), while the fermionic fields are the (complex

Weyl) gravitino ΨM and dilatino λ, both transforming with definite chirality in D = 10.

Because we are interested in describing giant graviton configurations, which are essentially

built out of D3-branes, we will only concern ourselves with the self-dual five-form F+
(5) in

addition to the metric. In this sector, the IIB theory admits a particularly simple bosonic

truncation with equations of motion

RMN =
1

4 · 4!(F
2)MN , F(5) = ∗F(5), dF(5) = 0. (2.1)

The corresponding Lagrangian is given by

e−1L10 = R − 1

4 · 5!F
2
(5), (2.2)

where self-duality of F(5) is to be imposed only after deriving the equations of motion.

In the absence of the IIB dilaton/axion and three-form field strengths, the dilatino

transformation becomes trivial. Thus the only relevant supersymmetry transformation is

that of the gravitino, which becomes

δΨM =

[
∇M +

i

16 · 5!FNPQRSΓNPQRSΓM

]
ǫ. (2.3)

Note that there is a delicate balance between self-duality of F(5) and the chirality of the

spinor parameter ǫ. With the natural definition of self-duality FM1···M5 = 1
5!ǫM1···M5

N1···N5

FN1···N5 , the spinor ǫ satisfies Γ11ǫ = ǫ where Γ11 = 1
10!ǫM1·M10Γ

M1···M10 .

The bubbling configurations that we are interested in always preserve an S3 in AdS5.

However, the isometries of the S5 are naturally broken depending on the amount of angular

– 6 –
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momentum (or R-charge) (J1, J2, J3) turned on. As in [1], for 1/2 BPS configurations

we take J2 = J3 = 0, and the resulting internal isometry is that of S3. For 1/4 BPS

configurations [18] we have J3 = 0 and hence S1 isometry. The generic 1/8 BPS case has

all three angular-momenta non-vanishing, resulting in the loss of all manifest isometry of

the original S5.

It is then clear that, to capture this family of solutions, we ought to consider breathing

mode reductions of (2.2) and (2.3) on S3, S3 × S1 and S3 × S3, respectively, for 1/8, 1/4

and 1/2 BPS geometries. It is natural to proceed with this reduction in steps, at each stage

adding additional symmetries to the system. Adding a U(1) isometry to the S3 reduction

is straightforward, and a natural way to obtain S3 × S3 from S3 × U(1) is to use the

Hopf fibration of the second S3 as a U(1) bundle over CP 1. This chain of reductions also

provides a natural way of understanding the embedding of 1/2 BPS configurations into the

1/4 BPS system, and then finally into the 1/8 BPS case.

We note that Kaluza-Klein sphere reductions have been extensively studied in the

literature. However, the main feature of the present set of reductions is the inclusion of

breathing (and possibly squashing) modes [24]. Although these bosonic reductions are

consistent (as any truncation to the singlet sector would be [25]), the resulting theory is

however not supersymmetric, as the breathing and squashing modes are in general part of

the massive Kaluza-Klein tower. Nevertheless, it is still instructive to reduce the original

IIB Killing spinor equation (2.3) along with the bosonic sector fields. In this way, any solu-

tion to the reduced Killing spinor equations may then be lifted to yield a supersymmetric

background of the original IIB theory. Breathing mode reductions of the supersymmetry

variations were previously investigated in [26], and in the LLM context in [4, 5].

2.1 S3 reduction to D = 7

The first stage of the reduction, corresponding to the generic 1/8 BPS case, is to highlight

the S3 isometry inside AdS5, which we always retain. We thus take a natural reduction

ansatz of the form

ds2
10 = ds2

7 + e2αdΩ2
3,

10F(5) = F(2) ∧ ω3 + F̃(5). (2.4)

note that self-duality of 10F(5) imposes the conditions

F(2) = −e3α ∗7 F̃(5), F̃(5) = e−3α ∗7 F(2). (2.5)

The ten-dimensional Einstein equation in (2.1) reduces to yield the seven-dimensional

Einstein equation

Rµν−
1

2
gµνR = 3(∂µα∂να−2gµν(∂α)2+∇µ∇να−gµν¤α)+

1

2
e−6α

[
F 2

µν−
1

4
gµνF 2

]
+3e−2α

(2.6)

(in the ‘string frame’), as well as the scalar equation of motion

∂µ(3α)∂µα + ¤α = −1

8
e−6αF 2 + 2e−2α. (2.7)

– 7 –
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In addition, the F(5) Bianchi identity and equation of motion in (2.1) reduce to their

seven-dimensional counterparts

dF(2) = 0, d(e−3α ∗7 F(2)) = 0. (2.8)

The above equations of motion may be obtained from an effective seven-dimensional La-

grangian

e−1L7 = e3α

[
R + 6(∂α)2 − 1

4
e−6αF 2

(2) + 6e−2α

]
. (2.9)

The run-away potential term arises because of the curvature of the reduction S3, and will

remain unbalanced until the second S3 is introduced.

2.1.1 Supersymmetry variations

In order to study supersymmetric configurations, we must also examine the reduction of

the gravitino variation (2.3). In order to do so, we choose a Dirac decomposition of the

form

Γµ = γµ ⊗ 1 ⊗ σ1, Γa = 1 ⊗ σa ⊗ σ2. (2.10)

Defining the 10-dimensional chirality matrix as Γ11 = 1
10!ǫM1···M10Γ

M1···M10 , we find

Γ11 = −1 ⊗ 1 ⊗ σ3 where we have taken the seven-dimensional Dirac matrices to sat-

isfy 1
7!ǫµ1···µ7γ

µ1···µ7 = 1. In this case, the IIB chirality condition Γ11ǫ = ǫ translates into

the condition that ǫ has negative σ3 eigenvalue. This allows us to decompose the complex

IIB spinor as 10ǫ = ǫ ⊗ χ ⊗
[
0
1

]
where χ is a two-component spinor on S3 satisfying the

Killing spinor equation [
∇̂a +

iη

2
σ̂a

]
χ = 0, (2.11)

with η = ±1.

Using the above decomposition, the 10-dimensional gravitino variation (2.3) decom-

poses into a seven-dimensional ‘gravitino’ variation

δψµ =

[
∇µ − i

16
e−3αFνλγνλγµ

]
ǫ, (2.12)

as well as a ‘dilatino’ variation

δλ =

[
γµ∂µα +

i

8
e−3αFµνγµν − ηe−α

]
ǫ (2.13)

which arises from the components of (2.3) living on the S3. We emphasize here that these

are not necessarily the transformations of any actual seven-dimensional supersymmetric

model, as we only claim the bosonic sector to form a consistent truncation of the original

IIB theory. Nevertheless, based on their structure, it is useful to think of these as would-

be gravitino and dilatino variations. So long as these two ‘Killing spinor equations’ are

satisfied, we are guaranteed that the lifted solution is a supersymmetric configuration of

the original IIB theory.
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2.2 Additional reduction on U(1) to D = 6

In order to describe 1/4 BPS geometries with S3 × S1 isometry, we may further reduce

the seven-dimensional system (2.9) to D = 6 along a U(1) direction. This follows by a

traditional Kaluza-Klein circle reduction, where we take

ds2
7 = ds2

6 + e2β(dψ + A)2,
7F(2) = F(2) + dχ ∧ (dψ + A). (2.14)

This is the most general ansatz consistent with U(1) isometry, and includes an axionic

scalar χ which in the original IIB picture corresponds to five-form flux on S3 × S1 along

with a non-compact dimension. For a pure bubbling picture with S3 inside AdS5 and S1

independently inside S5, we would want to set χ = 0. However doing so at this stage would

lead to an inconsistent truncation as demonstrated below. We thus prefer to work with

the most general U(1) reduction including χ at this stage.

The resulting six-dimensional Einstein equation is

Rµν−
1

2
gµνR =

1

4
∂µ(3α+β)∂ν (3α+β)− 5

8
gµν(∂(3α+β))2+∇µ∇ν(3α+β)−gµν¤(3α+β)

+
3

4

[
∂µ(α−β)∂ν(α−β)− 1

2
gµν(∂(α−β))2

]
+

1

2
e−6α−2β

[
∂µχ∂νχ− 1

2
gµν(∂χ)2

]

+
1

2
e−6α

[
F 2

µν−
1

4
gµνF 2

]
+

1

2
e2β

[
F2

µν−
1

4
gµνF2

]
+3gµνe−2α (2.15)

and the scalar equations are

∂µ(3α + β)∂µα + ¤α = −1

4
e−6α−2β(∂χ)2 − 1

8
e−6αF 2 + 2e−2α,

∂µ(3α + β)∂µβ + ¤β = −1

4
e−6α−2β(∂χ)2 +

1

8
e−6αF 2 +

1

4
e2βF2,

∂µ(−3α − β)∂µχ + ¤χ =
1

2
e2βFµνFµν . (2.16)

In addition, the field strengths satisfy the Bianchi identities and equations of motion

dF = 0, d(e3α+3β ∗6 F) = −e−3α+β ∗6 F ∧ dχ,

dF = dχ ∧ F , d(e−3α+β ∗6 F ) = 0. (2.17)

The above equations of motion may be derived from an effective six-dimensional Lagrangian

e−1L6 = e3α+β

[
R+

3

4
(∂(3α+β))2−3

4
(∂(α−β))2−1

2
e−6α−2β(∂χ)2−1

4
e−6αF 2

(2)−
1

4
e2βF2

(2)+6e−2α

]
,

(2.18)

where F(2) = dA(1) + χF(2).

Note that if we were to take χ = 0, its equation of motion (2.16) would demand the

constraint FµνFµν = 0. This is consistent with the independence of the S3 in AdS5 and

S1 in S5 sectors, where F(2) lives in AdS5 while F(2) lives in S5.
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To make a connection with the 1/4 BPS geometries investigated in [18, 19], we may

let

α =
1

2
(H + G), β =

1

2
(H − G). (2.19)

This results in a metric reduction of the form

ds2
10 = ds2

6 + eH [eGdΩ2
3 + e−G(dψ + A)2], (2.20)

as well as an effective Lagrangian

e−1L6 = e2H+G

[
R +

3

4
(∂(2H + G))2 − 3

4
(∂G)2 − 1

4
e−3(H+G)F 2 − 1

4
eH−GF2 + 6e−(H+G)

]
.

(2.21)

Note that we have set χ = 0. So, in addition to (2.21), we must also impose the constraint

FµνFµν = 0 indicated above.

2.2.1 Supersymmetry variations

From the seven-dimensional point of view, the supersymmetry conditions are encoded in

the gravitino and dilatino variations (2.12) and (2.13). Given the bosonic reduction (2.14),

the supersymmetry variations are easily reduced along the U(1) fiber to give rise to six-

dimensional variations. In particular, we may use the straightforward relation between six

and seven-dimensional Dirac matrices

γµ →
{

γµ µ = 0, . . . , 5,

γ7 ≡ 1
6!ǫµ1···µ6γ

µ1···µ6 µ = 6,
(2.22)

and no additional Dirac decomposition is needed.

With this convention, the two-form field strength reduces according to

7Fµνγµν = Fµνγµν + 2e−βγµγ7∂µχ, (2.23)

while the spin connections reduce according to

7ωαγ = ωαγ − 1

2
eβFαγe7, 7ωα7 = −eµ α∂µβe7 − 1

2
eβFαγeγ . (2.24)

In order to properly reduce the covariant derivative 7∇µ appearing in the gravitino varia-

tion (2.12), we must keep in mind that Killing spinors ǫ may in fact be charged along the

U(1) fiber [4]. We thus take

∂ψ ↔ − i

2
n, (2.25)

where n ∈ Z, and the sign is chosen for later convenience. This integral choice of n

corresponds to the period of ψ being 2π.

Putting the above together, we find the six-dimensional ‘gravitino’ variation

δψµ =

[
∇µ +

in

2
Aµ − i

16
e−3αFνλγνλγµ +

1

4
eβFµνγνγ7 +

i

8
e−3α−βγν∂νχγµγ7

]
ǫ, (2.26)
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as well as the two ‘dilatino’ variations

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν +

i

4
e−3α−βγµ∂µχγ7 − ηe−α

]
ǫ, (2.27)

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν − 1

4
eβFµνγµνγ7 +

i

4
e−3α−βγµ∂µχγ7 − ine−βγ7

]
ǫ.

Here λα is identical to λ given in (2.13), while λβ = 2γ7ψ7. These variations are for the

general reduction, including the axionic scalar χ. If desired, we may truncate to χ = 0 and

furthermore make the substitution (2.19) to arrive at the transformations [18, 19]

δψµ =

[
∇µ +

in

2
Aµ +

1

4
e

1
2
(H−G)Fµνγνγ7 − i

16
e−

3
2
(H+G)Fνλγνλγµ

]
ǫ, (2.28)

δλH =

[
γµ∂µH − 1

4
e

1
2
(H−G)Fµνγµνγ7 − ηe−

1
2
(H+G) − ine−

1
2
(H−G)γ7

]
ǫ,

δλG =

[
γµ∂µG+

1

4
e

1
2
(H−G)Fµνγµνγ7+

i

4
e−

3
2
(H+G)Fµνγµν−ηe−

1
2
(H+G)+ine−

1
2
(H−G)γ7

]
ǫ,

corresponding to the truncated Lagrangian of (2.21).

2.3 The final reduction on CP 1 to D = 4

Noting that S3 can be written as U(1) bundled over CP 1, we may obtain an S3×S3 solution

by reducing the effective six-dimensional system to four dimensions on CP 1. This procedure

will actually allow for more general geometries, where the second S3 is squashed along the

U(1) fiber. The generic (squashed S3) × (round S3) system has SU(2) × U(1) × SO(4)

isometry, and was investigated in [22].

The CP 1 reduction proceeds by taking

ds2
6 = ds2

4 + e2γds2(CP 1),
6F(2) = F(2) + 2mχJ,
6F(2) = F(2) + 2mJ, (2.29)

where J(2) is the Kähler form on CP 1. We take the standard Einstein metric on CP 1 with

R̂ab = λĝab.

Although the reduction is straightforward, the intermediate steps are somewhat te-

dious. We end up with a four-dimensional Einstein equation of the form

Rµν−
1

2
gµνR =

1

6
∂µ(3α+β+2γ)∂ν(3α+β+2γ)− 7

12
gµν(∂(3α+β+2γ))2

+∇µ∇ν(3α+β+2γ)−gµν¤(3α+β+2γ)

+
1

6

[
∂µ(3α−β − 2γ)∂ν(3α − β − 2γ)

]
− 1

2
gµν(∂(3α−β−2γ))2]

+
2

3

[
∂µ(β−γ)∂ν(β−γ)− 1

2
gµν(∂(β−γ))2

]
+

1

2
e−6α−2β

[
∂µχ∂νχ−

1

2
gµν(∂χ)2

]

+
1

2
e−6α

[
F 2

µν−
1

4
gµνF 2

]
+

1

2
e2β

[
F2

µν−
1

4
gµνF2

]

+gµν [3e−2α+λe−2γ−m2e2β−4γ(1+e−6α−2βχ2)]. (2.30)
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The three scalars α, β and γ are non-canonically normalized, while the axionic scalar χ is

canonical. The four scalar equations of motion are

∂µ(3α + β + 2γ)∂µα + ¤α = −1

4
e−6α−2β(∂χ)2 − 1

8
e−6αF 2 + 2e−2α − m2e−6α−4γχ2,

∂µ(3α + β + 2γ)∂µβ + ¤β = −1

4
e−6α−2β(∂χ)2 +

1

8
e−6αF 2 +

1

4
e2βF2 + m2e−6α−4γχ2

+2m2e2β−4γ ,

∂µ(3α + β + 2γ)∂µγ + ¤γ =
1

4
e−6α−2β(∂χ)2 +

1

8
e−6αF 2 + λe−2γ − m2e−6α−4γχ2

−2m2e2β−4γ ,

∂µ(−3α − β + 2γ)∂µχ + ¤χ =
1

2
e2βFµνFµν + 4m2e2β−4γχ, (2.31)

while the field strengths satisfy the Bianchi identities and equations of motion

dF = 0, d(e3α+3β+2γ ∗4 F) = −e−3α+β+2γ ∗4 F ∧ dχ,

dF = dχ ∧ F , d(e−3α+β+2γ ∗4 F ) = 0. (2.32)

The four-dimensional Lagrangian which yields the above equations of motion is then of the

form

e−1L4 = e3α+β+2γ

[
R +

5

6
(∂(3α + β + 2γ))2 − 1

6
(∂(3α − β − 2γ))2 − 2

3
(∂(β − γ))2

−1

2
e−6α−2β(∂χ)2 − 1

4
e−6αF 2

(2) −
1

4
e2βF2

(2) + 6e−2α + 2λe−2γ

−2m2e2β−4γ(1 + e−6α−2βχ2)

]
. (2.33)

Although we have introduced two constant parameters, m [which is related to the

fibration in (2.29)] and λ (which is the curvature of CP 1, R̂ab = λĝab), they may be scaled

away by adjusting the breathing and squashing mode scalars β and γ. In particular, so

long as λ 6= 0 and m 6= 0, we may set m = ±1, λ = 4 by shifting the fields according to

β → β + log(λ/4|m|), γ → γ +
1

2
log(λ/4),

χ → λ

4|m|χ, Aµ → 4|m|
λ

Aµ. (2.34)

Although this transformation rescales the effective Lagrangian by an overall constant, this

has no effect on the classical equations of motion. Ignoring this overall factor, (2.33) takes

on the parameter free form

e−1L4 = e3α+β+2γ

[
R +

5

6
(∂(3α + β + 2γ))2 − 1

6
(∂(3α − β − 2γ))2 − 2

3
(∂(β − γ))2

−1

2
e−6α−2β(∂χ)2 − 1

4
e−6αF 2

(2) −
1

4
e2βF2

(2) + 6e−2α + 8e−2γ

−2e2β−4γ(1 + e−6α−2βχ2)

]
. (2.35)
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The above system allows for a general squashed S3 geometry, and corresponds to the

case studied in [22]. To obtain a round S3 × S3 reduction, we may take

γ = β, χ = 0, F = 0, (2.36)

where consistency of setting the scalars γ and β equal to each other is ensured by the above

choice of |m| = 1 and λ = 4. The resulting truncation becomes

e−1L4 = e3(α+β)

[
R +

15

2
(∂(α + β))2 − 3

2
(∂(α−β))2 − 1

4
e−6αF 2 + 6(e−2α + e−2β)

]
. (2.37)

Defining

α =
1

2
(H + G), β =

1

2
(H − G) (2.38)

finally gives (1.1), which was obtained in [4] by direct S3 × S3 reduction of the LLM

ansatz (1.2).

2.3.1 Supersymmetry variations

Turning to the supersymmetry variations, our aim is to reduce the six-dimensional ‘grav-

itino’ and ‘dilatino’ variations (2.28) on CP 1 to four-dimensions. To do so, we start by

introducing a Dirac decomposition

6γµ = γµ ⊗ 1, 6γa = γ5 ⊗ σa, (2.39)

where a = 1, 2 correspond to the two directions on CP 1. Note that we define γ5 =
i
4!ǫµνρσγµνρσ, so that γ7 = 1

6!ǫµ1···µ6
6γµ1···µ6 = γ5 ⊗ σ3.

From (2.29), and the definition of the Kähler form, we see that the two-form field

strengths reduce according to

6Fµνγµν = Fµνγµν + 4ime−2γχσ3,
6Fµνγµν = Fµνγµν + 4ime−2γσ3. (2.40)

Inserting this into (2.28) gives rise to a straightforward reduction of the ‘dilatino’ variations

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν +

i

4
e−3α−βγµ∂µχγ5σ3 −

1

2
me−3α−2γχσ3 − ηe−α

]
ǫ,

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν − 1

4
eβFµνγµνγ5σ3 +

i

4
e−3α−βγµ∂µχγ5σ3

+
1

2
me−3α−2γχσ3 − i(meβ−2γ + ne−βσ3)γ

5

]
ǫ. (2.41)

In order to reduce the ‘gravitino’ variation, we use the spin connections

6ωαβ = ωαβ , 6ωαb = −eµ α∂µγeb, 6ωab = e−γω̂ab
c ec, (2.42)

where ω̂ab
c is the spin connection on CP 1. This results in the four-dimensional ‘gravitino’

variation

δψµ =

[
∇µ +

in

2
Aµ − i

16
e−3αFνλγνλγµ +

1

4
eβFµνγνγ5σ3 +

i

8
e−3α−βγν∂νχγµγ5σ3

+
1

4
me−3α−2γχγµσ3

]
ǫ, (2.43)
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as well as the variation on CP 1

δψi =

[
∇̂i +

in

2
Ai

]
ǫ +

1

2
eγγ5σ̂i

[
γµ∂µγ − i

8
e−3αFµνγµν − i

4
e−3α−βγµ∂µχγ5σ3

−1

2
me−3α−2γχσ3 + imeβ−2γγ5

]
ǫ. (2.44)

At this stage, there are several ways to proceed. Since we are interested in writing the

squashed S3 as U(1) bundled over CP 1, we assume from now on that both λ and m are

non-vanishing. In this case, the scaling of (2.34) allows us to set λ = 4 and m = η̂, where

η̂ = ±1 is a choice of sign. Two-component Killing spinors ǫ̂ on the squashed sphere can

then be taken to either satisfy

[
∇̂i +

in

2
Ai

]
ǫ̂ = 0, n 6= 0, (2.45)

or
[
∇̂i +

iη̂

2
σ̂i

]
ǫ̂ = 0, n = 0. (2.46)

This second possibility corresponds to ordinary Killing spinors on CP 1. However, the sign

in the Killing spinor equation (2.46) is not arbitrary, but rather is fixed to ensure that

these Killing spinors descend properly from those on the squashed S3. At this point a

note is in order concerning the η̂, which is the sign of m. From (2.29), we my infer that

changing the sign of η̂ corresponds to changing the sign of the gauge bundle on the U(1)

fiber, which in term corresponds to orientation reversal on the squashed S3. In general,

orientation issues may be rather subtle in squashed sphere compactifications, with only

one choice of sign yielding a supersymmetric configuration [27, 28]. It is for this reason

that we have kept η̂ as a parameter. Nevertheless, it is important to keep in mind that η̂

is a parameter specifying the bosonic field configuration, and that changing the sign of η̂

(flipping the orientation) in principle changes the solution. For this reason, η̂ ought to be

thought of as a fixed constant, unlike the Killing spinor sign parameters η and η̃ (defined

below), which may be chosen freely.

For the first case (n 6= 0), the Killing spinors are charged along the U(1) fiber, but are

(gauge) covariantly constant on CP 1. Integrability of (2.45) shows that the U(1) charge is

given by n = ±2, with corresponding projection condition

σ3ǫ̂ = η̃ǫ̂, (2.47)

where η̃ = ±1. The sign in the projection is correlated with the U(1) charge according to

n = −2η̂η̃. Taking these various signs into account, we end up with the ‘gravitino’ and
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‘dilatino’ variations

δψµ =

[
∇µ − iη̂η̃Aµ − i

16
e−3αFνλγνλγµ +

1

4
η̃eβFµνγνγ5 +

i

8
η̃e−3α−βγν∂νχγµγ5

+
1

4
η̂η̃e−3α−2γχγµ

]
ǫ,

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν +

i

4
η̃e−3α−βγµ∂µχγ5 − 1

2
η̂η̃e−3α−2γχ − ηe−α

]
ǫ,

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν − 1

4
η̃eβFµνγµνγ5 +

i

4
η̃e−3α−βγµ∂µχγ5 +

1

2
η̂η̃e−3α−2γχ

+iη̂(2e−β − eβ−2γ)γ5

]
ǫ, (2.48)

δλγ =

[
γµ∂µγ − i

8
e−3αFµνγµν − i

4
η̃e−3α−βγµ∂µχγ5 − 1

2
η̂η̃e−3α−2γχ + iη̂eβ−2γγ5

]
ǫ.

Note that δλγ is obtained from the gravitino variation δψi on CP 1. Because of the pro-

jection (2.47), a complete set of Killing spinors is obtained only after taking into account

both signs of η̃.

For the second case (n = 0), the Killing spinors are uncharged along the U(1) fiber.

In this case, we end up with the variations

δψµ =

[
∇µ−

i

16
e−3αFνλγνλγµ+

1

4
η̃eβFµνγνγ5+

i

8
η̃e−3α−βγν∂νχγµγ5+

1

4
η̂η̃e−3α−2γχγµ

]
ǫ,

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν +

i

4
η̃e−3α−βγµ∂µχγ5 − 1

2
η̂η̃e−3α−2γχ − ηe−α

]
ǫ,

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν − 1

4
η̃eβFµνγ

µνγ5 +
i

4
η̃e−3α−βγµ∂µχγ5 +

1

2
η̂η̃e−3α−2γχ

−iη̂eβ−2γγ5

]
ǫ, (2.49)

δλγ =

[
γµ∂µγ− i

8
e−3αFµνγµν− i

4
η̃e−3α−βγµ∂µχγ5− 1

2
η̂η̃e−3α−2γχ−iη̂(2e−γ−eβ−2γ)γ5

]
ǫ,

where δλγ was obtained by substituting (2.46) into (2.44). Although no σ3 projection

is involved in this case, it is nevertheless still convenient to break up the Killing spinor

expressions into definite σ3 eigenvalues corresponding to (2.47). In addition to the lack of

gauge connection Aµ in the ‘gravitino’ variation, these expressions differ from those in the

first case, (2.49), in the ‘superpotential’ gradient terms in the λβ and λγ variations. Note

that, in both cases, the orientation sign η̂ may be removed by taking χ → η̂χ, Aµ → η̂Aµ

and γ5 → η̂γ5. It is the latter transformation on γ5 that highlights the orientation reversal

nature of this map.

The above supersymmetry variations simplify considerably in the round S3 ×S3 limit,
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given by (2.36). Here, we obtain

δψµ =

[
∇µ − i

16
e−3αFνλγνλγµ

]
ǫ,

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν − ηe−α

]
ǫ,

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν ± iη̂e−βγ5

]
ǫ, (2.50)

where the + sign corresponds to the U(1) charged Killing spinor case, and the − sign to the

uncharged case. These expressions reproduce the supersymmetry variations of the LLM

construction, [1, 4], as they must. Here we see that the sign choice in the last term of the

δλβ variation comes from the two types of Killing spinors on the (un)squashed sphere, and

not from the orientation sign η̂ (which can be absorbed by a redefinition of γ5).

3. Supersymmetry analysis

3.1 1/8 BPS configurations

We begin with the general 1/8 BPS bubbling case, which only an S3 inside AdS5 is pre-

served. In this case, the relevant supersymmetry variations are (2.12) and (2.13). A double

Wick rotated version of this system (i.e. one with AdS3 instead of S3 isometry) was recently

investigated in [20], and the results are directly applicable to the present case.

The analysis of [20] demonstrated that the seven-dimensional metric may be written

as time fibered over a six (real) dimensional Kähler base which satisfies an appropriate

geometric condition. Here we briefly review this construction.

For a Dirac spinor ǫ in seven dimensions, we start by forming a set of Dirac bilinears

f = iǫǫ, Kµ = ǫγµǫ, V µν = ǫγµνǫ, Zµνλ = iǫγµνλǫ. (3.1)

The factors of i are chosen to make these quantities real. In addition to the above, we may

also form a set of (complex) Majorana bilinears

fm = ǫcǫ, Zm
µνλ = ǫcγµνλǫ. (3.2)

Counting the individual tensor components of the above, we find 64 real Dirac bilinear

components and 36 complex Majorana bilinear components, giving rise to 136 = 1
2(16 · 17)

total real components. Since this matches the number of bilinears formed out of a spinor

ǫ with 16 real components, we see that this set of bilinears is complete.

Of course, these tensor quantities are highly constrained by the algebraic identities

(corresponding to Fierz rearrangement). Here we do not aim to be comprehensive, but

simply list some relevant identities. First we have the normalization conditions

K2 = −f2−|fm|2, V 2 = 6f2+6|fm|2, Z2 = −18f2+24|fm|2, |Zm|2 = 48f2+6|fm|2.
(3.3)
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Then there are the orthogonality conditions

KµVµν = 0, KµZm
µνλ = fmVνλ. (3.4)

Finally, there are the identities which are directly useful for determining the structure

fZ + K ∧ V + ℜ(fm ∗Zm) = 0, (3.5)

V ∧ Zm = −2fm ∗ V, (3.6)

V ∧ V = −2 ∗ (K ∧ V ), (3.7)

K ∧ Zm = −i ∗ (fZm − fmZ), (3.8)

Zm ∧ Zm ∗ = 8if ∗ K. (3.9)

Here fm ∗ and Zm ∗ denote the complex conjugates of fm and Zm, respectively.

As shown in [20], backgrounds preserving (at least) 1/8 of the supersymmetries nec-

essarily have SU(3) structure. To see this, we first note that (3.3) constrains the norm

of Kµ to be non-positive. Furthermore, from (A.11), we see that Kµ satisfies the Killing

equation. We may thus choose Kµ as a preferred time like Killing vector Kµ∂µ = ∂/∂t.

(Although the null possibility may be of interest, we do not pursue it here, as we are mainly

interested in bubbling AdS configurations.) In fact, we may deduce a fair bit more about

the structure by noting from (A.14) that the Majorana scalar invariant fm necessarily

vanishes. This gives us the norms of the tensors

K2 = −f2, V 2 = 6f2, Z2 = −18f2, |Zm|2 = 48f2, (3.10)

as well as the conditions that V and Zm are orthogonal to Kµ

iKV = iKZm = 0. (3.11)

Using (3.5), we may also solve for Z

Z = −f−1K ∧ V, (3.12)

demonstrating that Z is not an independent tensor quantity. As a result, the structure

is implicitly defined by the time-like Killing vector Kµ along with a real 2-form V and

complex 3-form Zm. Using (3.6), (3.7) and (3.9), it as easy to see that

V ∧ Zm = 0, V ∧ V ∧ V =
3i

4
fZm ∧ Zm ∗ = −6f2 ∗ K. (3.13)

But this is simply the requirement for SU(3) structure in 6 + 1 dimensions. Thus the

seven-dimensional space splits naturally into time and a six (real) dimensional base with

SU(3) structure.

To proceed with an explicit construction, we may now solve (A.2) to obtain f = eα.

We then make a choice of metric of the form

ds2
7 = −e2α(dt + ω)2 + e−2αhijdxidxj . (3.14)
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The one-form associated with the Killing vector Kµ∂µ = ∂t is then Kµdxµ = −e2α(dt+ω).

Following [20], we define the canonical two-form J and the holomorphic three-form

J = eαV, Ω = e2αe−2iηtZm. (3.15)

Note that Ω is independent of time. The restriction (3.13) onto the six-dimensional base

gives the usual SU(3) structure conditions

J ∧ Ω = 0, J ∧ J ∧ J =
3i

4
Ω ∧ Ω∗ = −6 ∗6 1, (3.16)

while the differential identities (A.6) and (A.17) give the integrability equations

dJ = 0, dΩ = 2iηω ∧ Ω. (3.17)

This ensures that the six-dimensional base has U(3) holonomy. In other words, it is Kähler,

with the Kähler form

J = ihij̄dzi ∧ dz̄j̄ =
1

2
Jijdxi ∧ dxj, (3.18)

and the Ricci form

R = iRij̄dzi ∧ dzj̄ = 2ηdω.

In addition, the differential identities constrain the two-form F and scalar α to satisfy

F = d[e4α(dt + ω)] − 2ηJ, e−4α = −1

8
R, (3.19)

where R is the scalar curvature of hij [20].

Finally, to guarantee that the above is a true solution to the equations of motion, we

may apply the Bianchi identity and equation of motion for F(2). From (3.19) along with

dJ = 0 the Bianchi identity turns out to be trivial, while the F(2) equation of motion gives

¤6e
−4α =

1

8

(
RijR

ij − 1

2
R2

)
, (3.20)

where ¤6 as well as the tensor contraction is with respect to the base metric hij . Substi-

tuting in the expression for e−4α in (3.19) then gives a condition on the curvature

¤6R = −RijR
ij +

1

2
R2. (3.21)

In summary, 1/8 BPS configurations preserving an S3 isometry may be described by a

seven-dimensional metric (3.14) with form field and scalar given by (3.19). The one-form

ω is defined according to R = 2ηdω, where the sign η is related to the orientation of the

Killing spinor on S3. The full solution is determined in terms of a six-real dimensional

Kähler metric hij satisfying the curvature condition (3.21).

From a ten-dimensional point of view, the solution is essentially given by time and

S3 fibered over the six-dimensional base. In order to ensure regularity, we may focus on

regions on the base where the S3 fiber shrinks to zero size. This corresponds to regions
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where eα → 0, which by (3.19) corresponds to R → ∞. Thus the six-dimensional base

generally will be bounded by surfaces of infinite curvature where the S3 degenerates. At

the same time, the e−2α factor in front of the six-dimensional metric ought to be such

that the physical ten-dimensional metric remains regular. Furthermore, the collapsing S3

along with the transverse direction to the degeneration surface must locally yield R
4 to

ensure the absence of conical singularities. Examination of these boundary conditions will

be taken up in sections 4 and 7 below.

3.2 1/4 BPS configurations

Following the above analysis, we now turn to the 1/4 BPS case preserving S3 × S1 isom-

etry. Here there are at least two possible approaches that may be taken. The first is to

realize that, since 1/4 BPS configurations form a subset of all 1/8 BPS solutions, we may

simply take the above 1/8 BPS analysis and demand that the resulting geometry admits

a further U(1) isometry. The second is to directly analyze the effective six-dimensional

supersymmetry variations (2.26) and (2.27). The advantage of this method, which was

recently employed in [18, 19], is that it leads to a natural choice of coordinates with which

to parameterize the solution.

Before turning to the full supersymmetry analysis of [18, 19], we first examine the

possibility of imposing an additional U(1) isometry on the 1/8 BPS solutions described

above. Noting that the generic solution is given in terms of a complex three-dimensional

Kähler base identified by (3.17) and with curvature satisfying (3.21), we may locally choose

an appropriate set of complex coordinates

z1, z2, z3 ≡ reiψ, (3.22)

and impose symmetry under ψ translation (i.e. by demanding that ∂/∂ψ is a Killing vector).

This indicates that the Kähler potential ought to be of the form

K(zi, zi, r
2) i = 1, 2. (3.23)

This Kähler potential leads to a metric on the base of the form

hijdxidxj = hij̄dzidzj̄ + c.c. = 2hij̄dzidzj̄ = 2∂i∂j̄Kdzidzj̄ (3.24)

= 2∂i∂j̄Kdzidzj + 2(r2K ′)′(dr2 + r2dψ2) + 4rdrℜ(∂iK
′dzi) + 4r2dψℑ(∂iK

′dzi),

where a prime denote partial differentiation with respect to r2, and ℜ and ℑ denote real

and imaginary parts, respectively. After completing the square, this may be rewritten as

hijdxidxj = 2

(
∂i∂j̄K − r2

(r2K ′)′
∂iK

′∂j̄K
′

)
dzidzj +

1

2r2(r2K ′)′
d(r2K ′)2

+2r2(r2K ′)′
(

dψ +
1

(r2K ′)′
ℑ(∂iK

′dzi)

)2

. (3.25)

A change of variables y2 = 2r2K ′ brings this to the form

hijdxidxj = 2

(
∂i∂j̄K − 2r2

(y2)′
∂iK

′∂j̄K
′

)
dzidzj +

y2

r2(y2)′
dy2 + r2(y2)′(dψ + A)2,

A =
2

(y2)′
ℑ(∂iK

′dzi) , (3.26)

– 19 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

where (y2)′ = (2r2K ′)′, and r is to be eliminated by inverting the above transformation.

Although this form of the metric is suggestive that the complex three-dimensional base

splits into a two-dimensional piece along with a ‘radial’ coordinate y and fiber direction

ψ, the physical understanding of this solution is somewhat obscure. For this reason, it is

instructive to perform the supersymmetry analysis directly with the actual variations (2.26)

and (2.27). This analysis, which was initiated in [18, 19], starts with the definition of the

(Dirac and Majorana) spinor bilinears

f1 = ǫγ7ǫ, f2 = iǫǫ, Kµ = ǫγµǫ, Lµ = ǫγµγ7ǫ,

V µν = ǫγµνǫ, Y µν = iǫγµνγ7ǫ, Zµνλ = iǫγµνλǫ,

fm = ǫcǫ, Y m
µν = ǫcγµνγ7ǫ, Zm

µνλ = ǫcγµνλǫ. (3.27)

We have highlighted the close relation between six and seven-dimensional Dirac spinors by

using an identical notation with the bilinears defined above in (3.1) and (3.2), except for

the cases where γ7 is involved (and with a rewriting f → f2 consistent with the LLM nota-

tion). The ‘new’ bilinears with γ7 are of course the components of the seven-dimensional

bilinears (3.1) and (3.2) along the circle direction.

Although the six-dimensional Fierz identities may in principle be derived from the

seven-dimensional ones, some of the expressions we are interested in cannot be written in

a seven-dimensional covariant manner. Thus we work directly with the above bilinears in

six dimensions. In this case, we have the normalization conditions

K2 = −L2 = −f2
1 − f2

2 − |fm|2, V 2 = −2f2
1 + 4f2

2 + 4|fm|2,
Y 2 = 4f2

1 − 2f2
2 + 4|fm|2, Z2 = −12f2

1 − 12f2
2 + 12|fm|2,

|Y m|2 = 8f2
1 + 8f2

2 + 2|fm|2, |Zm|2 = −24f2
1 + 24f2

2 . (3.28)

We also have identities related to the projection of the various tensors onto Kµ and Lµ

K · L = 0,

KµVµν = f1Lν , LµVµν = f1Kν ,

KµYµν = f2Lν , LµYµν = f2Kν ,

KµY m
µν = fmLν , LµY m

µν = fmKν ,

KµZµνλ = −f1Yνλ + f2Vνλ, LµZµνλ = ℑ(fmY m ∗
νλ ),

KµZm
µνλ = −f1Y

m
νλ + fmVνλ, LµZm

µνλ = −if2Y
m
νλ + ifmYνλ. (3.29)

Finally, the following Fierz identities are useful for determining the structure

−K ∧ L = f1V + f2Y + ℜ(fmY m ∗),

K ∧ Z = ∗ℑ(fmY m ∗), L ∧ Z = ∗(f2V − f1Y ),

K ∧ Zm = −i ∗ (f2Y
m − fmY ), L ∧ Zm = − ∗ (f1Y

m − fmY ). (3.30)

Since the six-dimensional bilinears parallel those of the seven-dimensional case, it is

not surprising to see from (B.6) that the Majorana scalar invariant fm vanishes in this

case as well. Setting fm = 0, we now obtain

K2 = −L2 = −f2
1 − f2

2 , K · L = 0, (3.31)
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which we note is identical to the LLM case, even though we are working in six dimensions

instead of four. This ensures that Kµ is time-like while Lµ is space-like and orthogonal

to Kµ. This gives rise to a natural decomposition of the six-dimensional space into a

four-dimensional base along with a preferred time-like and a preferred space-like direction.

Furthermore, the above identities allow us to decompose the bilinears into components

along Kµ and Lµ and those orthogonal to them. The result is

V = − f1

f2
1 + f2

2

K ∧ L − f2I
3, Y = − f2

f2
1 + f2

2

K ∧ L + f1I
3, Z = K ∧ I3,

Y m = −
√

f2
1 + f2

2 (I1 − iI2), Zm = − 1√
f2
1 + f2

2

(f1K − if2L) ∧ (I1 − iI2), (3.32)

where the triplet of two-forms Ii are orthogonal to both Kµ and Lµ and satisfy the SU(2)

structure equation

Ii
abI

j
bc = −δacδ

ij − ǫijkIk
ac, (3.33)

as well as the self-duality condition

Ii
ab =

1

2
ǫabcdI

i
cd, (3.34)

on the four-dimensional base. It should be noted, however that since the Majorana bilinears

are charged under the U(1) gauge symmetry carried by Aµ, the two-forms I1±iI2 carry U(1)

charge, while only I3 is neutral. The implication of this is that only I3 is gauge invariant,

and as a result we conclude that the system has U(2) structure in 5+1 dimensions, except

for backgrounds with vanishing Aµ, which instead carry SU(2) structure. In either case, the

structure group is a subgroup of SU(3), which showed up as the structure group pertaining

to the 1/8 BPS solutions found above.

In contrast to the 1/8 BPS analysis given above, an explicit construction of 1/4 BPS

configurations is complicated by the fact that many more field components now need to be

specified. In addition to the six-dimensional metric gµν , we have the three scalars α, β and

χ as well as the field strengths F(2) and F(2). We note, however, that the axionic scalar χ

is related to the IIB five-form flux threading both S3 and S1 in the reduction in the sense

that
10F(5) = dχ ∧ (dψ + A) ∧ ω3 + · · · . (3.35)

While this is certainly allowed by the isometries, any excitation of χ necessarily falls outside

of the ‘bubbling AdS’ interpretation, as non-zero χ corresponds to mixed components of

five-form flux (where S3 is inside AdS5 and S1 is inside S5). We thus specialize the analysis

by taking χ = 0. At the same time, we recall that such a truncation leads to the requirement

FµνFµν = 0, which will be expected to show up as additional constraints on the solution.

Following [18, 19], the supersymmetry analysis begins by using the one-form identities

given in (B.8) through (B.13) to obtain the scalar bilinears f1 and f2 in terms of the fields

α and β and then to solve for the components of the field strengths F(2) and F(2). Noting

from (B.8) that d(e−αf2) = 0, we may immediately write f2 = aeα for some constant

a. However, obtaining an expression for f1 is somewhat more involved. To proceed, we
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make the simplifying assumption that iKF = 0, which was also imposed in [19]. This

assumption that the electric component of F(2) vanishes ensures that the U(1) bundle is

only fibered over the spatial components of the metric. This is consistent with taking

the gauged U(1) to be contained inside the original S5 as opposed to AdS5, so we do not

believe this assumption to be overly restrictive, at least as far as bubbling geometries are

concerned. In any case, we keep in mind that the following supersymmetry analysis only

pertains to the specialization of the most general S3 × S1 system to the case when

χ = 0, iKF = 0. (3.36)

Having imposed iKF = 0, (B.11) may then be solved to yield f1 = beβ for constant b.

As a result, all scalar bilinears are now fully determined

fm = 0, f1 = beβ , f2 = aeα. (3.37)

At this point, it is useful to specialize the form of the six-dimensional metric. Noting

from (B.23) that Kµ is a Killing vector, we take Kµ∂µ = ∂t. Furthermore, (B.9) then gives

L = −ηb deα+β , so that L is a closed one-form. In particular, using (3.37), we may express

y = −ηa−1f1f2 if desired. From (3.31), we may now specialize the choice of coordinates to

take L = dy. As a result, we now make a choice of metric of the form

ds2
6 = −h−2(dt + ω)2 + f−2

2 hijdxidxj + h2dy2, (3.38)

where

h−2 = f2
1 + f2

2 , K = −h−2(dt + ω), L = dy, (3.39)

and we have included a factor of f−2
2 in front of the four-dimensional metric hij for latter

convenience.

Given the above, the remaining one-form differential identities (B.10) through (B.13)

allow us to determine most components of F(2) and F(2). We find

a3F(2) = d(f4
2 ) ∧ (dt + ω) + 4h2f5

2 I3
i

j∂jf1 dxi ∧ dy +
1

2
a3Fijdxi ∧ dxj ,

F(2) =
1

2
Fijdxi ∧ dxj , (3.40)

where

a3I3
ijF

ij = −8f−1
2 ∂yf1, I3

ijF ij = −4b2f−2
1 f−4

2

(a

b
η − n

)
. (3.41)

Note that indices on the four-dimensional base are raised and lowered with the metric hij .

Before completing the determination of the two-form field strengths, we examine the

content of the three-form identity (B.25), which states d(f2V ) = b−1f1f2F ∧ dy. Using the

structure identities (3.32), we may write V = f1(dt + ω) ∧ dy − f2I
3. As a result, (B.25)

leads to the identities

d̃(f2
2 I3) = 0, d̃ω = b−1F + (f1f2)

−1∂y(f
2
2 I3), (3.42)
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where d̃ = dxi∂i acts only on the four-dimensional base. At this stage, it ought to be

clear why we have chosen a prefactor f−2
2 in front of the base metric hij in (3.38). This is

because, by defining

I3 = f−2
2 J, (3.43)

we obtain the canonical two-form J which is closed (d̃J = 0), and which satisfies J ∧ J =

2 ∗4 1, where the volume form is given in terms of hij . This in particular indicates that the

four-dimensional base is Kähler.

Additional information on the form of the solution remains to be extracted from the

∇µVνλ identity, (B.34). Examining ∇yVij and ∇iVjk yield the identities

∇4
i Jjk = 0, ∂yJi

j = 0, (3.44)

confirming that J is covariantly constant with respect to the metric hij . Note, however, that

while Ji
j is independent of y, in general both Jij and hij are highly non-trivial functions

of y. The remaining components of (B.34) serve to complete the determination of the

two-forms

F =
1

a3
d[f4

2 (dt + ω)] +
y2

a
(dω − b−1F) +

2η

a2
J,

F =
1

2
Fijdxi ∧ dxj , F (+)

ij = − b2

a2y2

(a

b
η − n

)
Jij ,

dω =
1

b
F − η

ay

(
∂yJ − Ji

j∂jZdxi ∧ dy
)
. (3.45)

Here, as in [18, 19], we have defined the LLM function

Z =
1

2

f2
2 − f2

1

f2
2 + f2

1

. (3.46)

Note that the anti-self-dual part of F is unconstrained by the differential identities.

Given these field strengths, the second expression in (3.41) is identically satisfied. On

the other hand, compatibility of JijF
ij between the first expression in (3.41) and the form

of F given in (3.45) gives rise to an important condition on the volume of the Kähler base

J ij∂yJij ≡ ∂y log det hij = 4h2

[
2f2

1

f2
∂yf2 +

bf2

f1

(a

b
η − n

)]
. (3.47)

By substituting in

f1f2 = −aηy,
f1

f2
= e−G, (3.48)

the above expression may be brought into the form

1

2
∂y log det hij =

2e−G

eG + e−G
∂yG +

2

y(1 + e2G)

(
2 − b

a
nη

)
− 2

y

(
1 − b

a
nη

)
, (3.49)

originally given in [19]. The factor of 1/2 on the left hand side arises because here we still

take hij as a real metric.
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To ensure a complete solution to the equations of motion, we now apply the Bianchi

identities and equations of motions (2.17), which for χ = 0 take on the simple form

0 = dF = dF = d(f1f
−3
2 ∗6 F ) = d(f3

1 f3
2 ∗6 F). (3.50)

We begin with the Bianchi identities. Since F is incompletely specified, we are left with

the requirement dF = 0, which admits no particular simplification. For dF = 0, however,

we see from (3.45) that it is automatically satisfied, provided F and dω are both closed.

Actually d2ω = 0 is not guaranteed in the above expression. Instead, just as in the LLM

case [1], it gives rise to the second-order condition

iy∂y
1

y
∂yJij + 2J[j

k∇i]∇kZ = 0. (3.51)

Introducing a Kähler potential K with

hij =
1

2
(∇i∇j + Ji

kJj
l∇k∇l)K, (3.52)

we see that the condition (3.51) may be solved by taking

Z(xi, y) = −1

2
y∂y

1

y
∂yK(xi, y). (3.53)

Note that, while an arbitrary harmonic function may be added to Z, this may be absorbed

by making an appropriate Kähler transformation on K.

Turning to the equations of motion, we see that the F equation of motion given in (3.50)

is equivalent to d(y3 ∗6 F) = 0. Through appropriate manipulations, and using the fact

that ∗4F = F (+) −F (−) = 2F (+) −F , we may show that this is equivalent to

FijF ij =
ηb

ay
F ij∂yJij . (3.54)

Using the Bianchi identity dF = 0, and in particular ∂yFij = 0, we obtain

F ij∂yJij = −∂y(F ijJij) = − 8b2

a2y3

(a

b
η − n

)
. (3.55)

As a result, the F equation of motion reduces to

FijF ij = − 4b4

a4y4

(
2
a

b
η
) (a

b
η − n

)
. (3.56)

Since the self-dual component of F is known from (3.45), the above may be rewritten in

the equivalent form

Fij ∗4 F ij =
8b4

a4y4

(a

b
η − n

)(
2
a

b
η − n

)
, (3.57)

which is identical to the F ∧ F constraint given in [19]. Incidentally, we note that the

self-dual and anti-self-dual components of ∂yJ may be expressed as

(∂yJ)(+) =
1

4
J∂y log dethij ,

(∂yJ)(−) = ∂yJ − 1

4
J∂y log dethij . (3.58)
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In addition, as a consequence of (3.56), we may verify that both the F equation of motion

and the FµνFµν = 0 constraint are automatically satisfied.

Finally, to complete the solution, we note that the U(2) structure of the base is high-

lighted by both the canonical two-form J identified in (3.43) and a holomorphic two-form

Ω, which may be defined by

Ω = −if2
2 (I1 − iI2). (3.59)

The structure equation (3.33) along with self-duality is then equivalent to the statement

J ∧ Ω = 0, J ∧ J =
1

2
Ω ∧ Ω∗ = 2 ∗4 1. (3.60)

Along with d̃J = 0 shown above, we are also interested in the integrability of Ω. This may

be investigated by considering (B.31), where Y m = if−2
2 hΩ according to (3.32). We find

DΩ =

[
−ib

(
2
a

b
η − n

)
(dt + ω) +

1

2
d̃ log

(
Z +

1

2

)
+

1

4
∂y log hdy

]
∧ Ω. (3.61)

To interpret this result, we examine each component separately. Along the time direction,

we have

∂tΩ = −ib
(
2
a

b
η − n

)
Ω, (3.62)

indicating that we may take

Ω = e−ib(2a
b
η−n)tΩ0, (3.63)

where Ω0 is independent of time. Note that this time dependence is analogous to that

found in (3.15) for the 1/8 BPS solutions given above. Along the y direction, (3.61) gives

∂yΩ =
1

4
∂y log dethij Ω, (3.64)

which is compatible with Ω ∧ Ω∗ being proportional to the volume form on the base.

What we are mainly interested in, of course, is d̃Ω on the base. Taking into account

that D = d + inA, we see that

d̃Ω =

[
−inA− ib

(
2
a

b
η − n

)
ω +

1

2
d̃ log

(
Z +

1

2

)]
∧ Ω. (3.65)

From this, we may extract the Ricci form on the base

R =

(
− nF − b

(
2
a

b
η − n

)
d̃ω − 1

2
d̃

(
Ji

j∂j log

(
Z +

1

2

)
dxi

))

=

(
− 2

a

b
ηF − i

b

a
η

(
2
a

b
η − n

) 1

y
∂yJ − 1

2
d̃

(
Ji

j∂j log

(
Z +

1

2

)
dxi

))
, (3.66)

where in the second line we have used the expression (3.45) for d̃ω. For a Kähler metric

hij , the Ricci form may be given as

Rij = −1

2
J[j

k∇i]∇k log det hlm. (3.67)
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In this case, we may take a y derivative of (3.66) and substitute in the expression (3.47) to

obtain

−2J[j
k∇i]∇k

[
h2

(
2f2

1

f2
∂yf2 +

bf2

f1

(a

b
η − n

))]
= −2

a

b
η∂yFij − i

b

a
η

(
2
a

b
η − n

)
∂y

1

y
∂yJij

−J[j
k∇i]∇k∂y log

(
Z +

1

2

)
. (3.68)

Noting that ∂yFij = 0, and using (3.51) to rewrite ∂yy
−1∂yJij in terms of derivatives of

Z, we may see that the above expression is automatically satisfied. Thus compatibility

of (3.66) with (3.47) is ensured.

As may be evidenced by the above discussion, the supersymmetry analysis leading to

the complete 1/4 BPS system is rather involved. In order to summarize the results, and

to make a comparison with [18, 19], we may reexpress the scalars α and β in terms of

the coordinate y and the function G through (3.48). In this case, the full ten-dimensional

metric takes the form

ds2
10 = −h−2(dt + ω)2+h2

[
2

(
Z +

1

2

)−1

∂i∂j̄Kdzidz̄j̄ + dy2

]
+ y[eGdΩ2

3 + e−G(dψ + A)2],

(3.69)

where

h−2 = 2y cosh G, Z =
1

2
tanh G. (3.70)

In the equation above we have switched to a complex notation for the Kähler base, so that

in particular the metric is given by

ds2
4 = hijdxidxj = 2hij̄dzidzj̄ = 2∂i∂j̄K(zi, z̄ī; y)dzidz̄j̄ , (3.71)

This is the complex form of the expression given previously in real notation in (3.52).

The LLM function Z is constrained according to (3.53)

Z = −1

2
y∂y

1

y
∂yK(zi, z̄ī; y), (3.72)

and furthermore the Kähler metric must satisfy a Monge-Ampère type equation (3.49)

∂y log det hij̄ =
2e−G

eG + e−G
∂yG +

2

y(e2G + 1)
(2 − nη) − 2

y
(1 − nη). (3.73)

Note that, for simplicity, we have set the constants a = b = −η. This equation can be

integrated to yield

log dethij̄ = log

(
Z +

1

2

)
+ nη log y +

1

y
(2 − nη)∂yK + D(zi, z̄j̄), (3.74)

where D(zi, z̄j̄) arises as an integration constant as we peel off a ∂y derivative from (3.73).

Furthermore, the Ricci form on the base must satisfy the constraint (3.66). When expressed

in complex coordinates, this reduces to

R = i∂∂̄ log det hij̄ = i

(
2iηF + (2 − nη)

1

y
∂∂̄∂yK + ∂∂̄ log

(
Z +

1

2

))
, (3.75)
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where the holomorphic and anti-holomorphic differential operators ∂ and ∂̄ are defined by

∂ = dzi∂i, ∂̄ = dz̄j̄∂j̄ , (3.76)

and where we recall that the Kähler form is J = ihij̄dzi ∧ dz̄j̄ = i∂∂̄K. Substituting the

solution to the Monge-Ampère equation (3.74) into (3.75), we find that

∂∂̄D = 2iηF , (3.77)

where F = dA is the field strength corresponding to the gauging of the S1 isometry.

Of course, the complete solution also involves the two-forms given in (3.45). In partic-

ular, with a = b = −η, we have

ηF = −d[y2e2G(dt + ω)] − y2(dω + ηF) + 2i∂∂̄K,

F (+) = − i

y2
(η − n)∂∂̄K,

dω = −ηF +
i

y
(∂∂̄∂yK − (∂ − ∂̄)Z ∧ dy). (3.78)

Note that only the self-dual part of F is determined. Comparing F (+) with (3.77) then

implies

(1 + ∗4)∂∂̄D =
4

y2
(1 − nη)∂∂̄K. (3.79)

Finally, one last condition on the solution arises from the F equation of motion, namely

the F ∧ F constraint (3.57)

F ∧ F =
4

y4
(1 − nη)(2 − nη) ∗4 1. (3.80)

As demonstrated in [19], the BPS solutions with S3 × S1 isometry fall into several

families, depending on the U(1) charge n of the Killing spinor. A particularly simple case,

first considered in [18], is the ungauged ansatz, where A = 0, corresponding to ψ being

trivially fibered over the base. In this case, F vanishes, and (3.77) reduces to

∂∂̄D = 0 . (3.81)

This indicates that D can be an arbitrary harmonic function of z1, z2. Furthermore,

from (3.79) we see that this condition corresponds to having

nη = 1, (3.82)

which is also consistent with the vanishing of the F ∧ F constraint in (3.80). Curiously,

this constraint also takes on a simple form when nη = 2. As shown in [19], this allows the

embedding of the 1/2 BPS LLM ansatz into the gauged 1/4 BPS ansatz. The case nη = 3

is also interesting, as it allows for solutions of the form AdS5 times a Sasaki-Einstein space.
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3.3 1/2 BPS configurations

Continuing along the chain of reductions, the final case to consider corresponds to taking S3

times squashed S3 isometry, as described in section 2.3, where the squashed S3 is written

as U(1) bundled over CP 1. In general, squashing the S3 inside S5 (while keeping the round

S3 inside AdS5) further reduces the supersymmetries of the original LLM system from 1/2

down to 1/8 BPS. The complete analysis of the supersymmetry variations (2.49) and (2.49)

is quite involved, and will not be pursued below. The first system, (2.49), corresponding

to Killing spinors charged along the U(1) fiber was thoroughly analyzed in [22].

We are of course more directly interested in the sequence of 1/2, 1/4 and 1/8 BPS

states corresponding to the successive turning on of R-charges J1, J2 and J3. In this

case, we limit our consideration to the round S3 × S3 reduction, which is nothing but the

original LLM system of [1]. Although the supersymmetry analysis of this system has been

thoroughly investigated in [1] and subsequent work, for completeness, and to highlight the

complete 1/2, 1/4 and 1/8 BPS family of solutions, we review the analysis here.

For the round S3 × S3 reduction, the relevant supersymmetry variations are given

by (2.50). Replacing ±η̂ in (2.50) by −η̃ to simplify notation, the supersymmetry variations

read

δψµ =

[
∇µ − i

16
e−3αFνλγνλγµ

]
ǫ,

δλα =

[
γµ∂µα +

i

8
e−3αFµνγµν − ηe−α

]
ǫ,

δλβ =

[
γµ∂µβ − i

8
e−3αFµνγµν − iη̃e−βγ5

]
ǫ. (3.83)

Since ǫ may be viewed as a Dirac spinor in four dimensions, we may form the following

bilinears [1]

f1 = ǫγ5ǫ, f2 = iǫǫ, Kµ = ǫγµǫ, Lµ = ǫγµγ5ǫ, Y µν = iǫγµνγ5ǫ,

Km
µ = ǫcγµǫ, Y m

µν = ǫcγµνγ5ǫ. (3.84)

Note that Km, viewed as a complex one-form, was denoted ω in [1].

The above bilinears are normalized according to the Fierz relations

K2 = −L2 = −f2
1 − f2

2 , Y 2 = 2f2
1 − 2f2

2 , |Km|2 = 2f2
1 + 2f2

2 , |Y m|2 = −4f2
1 + 4f2

2 .

(3.85)

In addition, they satisfy the identities

K · L = K · Km = L · Km = 0, KµYµν = f2Lν , LµYµν = f2Kν . (3.86)

Following [1], we note that Kµ defines a time-like (Killing) direction, while Lµ is space-like

and orthogonal to Kµ. The four-dimensional space then splits into a two-dimensional base

(the LLM x1–x2 plane) along with a preferred time-like and a preferred space-like (the

LLM y coordinate) direction.
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The structure defined by the above bilinears is highlighted by noting that they may

be decomposed according to

Y = − f2

f2
1 + f2

2

K ∧ L + f1I, Km =
√

f2
1 + f2

2 Ω̃, Y m =
1√

f2
1 + f2

2

(f1K − if2L) ∧ Ω̃,

(3.87)

where

IabIbc = −δac, |Ω̃|2 = 2. (3.88)

These expressions are the analog of (3.32) for the present case. In particular, here the real

two-form I along with the complex one-form Ω̃ together define a preferred U(1) structure.

The familiar analysis of [1] proceeds by solving the one-form identities (C.5)

through (C.10) for the bilinears f1 and f2 as well as for the field strength F(2). For

simplicity with signs, we choose

f1 = −ηeβ, f2 = −η̃eα, (3.89)

so that

eα+β = y, (3.90)

where we have chosen to write L = dy, which is compatible with L being a closed one-form,

as indicated by (C.14). In this case, F(2) is given by

F(2) = η̃(dt + ω) ∧ de4α − ηh2e3α−3β ∗3 de4β , (3.91)

where we have chosen to write the four-dimensional metric as

ds2
4 = −h−2(dt + ω)2 + h2[hijdxidxj + dy2], (3.92)

with

h−2 = f2
1 + f2

2 = e2α + e2β , K = −h−2(dt + ω), L = dy. (3.93)

Note that ∗3 is the Hodge dual with respect to the three-dimensional metric given inside

the square brackets above.

We now note that (C.11) gives rise to the condition [1]

dω = −ηη̃
1

y
∗3 dZ, (3.94)

where

Z =
1

2

f2
2 − f2

1

f2
2 + f2

1

=
1

2

e2α − e2β

e2α + e2β
. (3.95)

In terms of ω and Z, the expression (3.91) can be rewritten as

F(2) = −η̃d[e4α(dt + ω)] − η̃y2dω − 2η

(
Z +

1

2

)
∗3 dy. (3.96)

It is now easy to see that F(2) is automatically closed, so long as dω is [1, 4]. Of course, the

requirement dω = 0 for dω given in (3.94) yields the LLM condition that Z be a harmonic

function

d

(
1

y
∗3 dZ

)
= 0, (3.97)
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which is the basis for the bubbling AdS picture. The Hodge dual is evaluated with respect

to the three-dimensional metric hijdxidxj + dy2.

To complete the 1/2 BPS picture, it is worth noting that the metric hij on the two-

dimensional base can be specified by defining the canonical-two form J and holomorphic

one-form Ω

I = h2J, Ω̃ = hΩ. (3.98)

where I and Ω̃ are given in (3.87). Using the decomposition of Y in (3.87) and the differ-

ential identities (C.17) and (C.20)

d(f1Y ) = 0, d(f2 ∗ Y ) = 0, (3.99)

we see that

d(f2
1 I) = ∗3dZ ∧ dy, d(f2

2 I) = − ∗3 dZ ∧ dy, (3.100)

so that

dJ = d(h−2I) = 0. (3.101)

Furthermore, comparing (3.98) with (3.87) demonstrates that ω = Km, in which

case (C.31) immediately shows that

dΩ = 0. (3.102)

This combination of dJ = 0 and dΩ = 0 now demonstrates that the two-dimensional base

is flat, in which case we can rewrite (3.92) using the trivial base metric

ds2
4 = −h−2(dt + ω)2 + h2[dx2

1 + dx2
2 + dy2]

= −h−2(dt + ω)2 + h2[dzdz + dy2]. (3.103)

This essentially completes the summary of the LLM analysis [1]. In the remaining sections

of this paper, we will make use of the results of the above supersymmetry analyses to

develop a universal picture of bubbling AdS geometries.

4. Bubbling AdS

The above reductions on S3, S3×S1 and S3×S3 and the supersymmetry analyses provide

a uniform framework for describing the corresponding 1/8, 1/4 and 1/2 BPS configurations

in IIB supergravity. However, we are interested in much more than simply a useful means

of characterizing the supergravity solutions. What we desire is a complete understanding

of the geometries and how they are mapped into states in the dual N = 4 Yang Mills

theory.

The best developed picture for these bubbling AdS states is of course in the 1/2 BPS

sector, where the x1–x2 plane of [1] has a direct counterpart in the phase plane of the

dual free fermion picture of the 1/2 BPS sector of the N = 4 Yang Mills theory [2, 3].

Furthermore, ‘droplets’ in the LLM plane are related to non-trivial topology of the gravity

solution, and are directly equivalent to giant gravitons expanding either in AdS5 or S5.

What we would like to obtain is a similar understanding of the 1/4 and 1/8 BPS

sectors of the theory. However, this task is made rather more complicated for several
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reasons. For one thing, on general grounds, we expect that the 1/2 BPS states (which

preserve 16 real supersymmetries) are described by wave-functions of a non-interacting

free fermion system. (Note, however, that the system appears to be interacting when the

fermionic degrees of freedom are changed to bosons.) The reduced supersymmetry cases do

of course admit descriptions as e.g. multi-matrix models on the gauge theory side. However,

we expect the resulting system to be a system of interacting bosons without a dual free

fermion description, and hence more complicated to describe on the gravity side of the

duality. This is in fact borne out by the explicit 1/8 and 1/4 BPS analysis of [20, 18, 19],

as reviewed above in section 3. In particular, both the 1/8 and 1/4 cases involve non-linear

equations, in contrast with the linear LLM equation (3.97), which is the basis for harmonic

superposition of 1/2 BPS states.

Nevertheless, there is an elegant structure underlying the sequence of 1/2, 1/4 and

1/8 BPS states. As discussed in section 3, these configurations are characterized by U(1),

U(2) and SU(3) structure, respectively, and are described by specifying appropriate field

configurations on the corresponding one-, two- and three-complex dimensional base man-

ifolds. Since these manifolds are Kähler, they can also be considered symplectic, which is

perhaps more natural for a phase-space description. In the 1/2 and 1/4 BPS cases, there

is an additional y direction where y is directly related to the volume of S3 × S3 for the

1/2 BPS case, or somewhat indirectly related to the volume of S3 × S1 in the 1/4 BPS

case. Although the 1/8 BPS metric, (3.14), has no room for an extra y coordinate, we may

nevertheless define y ≡ eα, and thereby obtain an effective y variable related to the volume

of S3.

At this point, it is perhaps worthwhile to summarize the main features of the 1/2,

1/4 and 1/8 BPS geometries. From (3.92), (3.38) and (3.14), along with the liftings of

section 2, we have

1/2 BPS: ds2 = −h−2(dt + ω)2 + h2[hijdxidxj + dy2] + e2αdΩ2
3 + e2βdΩ̃2

3,

1/4 BPS: ds2 = −h−2(dt + ω)2 + e−2αhijdxidxj +h2dy2+e2αdΩ2
3+e2β(dψ + A)2,

1/8 BPS: ds2 = −e2α(dt + ω)2 + e−2αhijdxidxj + e2αdΩ2
3, (4.1)

where in all cases h−2 = e2α + e2β . In addition

y = eα+β (for 1/2 and 1/4 BPS) or y = eα (for 1/8 BPS). (4.2)

Although the metric and form fields must satisfy various local conditions (some of which

may be rather complicated, especially in the 1/4 BPS case) in order to ensure a valid

solution, the global features that we are mainly interested in are encoded by the boundary

conditions imposed to ensure regularity of the above metrics. As in the LLM analysis [1],

we are concerned with regularity as any one of the spheres (or circle) in (4.1) shrinks

to zero size. Since this occurs at y = 0, we obtain a natural generalization of the LLM

condition (1.5)

Z(xi, y = 0) = ±1

2
(for 1/2 and 1/4 BPS), (4.3)

where in both cases Z = 1
2 (e2α−e2β)/(e2α +e2β). The analogous y = 0 boundary condition

for the 1/8 BPS system is more difficult to characterize, but is similar in spirit to the above.
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In the 1/2 BPS (LLM) case, for geometries asymptotic to AdS5 × S5, the y = 0 plane

consists of regions of Z = −1/2 (shrinking S3 inside AdS5) in a background of Z = 1/2

(shrinking S3 inside S5). The AdS5 × S5 ‘ground state’ corresponds to a circular disk of

Z = −1/2; at y = 0, the interior of this disk is mapped to the ‘center’ of AdS, while

the exterior is mapped to the point where S3 shrinks inside S5. In general, the boundary

between Z = 1/2 and Z = −1/2 is the locus where both of the three-spheres simultaneously

shrink to zero size. As a result, the LLM solution essentially maps the non-trivial topology

of the 1/2 BPS background entirely onto a plane (the y = 0 plane). The configuration

is then fully determined by specifying one-dimensional curves in the plane, corresponding

to the boundary between the Z = 1/2 and Z = −1/2 regions. This is of course the dual

picture of the ‘droplet’ description where regions, or droplets, are specified.

The extension of this picture to the 1/4 BPS case is then straightforward. In this case,

the topology of the background is again determined by the structure of the solution on

the y = 0 hyperplane. This time, the hyperplane is four-dimensional, and may be divided

into regions of Z = 1/2 and Z = −1/2 by three-dimensional surfaces. This time, however,

Z = 1/2 corresponds to a shrinking one-cycle in S5, while Z = −1/2 corresponds as usual

to shrinking S3 inside AdS5. As we show below, the AdS5 × S5 ground state in this case

consists of a ball of Z = −1/2 in a background of Z = 1/2. We do note, however, that in

contrast with the LLM picture, this y = 0 hyperplane has a non-trivial (Kähler) metric,

and hence is not flat. Nevertheless, so long as the bubbling picture relies only on the

topology of the droplets, it will remain valid. This distortion of the geometry is of course

to be expected for reduced supersymmetry configurations, which can no longer be treated

as non-interacting collective modes.

The 1/8 BPS case is particularly interesting, both because it no longer incorporates

a y = 0 hyperplane, and because it is the most general case encompassing the other two

in appropriate limits. Defining the variable y = eα, as in (4.2), the locus of shrinking

S3 inside AdS5 then corresponds to five-dimensional surfaces of y = 0 within the six-

dimensional base. In order to obtain a regular geometry, the 1/8 BPS metric in (4.1) must

then approach a solution of the form

ds2 = · · · + (dy2 + y2dΩ2
3), as y → 0. (4.4)

In other words, the shrinking S3 combines with the y direction to locally form R
4. In

this case, y is non-negative, and may be considered as a local coordinate normal to the

five-dimensional boundary surfaces. Viewed in this manner, since y terminates at zero and

does not become negative, the six-dimensional base space ends at these five-dimensional

surfaces. In particular, the interiors are unphysical; they simply do not exist. Another

way to understand this is to note from (3.19) that y is related to the scalar curvature of

the base according to R = −8/y4. Thus these five-dimensional surfaces of vanishing y are

singular (from the six-dimensional point of view), and space simply ends there, as there is

no natural extension for going past such singularities. Of course, the full ten-dimensional

solution remains regular, so long as the y = 0 surfaces are locally of the form (4.4).

The general picture of 1/8 BPS states is thus one of S3 and time fibered over a

six-dimensional base, where various regions (i.e. droplets) have been excised. Since the S3
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inside AdS5 shrinks on the (in general disconnected) five-dimensional boundary surface, this

surface may be related to the locus of D3-branes wrapped on the S3, which are simply dual

giant gravitons expanding in AdS5 [23]. In cases with additional supersymmetries (1/4 or

1/2 BPS), this six-dimensional base admits an additional S1 or S3 isometry. In such cases,

the S1 or S3 can be pulled out explicitly, along with the y variable, which can be promoted

to an actual coordinate normal to the shrinking S3 inside AdS5. This transformation,

which maps the five-dimensional boundary surfaces to the y = 0 hyperplane, is highly

non-trivial, but has the feature of placing much of the interesting topological data onto a

single hyperplane within the full ten-dimensional space-time.

Abstracting the details for a moment, we see a uniform picture emerging, where 1/2,

1/4 and 1/8 BPS configurations are described by one, three and five-dimensional surfaces

embedded within two, four and six-dimensional hyperplanes. Equivalently, we may use a

dual description of two, four and six-dimensional droplets. Only in the 1/2 BPS case is

the y = 0 hyperplane actually flat. In the other cases, we expect them to be diffeomorphic

to R
4 and R

6 [23], although such global properties cannot be seen directly from the local

supersymmetry analysis of section 3. In particular, bubbling orientifold models [29] can be

constructed by making appropriate discrete identifications on the base spaces.

From the N = 4 Yang-Mills side of the duality, the 1/2, 1/4 and 1/8 BPS configurations

may be described by one, two and three (complex) matrix models corresponding to the

three complexified adjoint scalars X = φ1 + iφ2, Y = φ3 + iφ4 and Z = φ5 + iφ6 of

the N = 4 theory [2]. As a result, there is a natural map between the space of matrix

eigenvalues (i.e. the free fermion phase space in the 1/2 BPS case) and the corresponding

one, two and three complex dimensional base spaces ds2 = hijdxidxj in (4.1). In all such

cases, the AdS5 × S5 ground state corresponds to taking a round ball in the base space

(at y = 0 when appropriate). Turning on giant graviton excitations on top of the ground

state then corresponds to introducing disconnected droplets, either inside the ball (giant

gravitons expanding in S5) or outside (dual giant gravitons expanding in AdS5). Of course,

for 1/8 BPS configurations, only the giant gravitons expanding in AdS5 are manifest, as

the interior of the ball is completely removed.

Until now, we have said very little about the non-linear equations characterizing the 1/8

and 1/4 BPS solutions. For the former, the main condition on the solution is given by (3.21),

while for the latter, one has (3.74), along with the subsidiary conditions (3.77), (3.79)

and (3.80). In general, these conditions are difficult to work with, and hence we are

unable to present an explicit construction of these reduced supersymmetry bubbling AdS

geometries. We do note, however, that in the case of LLM, the 1/2 BPS geometries are

fully characterized by the LLM boundary condition (1.5) Z = ±1
2 at y = 0. In particular,

the LLM Laplacian (3.97) is only of secondary importance in developing the bubbling AdS

interpretation of the solutions. This linear equation does of course facilitate the writing

of explicit solutions, and furthermore is presumably intimately tied to the non-interacting

nature of 1/2 BPS states. Nevertheless, the topology of the system, and hence much of

the information on giant gravitons, is contained in the LLM boundary condition itself, and

not necessarily the harmonic superposition rule derived from (3.97). Of course, this was

already noted in [1] in the case of 1/2 BPS configurations of M-theory, where a droplet
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picture emerged from consideration of the boundary conditions, despite the fact that the

full solution involves the Toda equation.

Likewise for the 1/8 and 1/4 BPS systems, we expect that each choice of boundary

conditions (specified either as y = 0 surfaces in a six-dimensional base, or as droplets in the

y = 0 hyperplane) gives rise to a unique bubbling AdS geometry. Because of the non-linear

nature of the expressions involved, however, we do not envision a simple proof of either the

existence or uniqueness of the solutions. We certainly expect large classes of solutions to

exist, although it would also be interesting to see if the conditions on the solutions preclude

any particular classes of droplets from existing as regular bubbling AdS geometries.

5. Examples fitting into the 1/8 BPS case

Although we have not been able to solve the 1/8 and 1/4 BPS conditions (3.21) and (3.47)

completely, we may nevertheless use the existing (known) solutions, as well as a specific

class of new 1/4 BPS solutions, to present evidence for the general droplet picture. We

start with several 1/8 BPS (actually S3 isometry) examples before turning, in section 6, to

1/4 BPS geometries. We should also note that in section 7 we will analyze the regularity

conditions for a rather generic class of 1/8 BPS solutions, and see that a picture of six-

dimensional droplets will emerge by requiring their ten-dimensional metric to be regular.

The general 1/8 BPS system falls into the S3 isometry analysis of section 3.1. This

solution is presented in terms of a seven-dimensional metric gµν , two-form F(2) and scalar

α, which are given by (3.14) and (3.19). Our main concern here is with the metric, which

when lifted to ten dimensions takes the form (4.1)

ds2 = −y2(dt + ω)2 +
1

y2
hijdxidxj + y2dΩ2

3, (5.1)

where we have made explicit the identification of y(xi) with eα(xi), as in (4.2). The complete

solution is determined (at least up to diffeomorphisms) in terms of a Kähler metric hij with

curvature satisfying (3.21)

¤6R = −RijR
ij +

1

2
R2, (5.2)

and with y = (−8/R)1/4. Note that this identification of y demands that the Kähler

base has non-vanishing negative scalar curvature, with R → −∞ on the five-dimensional

degeneration surfaces where y → 0. Given these preliminaries, we now turn to some

examples.

5.1 AdS3 × S3 × T 4

While we are mainly interested in geometries which are asymptotically connected to AdS5×
S5, we note that (5.2) admits a simple solution where the base is taken to be the direct

product of a hyperbolic space with a torus, H
2 × T 4, with curvature given by

Rij =

{
−4hij i, j = 1, 2,

0 i, j = 3, . . . , 6
(5.3)

– 34 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

(using real coordinates). This base can be obtained from a Kähler potential

K(z1, z2, z3) = −1

2
log(1 − |z1|2) +

1

2
(|z2|2 + |z3|2). (5.4)

Because y is a constant (which in our normalization is simply y = 1), this solution has

constant scalar curvature, and hence no shrinking three-cycles. Of course, we recall that,

since here y is a function and not a coordinate, there is no problem with setting it to a

constant.

When this H
2 ×T 4 base is incorporated into the full metric (5.1), it is easy to see that

the resulting geometry is that of AdS3 × S3 × T 4. In particular, by writing the metric on

H
2 as

ds2
2 = dρ2 +

1

4
sinh2(2ρ)dψ2, (5.5)

and by taking

ω = sinh2 ρ dψ, (5.6)

(which is compatible with the condition R = 2dω), we end up with AdS3×S3×T 4 written

as

ds2
10 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ (dψ − dt)2 + d~x2

4 + dΩ2
3. (5.7)

Note that the natural coordinates implicit in the fibration of time over the Kähler base

involve motion at the speed of light along the angular direction in AdS3.

This example is of course the double analytic continuation of the similar example given

in [20], which realized AdS3 × S3 × T 4 using an S2 × T 4 base.

5.2 AdS5 × S5

Our primary interest is of course with developing a droplet picture for excitations on top of

AdS5 × S5. To proceed in this direction, we first consider the realization of the AdS5 × S5

ground state itself. In this case, we take the ten-dimensional metric1

ds2
10 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 + dΩ2
5, (5.8)

and identify the S3 in AdS5 with the S3 of (5.1). This determines

y = sinh ρ (5.9)

along with the remaining seven-dimensional metric

ds2
7 = − cosh2 ρ dt2 + dρ2 + dΩ2

5. (5.10)

Here there are multiple ways of proceeding. What we would like, of course, is to rewrite

this metric using giant graviton speed of light angular coordinates of the form

φ = ψ − t, (5.11)

1Note that here we have taken the AdS5 radius L to be unity.
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where φ is a rotation angle in S5, and ψ its natural giant graviton counterpart. Because of

the symmetry of the five-sphere, it is natural to parameterize it in terms of three rotation

planes (with three angular coordinates φi and corresponding angular momenta Ji). How-

ever, it is also possible, and perhaps more convenient, to write S5 as U(1) bundled over

CP 2. While CP 2 does not admit a spin-structure, it nevertheless admits a spinc-structure,

and that is the main reason why we must allow for charged Killing spinors along the fiber

when reducing to six dimensions.

Writing the S5 metric as

dΩ2
5 = ds2(CP 2) + (dφ + A)2, dA = 2J, (5.12)

and performing the angular shift (5.11) yields the seven-dimensional metric

ds2
7 = − sinh2 ρ

(
dt + sinh−2ρ(dψ + A)

)2
+ sinh−2ρ(sinh2 ρ(dρ2 + ds2(CP 2))

+ cosh2 ρ(dψ + A)2). (5.13)

As a result, the six-dimensional metric on the base is

ds2
6 = (r2 − 1)ds2(CP 2) + dr2 + r2(dψ + A)2, (5.14)

where we have defined r = cosh ρ. The Ricci tensor is

Rij =

{
−4(r2 − 1)−2hij i, j = 3, . . . , 6 (CP 2),

4(r2 − 1)−2hij i, j = 1, 2 (r and ψ).
(5.15)

The alternate more symmetrical decomposition of S5 follows by introducing the com-

plex coordinates

z1 = r cos θ1e
iφ1 ,

z2 = r sin θ1 cos θ2e
iφ2 ,

z3 = r sin θ1 sin θ2e
iφ3 . (5.16)

In this case, we have

|dzi|2 = dr2 + r2dΩ2
5,

|zidzi|2 = r2dr2 + r4(cos2 θ1dφ1 + sin2 θ1 cos2 θ2dφ2 + sin2 θ1 sin2 θ2dφ3)
2. (5.17)

Taking the seven-dimensional metric (5.10) and shifting

φi = ψi − t (5.18)

we obtain

ds2
7 = − sinh2 ρ(dt + ω)2 + sinh−2ρ

(
sinh2 ρ dρ2 − cosh2 ρ

dr2

r2
+ sinh2 ρ

|dzi|2
r2

+
|zidzi|2

r4

)
,

(5.19)
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where

ω = sinh−2ρ
(
cos2 θ1dψ1 + sin2 θ1 cos2 θ2dψ2 + sin2 θ1 sin2 θ2dψ3

)
, (5.20)

and now the zi’s are defined with the angles ψi.

In order to eliminate the original ρ coordinate, we may define

r = cosh ρ. (5.21)

The resulting six-dimensional base metric has the simple form

ds2
6 = (|zi|2 − 1)

|dzi|2
|zi|2

+
|zidzi|2
(|zi|2)2

, (5.22)

and may be obtained from a Kähler potential

K =
1

2
|zi|2 −

1

2
log(|zi|2). (5.23)

For completeness, we note that

ω =
1

|zi|2 − 1

ℑ(zidzi)

|zi|2
. (5.24)

5.2.1 Boundary conditions

It is now instructive to examine the form of the six-dimensional base given by (5.22). The

complex coordinates zi cover the space completely, and are furthermore restricted to the

region |zi|2 ≥ 1, as it is evident from (5.21). Moreover, since

y2 = |zi|2 − 1, (5.25)

we see that y naturally parameterizes the radial direction in C
3 starting from the unit

five-sphere on outward. This confirms the picture developed above in section 4 that the

AdS5 × S5 vacuum corresponds to removing a round ball from the Kähler base which,

while not flat, is nevertheless diffeomorphic to C
3. Note also that this description matches

perfectly with the matrix wave-function picture explored recently in [23].

5.3 Three-charge smooth solutions

Given the picture of the AdS5×S5 ground state as a round ball removed from C
3, we may

in general consider two types of excitations. As in [1], the first consist of deformations of

the surface of the ball, corresponding to Kaluza-Klein excitations (gravitational ripples),

and the second consists of introducing topology changing droplets, corresponding to giant

gravitons.

In principle, excitations corresponding to ripples on the Fermi surface can be fully

explored in the linearized regime. By consistency, the result must reproduce the subsector

of Kaluza-Klein modes of IIB theory on AdS5×S5 [30] that is consistent with the 1/8 BPS

condition. In the 1/2 BPS case, this connection was explicitly demonstrated in [31].

Here we choose not to carry out the complete linearized analysis at this time. Instead,

we consider a class of smooth, three-charge ‘AdS bubble’ solutions which were studied

– 37 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

in [32]. These solutions are smoothed out (no horizon) versions of the R-charged black

holes (i.e. superstars), and are described by a five-dimensional field configuration

ds2
5 = −(H1H2H3)

−2/3 f dt2 + (H1H2H3)
1/3(f−1dr2 + r2dΩ2

3),

Ai
(1) = −H−1

i dt, Xi = (H1H2H3)
1/3 H−1

i , cosh ϕi = (RHi)
′,

f = 1 + r2H1H2H3, (5.26)

where R ≡ r2, and where a prime denotes a derivative with respect to R. Furthermore,

the functions Hi obey the equation

f(RHi)
′′ = [1 − (RHi)

′2] (H1H2H3)H
−1
i . (5.27)

This non-linear coupled set of equations admits the trivial solution (RHi)
′ = 1 (for all

i = 1, 2, 3), in which case ϕi = 0 and Hi = 1 + Qi/R. This simply reproduces the three-

charge superstar solutions of [33, 34]. On the other hand, while the general exact solution to

this system of equations is not known (except in the one-charge, i.e. LLM, case), numerical

investigations indicate that it admits a six-parameter family of solutions, corresponding to

three charges Qi and three corresponding scalar deformations related to turning on ϕi 6= 0.

For fixed charges, the three scalar parameters may then be adjusted to ensure regularity of

the solution as R → 0. In particular, regularity here means that both Hi and its derivatives

H ′
i remain bounded as R → 0.

These three-charge solutions preserve 1/8 of the supersymmetries, and are furthermore

regular without horizons. As such, they must fall under the classification of section 3.1.

To see how they may be expressed in the bubbling metric form of (5.1), we first lift (5.26)

to ten dimensions following the procedure outlined in [35]:

ds2
10 =

√
∆ ds2

5 +
1√
∆

T−1
IJ DµIDµJ , (5.28)

where

∆ ≡ TIJ µIµJ ,

6∑

I=1

µIµI = 1, DµI ≡ dµI + AIJ
(1)µ

J . (5.29)

The constrained scalars Xi, along with the fields ϕi are given by the decomposition

TIL = diag(X1 e−ϕ1 ,X1 eϕ1 ,X2 e−ϕ2 ,X2 eϕ2 ,X3 e−ϕ3 ,X3 eϕ3), (5.30)

and the U(1)3 gauge fields are

A12
(1) = A1

(1), A34
(1) = A2

(1), A56
(1) = A3

(1). (5.31)

More explicitly, using (5.31) and Ai
(1) = −H−1

i dt we have the three pairs of expressions

Dµ1 = dµ1 − µ2 H−1
1 dt, Dµ2 = dµ2 + µ1 H−1

1 dt,

Dµ3 = dµ3 − µ4 H−1
2 dt, Dµ4 = dµ4 + µ3 H−1

2 dt,

Dµ5 = dµ5 − µ6 H−1
3 dt, Dµ6 = dµ6 + µ5 H−1

3 dt. (5.32)
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Also, we find that

∆ = X1(e
−ϕ1µ2

1 + eϕ1µ2
2) + X2(e

−ϕ2µ2
3 + eϕ2µ2

4) + X3(e
−ϕ3µ2

5 + eϕ3µ2
6). (5.33)

The uplifted metric can then be written as

ds2
10 =

√
∆

[
− f

(H1H2H3)2/3
dt2 + (H1H2H3)

1/3(f−1dr2 + r2dΩ2
3)

]

+
1√
∆

[
H1

eϕ1(Dµ1)
2 + e−ϕ1(Dµ2)

2

(H1H2H3)1/3
+ H2

eϕ2(Dµ3)
2 + e−ϕ2(Dµ4)

2

(H1H2H3)1/3

+H3
eϕ3(Dµ5)

2 + e−ϕ3(Dµ6)
2

(H1H2H3)1/3

]
. (5.34)

In addition, we make the following explicit choice of coordinates on the five-sphere

µ = (µ̃1 sinφ1, µ̃1 cos φ1, µ̃2 sin φ2, µ̃2 cos φ2, µ̃3 sin φ3, µ̃3 cos φ3), (5.35)

where

µ̃1 = sin θ, µ̃2 = cos θ sin α, µ̃3 = cos θ cos α. (5.36)

These ‘direction cosines’ obey
6∑

I=1

µ2
I =

3∑

i=1

µ̃2
i = 1. (5.37)

The first step in transforming this solution into the 1/8 BPS form (5.1) is to identify

the three-sphere inside AdS5. In this case, examination of (5.34) directly yields

y2 =
√

∆ r2 (H1H2H3)
1/3. (5.38)

Next, by properly collecting the time components, we may write the remaining seven-

dimensional part of the metric in the standard form

ds2
7 = −y2(dt + ω)2 + y−2hmn dxm dxn, (5.39)

where

ωφi
= − µ̃2

i

r2 ∆ (H1H2H3)2/3

[
(cos φi)

2 e−ϕi + (sin φi)
2 eϕi

]
,

ωµ̃i
=

2µ̃i sin φi cos φi sinhϕi

(H1H2H3)2/3
, (5.40)

and the metric on the six-dimensional base is given by

hrr =
r2 (H1H2H3)

2/3 ∆

f
,

hφi φj
= δij r2 Hi µ̃

2
i [cos2 φie

−ϕi + sin2 φie
ϕi ]

+
µ̃2

i µ̃2
j

∆ (H1H2H3)2/3
[cos2 φie

−ϕi + sin2 φie
ϕi ] [cos2 φje

−ϕj + sin2 φje
ϕj ],
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hµ̃i µ̃j
= δijr

2 Hi [cos
2 φie

ϕi + sin2 φie
−ϕi ]

+
4µ̃i µ̃j cos φi sin φi cos φj sinφj

∆ (H1H2H3)2/3
sinh ϕi sinh ϕj ,

hµ̃i φj
= −δij 2r2µ̃i cos φi sin φiHi sinhϕi

− 2 cos φi sinφi

∆ (H1H2H3)2/3
[cos2 φje

−ϕj + sin2 φje
ϕj ] sinhϕi. (5.41)

To show that hmn is Kähler, we introduce complex coordinates

zi = ρi(r
2) µ̃i

[
cos φie

ϕi/2 + i sinφie
−ϕi/2

]
, i = 1, 2, 3. (5.42)

The functions ρi are implicitly defined through the equation

∂R log ρ2
i =

H1H2H3

Hif
cosh ϕi, R ≡ r2. (5.43)

For the Kähler potential, we postulate the following dependence on the complex coordinates

K = K

(
1

2
(z2

i + z̄2
i ), |zi|2

)
, (5.44)

and for convenience we define the quantities

xi =
1

2
(z2

i + z̄2
i ) ,

yi = |zi|2. (5.45)

One can then read off from the µ̃i and φi metric components in (5.41) the following differ-

ential conditions for the Kähler potential:

∂yi
K(xi, yi) =

RHi

2ρ2
i

,

∂xi
∂xj

K(xi, yi) =
1

2ΛH1H2H3

sinhϕi sinhϕj

ρ2
i ρ2

j

,

∂xi
∂yj

K(xi, yi) = − 1

2ΛH1H2H3

sinhϕi cosh ϕj

ρ2
i ρ2

j

,

∂yi
∂yj

K(xi, yi) =
1

2ΛH1H2H3

cosh ϕi cosh ϕj

ρ2
i ρ2

j

, (5.46)

where

Λ =
∆

(H1H2H3)1/3
. (5.47)

Furthermore, consistency of the above equations implies the following differential conditions

for the function R(xi, yi):

∂xi
R = − f sinhϕi

ρ2
i ΛH1H2H3

, ∂yi
R =

f cosh ϕi

ρ2
i ΛH1H2H3

. (5.48)

– 40 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

In the end, we have only been able to obtain the Kähler potential implicitly in terms

of its derivatives (5.46). To check that we have obtained the correct metric, we compute

ds2
6 = 2∂zi

∂z̄j
K dzi dz̄j

=
∑

i

R Hi

ρ2
i

dzidz̄i +
∑

i,j

1

ΛH1H2H3 ρ2
i ρ2

j

×
[
(z̄i cosh ϕi − zi sinh ϕi) dzi

][
(zj cosh ϕj − z̄j sinh ϕj) dz̄j

]
. (5.49)

After some algebra, and using

dzi = zi
dµ̃i

µ̃i
+ i(zi cosh ϕi − z̄i sinhϕi) dφi +

r H1H2H3

Hi f
(zi cosh ϕi − z̄i sinhϕi) dr, (5.50)

one can recover the metric components listed in (5.41).

As a special limit of the regular three-charge solution discussed above, we may consider

the three-charge extremal black hole (superstar) obtained by setting all the scalar fields ϕi

to zero. The resulting singular solution has

Hi = 1 +
Qi

r2
, (5.51)

with Qi representing the black hole charges. Thus, the three-charge black hole can be

embedded into the 1/8 BPS ansatz simply by taking the ϕi = 0 limit of the Kähler metric

found above. Complex coordinates will now take the form

zi = ρi(r
2) µ̃i eiφi , i = 1, 2, 3, (5.52)

with the functions ρi defined through

∂R log ρ2
i =

H1H2H3

f Hi
. (5.53)

Defining again yi = |zi|2, we find that the Kähler potential is now only a function of the

magnitudes

K = K(|zi|2) = K(yi). (5.54)

The differential equations for the Kähler potential reduce to

∂yi
K =

RHi

2ρ2
i

,

∂yi
∂yj

K =
1

2ΛH1H2H3 ρ2
i ρ2

j

, (5.55)

where

Λ =

3∑

i=1

yi

ρ2
i Hi

=
∆

(H1H2H3)1/3
. (5.56)

Consistency of the equations above yields the equation for the function r2(yi):

∂yi
r2 =

f

ΛH1H2H3 ρ2
i

. (5.57)
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5.3.1 Boundary conditions

Our main interest in examining the three-charge smooth solutions is of course to explore

the boundary surface where the S3 inside AdS5 collapses. As indicated by (5.38), the y

function is given by

y2 =
√

∆ r2(H1H2H3)
1/3, (5.58)

and we are interested in the locus where this vanishes. Although this is a product of several

functions, we first note that regularity and smoothness of the solution demands that the

functions Hi never vanish. In particular, they must approach a non-zero constant as r → 0.

This in turn keeps ∆ finite and non-zero. As a result, we conclude that y = 0 only when

r = 0.

Since y is an implicit function of the three complex coordinates

zi = ρi(r
2) µ̃i

[
cos φie

ϕi/2 + i sin φie
−ϕi/2

]
(5.59)

defined in (5.42), the algebraic condition y = 0 (or equivalently r = 0) imposes a single

real constraint on the zi coordinates, yielding a five real dimensional surface embedded in

C
3. To examine the shape of this surface, we first use

µ̃i cos φi = ℜ
(zi

ρi
e−ϕi/2

)
,

µ̃i sin φi = ℑ
(zi

ρi
eϕi/2

)
, (5.60)

to find

µ̃2
i =

e−ϕi

ρ2
i

(zi + z̄i

2

)2
− eϕi

ρ2
i

(zi − z̄i

2

)2
. (5.61)

Finally, using the constraint
3∑

i=1

µ̃2
i = 1, (5.62)

we obtain
3∑

i=1

[cosh ϕi

ρ2
i

|zi|2 −
sinhϕi

ρ2
i

(z2
i + z̄2

i

2

)]
= 1. (5.63)

The degeneration surface that we are interested in lies at r = 0. Since the functions ρi and

ϕi given above are functions of r, we define

ρ̄i ≡ ρi(r = 0), ϕ̄i ≡ ϕi(r = 0), (5.64)

to be their boundary values. Regularity of the three-charge solution ensures that these

values are all non-vanishing. In this case, the five-dimensional surface is given simply by

3∑

i=1

[cosh ϕ̄i

ρ̄2
i

|zi|2 −
sinh ϕ̄i

ρ̄2
i

(z2
i + z̄2

i

2

)]
= 1. (5.65)
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This is an ellipsoid, as can be seen more clearly by writing it in terms of real and imaginary

parts zi = xi + iyi:
3∑

i=1

1

ρ̄2
i

[
e−ϕ̄i x2

i + eϕ̄i y2
i

]
= 1. (5.66)

This ellipsoid may be considered to be a deformation of the round sphere corresponding

to the AdS ground state discussed above in section 5.2.1. One way to see this is to note

that turning off the deformation scalars, ϕ̄i → 0, forces Hi → 1 (to avoid the potential

singularity at r = 0). In this case, the three-charge solution reduces to the AdS5 × S5

vacuum, and (5.43) is trivially integrated to give ρ2
i = 1 + r2. This in turn gives ρ̄i = 1, in

which case (5.66) reduces to the equation for a sphere of unit radius

3∑

i=1

(x2
i + y2

i ) = 1, (5.67)

corresponding to the ground state ‘Fermi surface’ which yields the AdS5 × S5 vacuum.

As we noted for the AdS5 × S5 vacuum, only the outside of the ellipsoid (5.66) is

allowed. To see this, it is enough to show that both ρ2
i e

ϕi and ρ2
i e

−ϕi are monotonically

increasing functions of r2. Using cosh ϕi = (RHi)
′ and the equation of motion (5.27), we

find

∂R ϕi =
H1H2H3

Hif
(− sinhϕi). (5.68)

This may be combined with the expression for ∂R log ρ2
i from (5.43) to obtain

∂R

( ρ2
i

eϕi

)
=

∂Rρ2
i − ρ2

i ∂R ϕi

eϕi
=

ρ2
i H1H2H3

eϕiHi f
(cosh ϕi + sinhϕi) =

ρ2
i H1H2H3

Hi f
≥ 0,

∂R

( ρ2
i

e−ϕi

)
=

∂Rρ2
i + ρ2

i ∂R ϕi

e−ϕi
=

ρ2
i H1H2H3

e−ϕiHi f
(cosh ϕi − sinhϕi) =

ρ2
i H1H2H3

Hi f
≥ 0. (5.69)

Thus the six axes of the ellipsoid ρie
ϕi/2 and ρie

−ϕi/2 all increase with r, which shows that

only the region outside the smallest ellipsoid (given by r = 0) is occupied.

Deforming the round ball into an ellipsoid corresponds to turning on angular mo-

mentum two harmonics on S5. These modes are part of the standard Kaluza-Klein

spectrum [30]. Likewise, the three-charge smooth gravity solution of [32], given by the

fields (5.26), is dual to N = 4 Yang-Mills in a 1/8 BPS sector built on top of a combina-

tion of Tr(X2), Tr(Y 2) and Tr(Z2).

It is also instructive to consider the superstar (singular R-charged black hole) limit

of the above three-charge solution, which is obtained by taking ϕi = 0 while keeping at

least one of the three R charges turned on. In this case, from (5.65), we can read off the

corresponding five-dimensional degeneration surface

3∑

i=1

|zi|2
ρ̄2

i

= 1. (5.70)

However, for a complete picture, we also need information on the values of ρ̄i for the

superstar. For three non-vanishing charges, we may integrate (5.53) using (5.51) to arrive
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at

ρ2
i =

3∏

a=1

(R − Ra)
λi

a , (5.71)

where Ra are the three roots of the cubic expression

0 = R2f = R2 +

3∏

a=1

(R + Qa). (5.72)

Note that, so long as the charges Qa are non-negative (which we always assume as a

physical condition), then none of the roots Ra can lie on the positive real axis. The

exponents in (5.71) are given by

λi
a =

(Ra + Qi+1)(Ra + Qi+2)

(Ra − Ra+1)(Ra − Ra+2)
, (5.73)

where the subscripts are to be taken modulo three (i.e. to lie in the range 1, 2, 3). For a

fixed i, these exponents satisfy

3∑

a=1

λi
a = 1,

3∑

a=1

Raλ
i
a = −Qi − 1. (5.74)

As a result, the large R behavior of (5.71) is simply

ρ2
i (R) ∼ R + 1 + Qi + O

( 1

R

)
. (5.75)

We are of course more interested in the fate of the ellipsoid (5.70), which is obtained

from the minimum values ρ̄i. The three non-vanishing charge case is somewhat unusual,

in that the naked singularity is generally reached for R < 0 [33]. This occurs at the first

zero of the function R3H1H2H3 =
∏

(R + Qi), which we may take to be at R = −Q3 by

appropriate ordering of the charges (i.e. Q1 ≥ Q2 ≥ Q3 > 0). By expanding (5.71) near

this singularity, we obtain

ρ2
i = ρ̄2

i

[
1 + (R + Q3)δi3

(Q1 − Q3)(Q2 − Q3)

Q2
3

+
1

2
(R + Q3)

2

(
|ǫij3|

Qj − Q3

Q2
3

+ δi3
2Q1Q2 − (Q1 + Q2)Q3

Q3
3

)
+ · · ·

]
, (5.76)

where

ρ̄2
i (R) =

3∏

a=1

(−Ra − Q3)
λi

a . (5.77)

This shows that, despite the presence of the naked singularity, the ellipsoid defined

by (5.70), and with interior removed, is still present for the generic three charge superstar.

Here, the singularity of the solution is rather subtle, and arises not because of degenera-

tion of the boundary surface, but rather because vanishing of the linear term for ρ2
1 and

ρ2
2 in (5.76) results in unwanted singular behavior of the Kähler base near the ellipsoid.
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While the curvature of the Kähler base for a regular solution is supposed to blow up as

R ∼ −8/y4 where y is the normal to the boundary, here the singularity is apparently of a

different nature.

The above expressions are slightly modified in the case of one or more vanishing charges.

For Q3 = 0, the ρi are given by

ρ2
1 =

√
(R − R+)(R − R−)

(
R − R−

R − R+

) 1+Q1−Q2

2
√

(Q1+Q2+1)2−4Q1Q2 ,

ρ2
2 =

√
(R − R+)(R − R−)

(
R − R−

R − R+

) 1−Q1+Q2

2
√

(Q1+Q2+1)2−4Q1Q2 ,

ρ2
3 = R

(
R − R−

R − R+

) 1√
(Q1+Q2+1)2−4Q1Q2 , (5.78)

where

R± = −1

2

[
(Q1 + Q2 + 1) ∓

√
(Q1 + Q2 + 1)2 − 4Q1Q2

]
(5.79)

are the two non-zero roots of (5.72). Note that R− < R+ < 0. As a result, the naked

singularity is reached at R = 0, where ρ2
3 vanishes. This demonstrates that ρ̄2

3 = 0 in the

two charge case. Hence in this case the ellipsoid (5.70) collapses, and the singularity of the

solution is manifest.

The one-charge superstar is even more straightforward. If Q1 is the only non-vanishing

charge, we have

ρ2
1 = R + Q1 + 1,

ρ2
2 = R

Q1
Q1+1 (R + Q1 + 1)

1
Q1+1 ,

ρ2
3 = R

Q1
Q1+1 (R + Q1 + 1)

1
Q1+1 . (5.80)

Taking R → 0, we read off ρ̄2
2 = ρ̄2

3 = 0, and thus the ellipsoid collapses in two of the three

complex directions. The remaining direction defines a circle in the z1 plane, corresponding

to the LLM disk with intermediate value of the LLM Z(z1, z̄1, y) function at y = 0, as

originally demonstrated in [1].

5.4 LLM

The exploration of the three charge smooth solutions in the previous subsection has allowed

us to gain some intuition on the nature of turning on Kaluza-Klein excitations, correspond-

ing to smooth deformations of the Fermi surface. However, we are also interested in the

case of topology change and the emergent picture of droplets (particle and hole excita-

tions). While we do not have a particularly constructive way of obtaining complete 1/8

BPS solutions with non-trivial topology, there is in fact a large class of topologically inter-

esting solutions which we may investigate, and these are nothing but the LLM ones. The

LLM geometries of course preserve 1/2 of the supersymmetries, so comprise a very special

subclass of the configurations described by the 1/8 BPS system of (5.1) and (5.2).
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The 1/2 BPS LLM solution (4.1) has the form [1]

ds2
10 = −h−2(dt + V )2 + h2(|dz1|2 + dy2) + yeGdΩ2

3 + ye−GdΩ̃2
3, (5.81)

where V = Vzdz1 + Vzdz1 satisfies the relations

y∂yVz = i∂z1Z, y∂yVz = −i∂z1Z, 2iy(∂z1Vz − ∂z1Vz) = ∂yZ, (5.82)

and

Z =
1

2
tanh G, h−2 = 2y cosh G. (5.83)

Here we have deliberately chosen to follow the LLM notation [1] so as to avoid confusion

with the corresponding quantities in the 1/8 BPS system. Furthermore, here we reserve

y to only refer to the y coordinate of LLM, and not to the y variable used in (5.1). In

particular, the 1/8 BPS metric will be taken in the form

ds2
10 = −e2α(dt + ω)2 + e−2αhijdxidxj + e2αdΩ2

3. (5.84)

By identifying the two three-spheres defined by dΩ3 in (5.81) and (5.84), we see that

e2α = yeG. (5.85)

The remaining seven-dimensional metric then has the form

ds2
7 = −(e2α + y2e−2α)(dt + V )2 + e−2α

(
Z +

1

2

)
(dy2 + |dz1|2) + y2e−2αdΩ̃2

3. (5.86)

We again wish to shift the angular coordinates on dΩ̃3. This may be done by writing

dΩ̃2
3 = dθ2 + cos2 θdφ2

1 + sin2 θdφ2
2, (5.87)

and then shifting

φ1 = ψ1 − t, φ2 = ψ2 − t. (5.88)

Performing this shift and completing the square in dt now yields

ds2
7 = −e2α(dt + ω)2 + e−2α

[
y2

Z + 1
2

(V 2 + 2V (cos2 θdψ1 + sin2 θdψ2))

+y2 1 − 2Z

1 + 2Z
(cos2 θdψ1 + sin2 θdψ2)

2 + y2dΩ̃2
3 +

(
Z +

1

2

)
(dy2 + |dz1|2)

]
, (5.89)

where

ω =
1

Z + 1
2

V +
1 − 2Z

1 + 2Z
(cos2 θdψ1 + sin2 θdψ2). (5.90)

As a result, the metric on the six-dimensional base can be read off from the terms inside

the square brackets above.

To show that this metric is Kähler, and to read off the Kähler potential, we introduce

complex coordinates

z2 = r cos θeiψ1 , z3 = r sin θeiψ2 , (5.91)
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so that

|dzi|2 = dr2 + r2dΩ̃2
3,

|zidzi|2 = r2dr2 + r4(cos2 θdψ1 + sin2 θdψ2)
2,

ℑ(zidzi) = r2(cos2 θdψ1 + sin2 θdψ2), (5.92)

where here i = 2, 3 only. In this case, the metric on the six-dimensional base becomes

ds2
6 =

(
Z +

1

2

)
(dy2 + |dz1|2) −

y2

Z + 1
2

dr2

r2
+

y2

r2
|dzi|2 +

y2

r4

1 − 2Z

1 + 2Z
|zidzi|2

+
y2

Z + 1
2

(Vzdz1 + Vzdz1)
2 +

2y2

r2(Z + 1
2 )

(Vzdz1 + Vzdz1)ℑ(zidzi). (5.93)

Note that r2 = |zi|2. Since the original LLM coordinate y is somehow out of place, we need

to find a transformation relating y with the complex coordinates z1, z2, z3. To obtain this

transformation, we take a hint from the dr and dy sector of the metric

ds2
6 =

y2

Z + 1
2

((
Z +

1

2

)2 dy2

y2
− dr2

r2

)
+ · · · . (5.94)

This suggests that we take

r2(z1, z1, y) = exp

∫ y2 (
Z(z1, z1, y

′) +
1

2

)
d(y′2)

y′2
, (5.95)

where we are somewhat sloppy about the limits of the indefinite integral. Because of the

z1, z1 dependence on the right hand side, this relation is somewhat subtle to manipulate.

For example

dr

r
=

(∫ y

∂z1Z
dy′

y′

)
dz1 +

(∫ y

∂z1Z
dy′

y′

)
dz1 +

Z + 1
2

y
dy

= −i

[(∫ y

∂y′Vzdy′
)

dz1 −
(∫ y

∂y′Vzdy′
)

dz1

]
+

Z + 1
2

y
dy

= −i(Vzdz1 − Vzdz1) +
Z + 1

2

y
dy, (5.96)

where we have used (5.82). Here we assume that the integration in (5.95) may be defined

so that this differential relation holds. Inserting this relation into (5.93) finally gives the

complex Hermitian metric

ds2
6 =

((
Z +

1

2

)
+

4y2

Z + 1
2

VzVz

)
|dz1|2 +

y2

r2

(
|dz2|2 + |dz3|2

)
+

y2

r4

1 − 2Z

1 + 2Z
|z2dz2 + z3dz3|2

− 4y2

r2(Z + 1
2)
ℜ (iVz(z2dz2 + z3dz3)dz1) , (5.97)

where r2 = |z2|2 + |z3|2, and y is implicitly defined from (5.95).
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In order to show that the above metric is Kähler, we may directly obtain the Kähler

potential K(z1, z1, r
2) by integrating the differential relations

∂r2K =
y2

2r2
, ∂r2∂r2K =

y2

2r4

1−2Z

1+2Z
, ∂z1∂z1K =

1

2

(
Z+

1

2

)
+

2y2

Z+ 1
2

VzVz,

∂z1∂r2K = − y2

2r2(Z+ 1
2)

iVz, ∂z1∂r2K =
y2

2r2(Z + 1
2)

iVz. (5.98)

The result is particularly simple

K(z1, z1, y
2) =

1

2

∫ y2 (
Z(z1, z1, y

′) +
1

2

)
d(y′2). (5.99)

Of course, y2 has to be rewritten in terms of z1, z1 and r2 using (5.95). In order to verify

that this is correct, we need the chain rule expressions

∂rf(z1, z1, r) =
1

∂r/∂y
∂yf(z1, z1, y) =

y

r(Z + 1
2)

∂yf(z1, z1, y),

∂z1f(z1, z1, r) =

(
∂z1 −

∂r/∂z1

∂r/∂y
∂y

)
f(z1, z1, y) =

(
∂z1 +

iyVz

Z + 1
2

∂y

)
f(z1, z1, y), (5.100)

where r = r(z1, z1, y).

Linearity of the LLM Laplacian (3.97) allows a Green’s function solution for Z of the

form [1]

Z(z1, z1, y) =
1

2
− y2

π

∫

D

dx′
1dx′

2

[|z1 − z′1|2 + y2]2
, (5.101)

where the integral is only over the areas of the two-dimensional droplets (Z = −1/2) sitting

in the Z = 1/2 background. This allows us to rewrite (5.95) as

log(r2) = log(y2) +
1

π

∫

D

dx′
1dx′

2

|z1 − z′1|2 + y2
, (5.102)

at least up to an unimportant y-independent function arising from the indefinite y integral

in (5.95). As y approaches 0, there are two cases to consider: i) z1 ∈ D and ii) z1 /∈ D. In

the first case r2
∣∣
y=0

is finite and (5.102) defines a five-dimensional surface, whereas in the

latter r2 = y2 + O(y4).

In addition, substituting (5.101) into (5.99) while ensuring proper asymptotic behavior

gives an expression for the Kähler potential

K =
1

2
y2 +

1

2
|z1|2 +

1

2π

∫

D

(
y2

|z1 − z′1|2 + y2
− log[|z1 − z′1|2 + y2]

)
dx′

1dx′
2. (5.103)

5.4.1 The LLM vacuum

As a simple example, we may consider the AdS5 × S5 vacuum, which is specified by a

circular disk in the LLM plane. Taking this disk to have radius L, the Green’s function

integral (5.101) gives [1]

Z =
|z1|2 + y2 − L2

2
√

(|z1|2 + y2 − L2)2 + 4y2L2
. (5.104)
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Before working out the Kähler potential, we may use (5.102) to determine

r2 =
1

2

(
L2 + y2 − |z1|2 +

√
(|z1|2 + y2 − L2)2 + 4y2L2

)
, (5.105)

which in turn may be inverted to yield

y2 = r2

(
1 − L2

r2 + |z1|2
)

. (5.106)

The y = 0 surface reduces to r2 + |z1|2 = L2 for |z1| < L and to r = 0 for |z1| > L,

corresponding to the cases i) and ii) mentioned in the previous section, after (5.102).

The Kähler potential itself is obtained from (5.103):

K =
1

4

[
|z1|2 + y2 + L2 +

√
(|z1|2 + y2 − L2)2 + 4y2L2

−2L2 log

(
1

2

(
|z1|2 + y2 + L2 +

√
(|z1|2 + y2 − L2)2 + 4y2L2

))]
. (5.107)

Using (5.105), this may be rewritten as

K =
1

2
(|z1|2 + |z2|2 + |z3|2) −

1

2
L2 log(|z1|2 + |z2|2 + |z3|2), (5.108)

where we have used r2 = |z2|2 + |z3|2. This of course recovers the symmetrical AdS5 × S5

Kähler potential (5.23), but this time with the AdS radius L restored.

5.4.2 Multi-disk configurations

Given the vacuum solution corresponding to a single LLM disk, there is in fact a natural

procedure for building up topologically non-trivial configurations through linear superpo-

sition. Suppose we have n disks, each with radius bi, centered at the complex position ai in

the z1 plane. So long as the disks are non-overlapping, the function Z obtained by (5.101)

has a superposition solution of the form

Z =
1

2
+

n∑

i=1


 |z1 − ai|2 + y2 − b2

i

2
√

(|z1 − ai|2 + y2 − b2
i )

2 + 4y2b2
i

− 1

2




=
1 − n

2
+

n∑

i=1

|z1 − ai|2 + y2 − b2
i

2
√

(|z1 − ai|2 + y2 − b2
i )

2 + 4y2b2
i

. (5.109)

In addition, the form of the integral (5.102) relating r2 with y2 indicates that r2 may be

obtained by superposing n individual terms, each of the form given by (5.105)

r2 = y2
n∏

i=1

1

2y2

[
b2
i + y2 − |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

]

=
y2(1−n)

2n

n∏

i=1

[
b2
i + y2 − |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

]
. (5.110)
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Similarly, the Kähler potential may be obtained by superposing individual terms of the

form (5.107)

K =
1

2
y2 +

1

2
|z1|2 +

n∑

i=1

1

4

[
b2
i − y2 − |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

−2b2
i log

(
1

2

(
b2
i + y2 + |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

))]
.

(5.111)

In principle, (5.110) ought to be inverted to give y2 as a function of z1, z1 and r2.

In turn, this could then be inserted into (5.111) to obtain the final expression for the

Kähler potential. Unfortunately, however, (5.110) is a rather unwieldy function to invert.

Nevertheless, we can learn a fair bit about the boundary conditions even without an explicit

form of the Kähler potential.

Our main interest is to examine the degeneration surface when e2α → 0 (i.e. when the

S3 inside AdS5 shrinks). From (5.85), this requires that y → 0 (along with some possible

requirement on eG, which we are not so concerned about). Recalling that r2 = |z2|2 + |z3|2
in our notation, setting y = 0 in (5.110) then defines a five-dimensional degeneration surface

through a real algebraic equation in C
3. Actually, because of the y2(1−n) prefactor, some

care must be taken before we can let y = 0 in (5.110). To proceed, we may start with the

small y expansion of (5.110), and then subsequently take y → 0.

Because of the square root expressions, this small y expansion is dependent on our

location in the z1 plane. In particular, as y → 0, we have

[
b2
i + y2 − |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

]
(5.112)

=





|z1 − ai|2
|z1 − ai|2 − b2

i

(2y2) + O(y4), |z1 − ai| > |bi|;

2(b2
i − |z1 − ai|2) + O(y2), |z1 − ai| < |bi|.

The first case corresponds to z1 outside the i-th disk, and the second to z1 inside. Because

of the non-overlapping condition, z1 can fall inside a single disk, at most. Suppose we look

at the region inside the j-th disk. In this case, the expression for r2 in (5.110) receives

n − 1 contributions of the first type (when i 6= j), and a single contribution of the second

type. This combination of expansions introduces a y2(n−1) factor in the product, canceling

the y2(1−n) factor in (5.110). So the result for this j-th region is

r2 ≡ |z2|2 + |z3|2 =
(
b2
j − |z1 − aj |2

)∏

i6=j

|z1 − ai|2
|z1 − ai|2 − b2

i

. (5.113)

Note that this equation is exact, even though we had to expand in y = 0 in order to obtain

it.

We recall that this equation defines a five-dimensional surface inside C
3 where the S3

inside AdS5 shrinks to a point. To understand the implication of this equation better, we
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may consider the single-disk limit, when the other n− 1 finite disks are very far away from

the jth disk. In this case, |z1 − ai| ≫ bi for i 6= j, and we get the simplified expression

|z2|2 + |z3|2 = b2
j − |z1 − aj|2. (5.114)

This describes a round five-sphere centered at z1 = aj , with radius bj. When the disks

are not so well separated, the additional factors in (5.113) lead to a distortion of the

five-sphere. Nevertheless, the picture that emerges is clear. The interior of each LLM

disk gets mapped into a (possibly distorted) five-sphere degeneration surface inside C
3.

Equation (5.113) simply describes the j-th disconnected component of the complete five-

dimensional degeneration surface.

We have now shown that non-trivial LLM topology has a natural generalization in

the 1/8 BPS system. In particular, individual LLM droplets (with disk topology) map

directly into degeneration surfaces which are topologically five-spheres, and which may be

considered as canonical 1/8 BPS droplets. Since the interior of each droplet is not present,

the 1/8 BPS system can be described using a set of coordinates spanning C
3, but with

various regions removed. In the LLM picture, a large disk surrounded by small droplets

corresponds to a collection of dual giant gravitons, all expanding in AdS5 [1]. Each droplet

modifies the topology, and may be considered as a backreacted version of a giant graviton.

In the general 1/8 BPS description, this has a corresponding picture as a large spherical

void at the center of C
3 surrounded by a set of five-sphere ‘bubbles’, each bubble being

one of the dual giant gravitons.

Given this understanding of dual giants in the 1/8 BPS context, there is still one

remaining question, and that is how giant gravitons expanding on S5 fit in the above

framework. In terms of the LLM picture, turning on these giant gravitons corresponds to

introducing holes in the AdS disk itself. Before we consider the effect of holes, however, we

first consider the y → 0 behavior of (5.110) in the case that z1 lies outside all of the disks.

In this case, all n expressions in (5.110) are of the form of the top line in (5.112), and we

thus end up with

r2 ≈ y2
n∏

i=1

|z1 − ai|2
|z1 − ai|2 − b2

i

, (5.115)

as y → 0. The extra y2 factor then ensures that r → 0 as y → 0, so long as z1 lies outside

the disks. Recalling that r2 = |z2|2 + |z3|2, this limit corresponding to shrinking S3 inside

S5, which of course agrees with the 1/2 BPS bubbling picture of [1].

We are now in a position to consider adding holes (giant gravitons expanding in S5)

to the above multi-disk configuration. Again, because of linear superposition, we may

consider holes as simply ‘negative’ regions inside a disk (provided, of course, that they are

entirely contained within the corresponding disk). In this case, for n disks as above along

with m circular holes (each with radius b̃i and centered at ãi), the generalization of (5.110)

is simply

r2 = y2
n∏

i=1

1

2y2

[
b2
i + y2 − |z1 − ai|2 +

√
(|z1 − ai|2 + y2 − b2

i )
2 + 4y2b2

i

]
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Figure 1: Profile of r versus |z1| for the configuration corresponding to a single hole of radius 0.1

centered at the origin of the AdS disk (of unit radius). This picture corresponds to a maximal giant

graviton expanding on S5.

×
m∏

i=1

2y2

[
b̃2
i + y2 − |z1 − ãi|2 +

√
(|z1 − ãi|2 + y2 − b̃2

i )
2 + 4y2b̃2

i

]−1

. (5.116)

For a single hole inside the AdS disk, the degeneration surface can be obtained by taking

the y → 0 limit of this expression for the case where z1 lies in the disk, but not the hole.

The resulting surface is described by

r2 ≡ |z2|2 + |z3|2 =
(L2 − |z1|2)(|z1 − ã|2 − b̃2)

|z1 − ã|2 , (5.117)

where we have taken the AdS disk to be centered at the origin and to have radius L. The

hole is centered at ã, and has radius b̃. This describes a five-dimensional surface of topology

S4 × S1, which was in fact already noticed in [1] when fibering S̃3 over an annulus in the

LLM plane. As an example, we plot the profile of the surface given by (5.117) in figure 1.

On the gauge theory side of the duality, the picture shown in figure 1 presumably

corresponds to the numerical eigenvalue distribution studied recently in [23] for the one

hole state. We note that, at least in this coordinate system, the change of r is very steep

near the central hole of the giant graviton. This may account for the failure of the numerical

eigenvalue distribution to close on this hole observed in [23]. However, it remains to be

seen whether or not the present coordinate system is in fact the one which is preferred

when matching to the eigenvalue distribution.

As more holes are introduced into the AdS disk, more and more non-trivial topology

is generated; adding m holes gives rise to a corresponding five-dimensional surface which

may be described as S3 fibered over the disk with m holes. Thus the five-dimensional
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z 1

Figure 2: An LLM configuration with three droplets and two holes.

Figure 3: The LLM configuration of figure 2 shown as droplets in the six-dimensional base given

by (5.97). Here r2 = |z2|2 + |z3|2, and the additional S3 directions are suppressed. Note that the

physical space is comprised of the region outside of the droplets only.

boundary surface has a very physical interpretation as the distortion of the original five-

sphere of the AdS5 × S5 background. A complete 1/2 BPS bubbling geometry, with both

giant gravitons and dual giants, thus involves an AdS disk along with both particle and

hole excitations. The holes in the AdS disk change the topology of the original five-sphere,

– 53 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

while the particles outside the disk give rise to additional degeneration surfaces. Consider,

for example, the LLM geometry specified in figure 2, corresponding to the excitation of

two giant gravitons and three dual giants. When written in the 1/8 BPS framework, the

resulting degeneration surfaces, as given by (5.116), take on the form shown in figure 3.

More complicated geometries, corresponding to non-circular droplets, are of course possible.

However, for 1/2 BPS states, the boundary surfaces always contain an additional unbroken

S3 isometry related to the angular directions not indicated in Fig 3. This isometry would

not be present for more generic 1/4 and 1/8 BPS bubbles. Nevertheless, even in such cases,

the overall picture of droplets as removed volumes of R
6 remains valid.

6. Examples fitting into the 1/4 BPS case

After having studied the general 1/8 BPS case, we now turn to explicit solutions for the case

of 1/4 BPS configurations. These backgrounds have an additional S1 isometry compared

with the generic 1/8 BPS backgrounds, and have a ten-dimensional metric of the form

ds2
10 = −h−2(dt + ω)2 + h2

((
Z+

1

2

)−1

2hij̄dzidz̄j̄ + dy2

)
+ y(eGdΩ2

3 + e−G(dψ + A)2),

h−2 = 2y cosh G, hij̄ = ∂i∂j̄K. (6.1)

We have also defined

Z ≡ 1

2
tanhG = −1

2
y∂y

1

y
∂yK , (6.2)

which is the 1/4 BPS version of the LLM function. The four-dimensional base metric hij̄

is Kähler, and is further constrained by a Monge-Ampère type equation (3.74), along with

auxiliary condition (3.79)

log dethij̄ = log

(
Z +

1

2

)
+ nη log y +

1

y
(2 − nη)∂yK + D(zi, z̄j̄),

(1 + ∗4)∂∂̄D =
4

y2
(1 − nη)∂∂̄K. (6.3)

Since we are mainly interested in the form of the Kähler metric on the base, we do not

repeat here the expressions for the two-forms F = dA and dω, nor for the IIB self-dual

five-form. These expressions, along with details of the analysis, may be found above in

sections 2.2 and 3.2. We do note, however, that the two-form F must satisfy the additional

constraint given in (3.80).

Since the construction of arbitrary new backgrounds by solving the Monge-Ampère

equation (6.3) is a rather challenging task, we instead look at several classes of existing

solutions and see how they may be transformed into the 1/4 BPS form (6.1). In this way,

we are able to deduce the generic 1/4 BPS bubbling picture without having to turn directly

to the construction of explicit solutions.

Note, however, that (6.3) becomes much simpler to analyze in certain special cases,

such as when the complex two-dimensional base decomposes into a direct product of two

Riemann surfaces. We will study this case at the end of this section and show its connection

to the embedding of the LLM solution into the gauged ansatz.
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6.1 AdS5 × S5

Before expanding on the 1/4 BPS droplet picture, we start with the embedding of the

AdS5 × S5 ground state into the framework given by (6.1). We will then move on to more

complicated geometries.

As in section 5.2, we take global AdS5 × S5 written as:

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dΩ2

5

= − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3

+ sin2 θdψ2 + dθ2 + cos2 θ[cos2 αdφ2
1 + dα2 + sin2 αdφ2

2], (6.4)

where in the second line we have chosen an explicit parameterization of the five-sphere

metric. In order to embed this into the 1/4 BPS system of (6.1), we must identify the

appropriate S3 × S1 isometry for the embedding. While the S3 factor inside AdS5 is

obvious, there are several possible choices for the circle factor inside S5. By writing the

five-sphere metric as above, we have chosen to follow the ungauged 1/4 BPS ansatz, where

we set A = 0 from the start. Then, after comparing with (6.1), we choose to identify the

time coordinate t, as well as the S3 × S1 factors dΩ3 and dψ. (Another possibility, which

we do not pursue, would be to write S5 as U(1) bundled over CP 2 as in (5.12), and then

to follow the gauged 1/4 BPS ansatz.)

The above identification allows us to deduce

yeG = sinh2 ρ, ye−G = sin2 θ,

h−2 = sinh2 ρ + sin2 θ, y = sinh ρ sin θ. (6.5)

Thus the y coordinate is easily given in terms of the original global AdS5 × S5 variables.

In fact, these expressions are identical to their 1/2 BPS LLM counterparts. This suggests

that we simply use the LLM coordinate transformation

y = sinh ρ sin θ, r = cosh ρ cos θ, (6.6)

to map between (ρ, θ) and (r, y) coordinates. In particular, this yields

dy2 + dr2 = h−2(dρ2 + dθ2). (6.7)

For the remaining coordinates, we note, just as in the 1/8 BPS case of (5.18), that the

azimuthal angles ψ1 and ψ2 need to be shifted

φ1 = ψ1 − t, φ2 = ψ2 − t. (6.8)

After completing the square in dt, and comparing with (6.1), we now obtain the one-form

ω = h2 cos2 θ(cos2 αdψ1 + sin2 αdψ2), (6.9)

as well as the four-dimensional Kähler metric

ds2
4 = h2 sinh2 ρ

[
dr2 + h−2 cos2 θ(cos2 αdψ2

1 + dα2 + sin2 αdψ2
2)

+ cos4 θ(cos2 αdψ1 + sin2 αdψ2)
2
]

≡ Adr2 + B dΩ2
3 + C(cos2 αdψ1 + sin2 αdψ2)

2 . (6.10)
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In order to demonstrate that (6.10) is indeed Kähler, we identify the Kähler potential

K. To do so, we first write the metric entirely in terms of the coordinates (r, α, ψ1, ψ2).

This may be done by inverting (6.6) to obtain

sinh2 ρ =
1

2
(r2 + y2 − 1) +

√
1

4
(r2 + y2 − 1)2 + y2,

sin2 θ = −1

2
(r2 + y2 − 1) +

√
1

4
(r2 + y2 − 1)2 + y2, (6.11)

which gives us expressions for A, B and C in terms of (r, y) only. We now introduce

complex coordinates z1, z2 and, based on symmetry, assume that the Kähler potential is

only a function of r2 = |z1|2 + |z2|2 and y, namely K = K(r2, y). We then find that the

metric takes the form

ds2 = 2K ′(|dz1|2 + |dz2|2) + 2K ′′|z1dz1 + z2dz2|2, (6.12)

where primes are derivatives with respect to r2. To make contact with (6.10), we choose a

parameterization of z1 and z2 as

z1 = r cos αeiψ1 , z2 = r sin αeiψ2 . (6.13)

Using

|dz1|2 + |dz2|2 = dr2 + r2dΩ2
3,

|z1dz1 + z2dz2|2 = r2dr2 + r4(cos2 αdψ1 + sin2 αdψ2)
2, (6.14)

the Kähler metric (6.12) becomes

ds2 = 2(K ′ + r2K ′′)dr2 + 2r2K ′dΩ2
3 + 2r4K ′′(cos2 αdψ1 + sin2 αdψ2)

2. (6.15)

Comparing (6.15) with (6.10) gives the identifications

K ′ + r2K ′′ =
1

2
A, r2K ′ =

1

2
B, r4K ′′ =

1

2
C. (6.16)

Notice that this system is overdetermined, since the function K(r2) is determined by three

equations. However, we may verify that B + C = r2A and A = B′. As a result, the three

equations are redundant, and we are left with only K ′ = B/2r2, which may be integrated

to give the Kähler potential

K(r2, y) =
1

2

∫ r2
B(r2, y)

r2
d(r2). (6.17)

Although it is not particularly illuminating, we can perform the integral explicitly. Using

the expression for B,

B =
1

2
(r2 − y2 − 1) +

√
1

4
(r2 + y2 − 1)2 + y2, (6.18)
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we find that the Kähler potential is

K =
1

2

(
1

2
(r2 + y2 + 1) +

√
1

4
(r2 + y2 − 1)2 + y2

)

−1

2
log

(
1

2
(r2 + y2 + 1) +

√
1

4
(r2 + y2 − 1)2 + y2

)

−1

2
y2 log

(
1

2
(−r2 + y2 + 1) +

√
1

4
(r2 + y2 − 1)2 + y2

)
+

1

2
y2 log(y). (6.19)

The final function of y ensures that K satisfies the relation (6.2).

6.1.1 Boundary conditions

In analogy with the 1/8 BPS embedding of AdS5 × S5 as well as the 1/2 BPS LLM

embedding, we expect to find that boundary conditions at y = 0 will give us a spherical

surface. To make this apparent, we start by pointing out that our complex coordinates are

such that

|z1|2 + |z2|2 = r2. (6.20)

The coordinate y = sinh ρ sin θ vanishes in two cases, either when ρ = 0 or θ = 0. The

ρ = 0 case, corresponding to the S3 shrinking to zero size, tells us from (6.6) that r ≤ 1.

In turn, this translates into the interior of a spherical (unit radius) droplet:

|z1|2 + |z2|2 ≤ 1. (6.21)

On the other hand, the θ = 0 limit, which describes collapse of the S1, corresponds to the

outside of the spherical droplet,

|z1|2 + |z2|2 ≥ 1. (6.22)

Thus the two regions are separated by a three-dimensional sphere of unit radius.2 This

may be viewed as a higher-dimensional realization of the unit LLM circle, which describes

the 1/2 BPS embedding of AdS5 × S5, as well as a lower-dimensional realization of the

five-sphere which describes the 1/8 BPS embedding.

6.2 Two-charge smooth solutions

Starting from the round three-sphere, which describes the AdS5×S5 ground state, we now

move on to less trivial backgrounds. In particular, we now turn to the case of the smooth,

two-charge (1/4 BPS) solutions which can be obtained from the more general three-charge

case (5.34) by setting one of the charges to zero. To be specific, we choose to set H1 = 1

and the corresponding scalar field ϕ1 = 0 in (5.34).

2The reason for the unit radius is that we have taken the AdS5 radius to be one.
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Using the explicit expressions (5.35) for µ1 and µ2, the metric takes the form

ds2
10 = − f

√
∆

(H2H3)2/3
dt2 +

√
∆(H2H3)

1/3 f−1 dr2 + r2
√

∆(H2H3)
1/3 dΩ2

3

+
1√

∆(H2H3)1/3

[
cos2 θdθ2 + sin2 θ(dφ1 − dt)2

]

+
1√
∆

{
H

2/3
2

H
1/3
3

[
eϕ2

(
dµ3 − H−1

2 µ4 dt
)2

+ e−ϕ2

(
dµ4 + H−1

2 µ3 dt
)2]

+
H

2/3
3

H
1/3
2

[
eϕ3

(
dµ5 − H−1

3 µ6 dt
)2

+ e−ϕ3

(
dµ6 + H−1

3 µ5 dt
)2]

}
. (6.23)

If we let dψ = dφ1 − dt, we can think of ψ as parameterizing the S1 direction of the 1/4

BPS ansatz. In particular, this suggests the ungauged ansatz, as dψ is trivially fibered

over the remaining directions of the metric (6.23). However, for convenience in subsequent

manipulations, we will formally allow A 6= 0 for the moment. Along with S1, the S3 is also

clearly visible, which brings us to the following identifications:

y eG = r2(H2H3)
1/3

√
∆, y e−G =

sin2 θ√
∆(H2H3)1/3

, (6.24)

with

∆ = (H2H3)
1/3 sin2 θ +

H
1/3
3

H
2/3
2

cos2 θ sin2 α(e−ϕ2 sin2 φ2 + eϕ2 cos2 φ2)

+
H

1/3
2

H
2/3
3

cos2 θ cos2 α(e−ϕ3 sin2 φ3 + eϕ3 cos2 φ3). (6.25)

Thus, we find

y = r sin θ, eG =

√
∆(H2H3)

1/3 r

sin θ
,

h−2 = y eG + y e−G =
√

∆(H2H3)
1/3

(
r2 +

sin2 θ

∆(H2H3)2/3

)
. (6.26)

We will come back to these relations when we discuss boundary conditions.

To show that this solution fits into the 1/4 BPS ansatz (6.1), we could of course try

to embed it directly, by first identifying the four-dimensional base, and expressing it in

terms of complex coordinates. However, for the case of non-vanishing scalar fields ϕi, this

calculation turns out to be particularly cumbersome. We will instead make use of the

1/8 BPS embedding of the three-charge solution given in section 5.3, and require that the

solution has an additional U(1) isometry. Note that this is the same strategy that was

employed in the general 1/4 BPS discussion of section 3.2.

To impose an additional U(1), we take the Kähler potential of the 1/8 BPS solution

to be of the form

K = K(|z1|2, zi, z̄i), i = 2, 3, (6.27)
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where z1 = r̃ eiψ. This clearly corresponds to setting one of the scalar fields to zero, ϕ1 = 0

(and also H1 = 1). The six-dimensional base of the 1/8 BPS ansatz (5.39) then becomes

ds2
6 = hmndxm dxn = 2

[
∂i∂̄jK − r̃2

(r̃2K ′)′
∂iK

′ ∂̄jK
′

]
dzidz̄j +

d(r̃2K ′)2

2r̃2(r̃2K ′)′

+2r̃2(r̃2K ′)′
[
dψ +

ℑ(∂iK
′dzi)

(r̃2K ′)′

]2

, (6.28)

where now a prime denotes derivatives with respect to |z1|2 = r̃2. Next, we would like to

make the somewhat natural identification

y2 = 2r̃2K ′, (6.29)

which allows us to rewrite the base as

ds2
6 = 2

[
∂i∂̄jK − r̃2

(r̃2K ′)′
∂iK

′ ∂̄jK
′

]
dzidz̄j +

K ′

(r̃2K ′)′
dy2 + 2r̃2(r̃2K ′)′

[
dψ +

ℑ(∂iK
′dzi)

(r̃2K ′)′

]2

.

(6.30)

The ten-dimensional metric then becomes

ds2
10 = e2αdΩ2

3 + 2e−2α

[
∂i∂̄jK − r̃2

(r̃2K ′)′
∂iK

′ ∂̄jK
′

]
dzidz̄j + e−2α K ′

(r̃2K ′)′
dy2

+2e−2αr̃2(r̃2K ′)′
[
dψ +

ℑ(∂iK
′dzi)

(r̃2K ′)′

]2

− e2α(dt + ω1/8)
2, (6.31)

where we are adopting the notation ω1/8 for the three-charge (1/8 BPS) solution, so as to

avoid confusion with the 1/4 BPS ω. Clearly, the condition (6.29), if general, might shed

some light on the meaning of the y coordinate inside of the 1/8 BPS ansatz. Specifically, it

is natural to ask whether K ′ = 0 plays a crucial role in determining boundary conditions

on the y = 0 plane.

A first check of whether we have identified the y coordinate correctly is to show that

the gyy component of the metric takes the expected form, h2. To do so, we will use the

explicit relations for the Kähler potential of the three-charge solution. Recall that, in the

notation of section 5.3, we had z1 = ρ1(r
2) sin θ eiφ1 . Setting φ1 = ψ, and using (5.46), we

then find that

K ′ = ∂z1∂z̄1K =
r2

2ρ2
1

=
r2 sin2 θ

2r̃2
,

(r̃2K ′)′ =
sin2 θ

2r̃2

h2

√
∆(H2H3)1/3

, (6.32)

which allows us to show that

gyy = e−2α K ′

(r̃2K ′)′
= h2. (6.33)

Using e2α = yeG and e−2α r̃2(2r̃2K ′)′ = h−2e−2G, we find that the ten-dimensional metric

becomes

ds2
10 = yeGdΩ2

3 +
1

yeG
ds2

4 +h2 dy2 +h−2e−2G

[
dψ +

ℑ(∂iK
′dzi)

(r̃2K ′)′

]2

−e2α(dt+ω1/8)
2, (6.34)
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where we have defined

ds2
4 = 2

[
∂i∂̄jK − r̃2

(r̃2K ′)′
∂iK

′ ∂̄jK
′

]
dzidz̄j . (6.35)

Notice that the gtt component is still not in the appropriate 1/4 BPS form. To obtain the

correct form of gtt, it is enough to let ψ = ψ̃ − t. After using the following decomposition,

ω1/8 = ωψ dψ + ω̃, (6.36)

we shift the angle and find

ds2
10 = yeGdΩ2

3 +
1

yeG
ds2

4 + h2 dy2

+h−2e−2G

[
dψ̃ − dt +

ℑ(∂iK
′dzi)

(r̃2K ′)′

]2

− e2α(dt(1 − ωψ) + ωψdψ̃ + ω̃)2. (6.37)

Furthermore, using (5.40), we find that ωψ = −e−2G. It is then easy to show that the gtt

and gψ̃ψ̃ terms take the expected form:

gtt = h−2e−2G − yeG(1 − ωψ)2 = −h−2 ,

gψ̃ψ̃ = h−2e−2G − e2αω2
ψ = ye−G, (6.38)

so that the metric becomes

ds2
10 = yeGdΩ2

3 +
1

yeG
ds2

4 + h2 dy2 + ye−Gdψ̃2 − h−2(dt + ω)2 + h−2ω2

+ h−2e−2G

[
2dψ̃

ℑ(∂iK
′dzi)

(r̃2K ′)′
+

(ℑ(∂iK
′dzi)

(r̃2K ′)′

)2]
− e2α(ω̃2 + 2ωψ dψ̃ ω̃) , (6.39)

where

ω = ω̃ + e−2G ℑ(∂iK
′dzi)

(r̃2K ′)′
. (6.40)

We now deal with a possible U(1) gauging by completing the square in dψ̃. In partic-

ular, by defining

A = ω̃ +
h−2

y eG

ℑ(∂iK
′dzi)

(r̃2K ′)′
, (6.41)

the metric can then be put into precisely the gauged form of the 1/4 BPS ansatz:

ds2
10 = yeGdΩ2

3 +
1

yeG
ds2

4 + h2 dy2 − h−2(dt + ω)2 + ye−G(dψ̃ + A)2. (6.42)

where we have used the fact that

−ye−GA2 + h−2

[
e−2Gℑ(∂iK

′dzi)

(r̃2K ′)′
+ ω̃

]2

+ h−2e−2G

(ℑ(∂iK
′dzi)

(r̃2K ′)′

)2

− e2αω̃2 = 0. (6.43)

As indicated by the form of the initial metric (6.23), where the circle defined by

dψ = dφ1 − dt is trivially fibered over the base, it is surprising to see that the gauged
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form of the 1/4 BPS ansatz has now turned up. However, we still have not used the

explicit relations (5.46) for the Kähler potential to simplify A. Once we do this, we indeed

find A = 0, which brings the solution to the ungauged form:

ds2
10 = yeGdΩ2

3 +
1

yeG
ds2

4 + h2 dy2 − h−2(dt + ω)2 + ye−Gdψ̃2, (6.44)

in agreement with initial expectations. Furthermore, we can use the condition A = 0 to

express ω in terms of the 1/8 BPS one-form ω1/8:

ω = −ℑ(∂iK
′dzi)

(r̃2K ′)′
= y h2

[
eG ω1/8 + e−G dψ

]
. (6.45)

The final step is to find the explicit expression for the four-dimensional Kähler met-

ric (6.35). Using the following expressions for derivatives of the Kähler potential

∂iK
′ =

z̄i cosh ϕi − zi sinh ϕi

2ΛH2H3ρ
2
i

,

∂̄jK
′ =

zj cosh ϕj − z̄j sinh ϕj

2ΛH2H3ρ2
j

,

(r̃2K ′)′ =
r2 ∆ (H2H3)

2/3 + r̃2

2∆ (H2H3)2/3
,

∂i∂̄jKdzidz̄j =
∑

i

r2Hi

2ρ2
i

dzidz̄i

+
∑

i,j

(z̄i cosh ϕi − zi sinhϕi)(zj cosh ϕj − z̄j sinhϕj)

2ΛH2H3 ρ2
i ρ2

j

dzidz̄j , (6.46)

where

Λ =
∆

(H2 H3)1/3
, (6.47)

we finally obtain

ds2
4 =

r2Hi

ρ2
i

|dzi|2 +
(z̄i cosh ϕi − zi sinhϕi)(zj cosh ϕj − z̄j sinhϕj)

ρ2
i ρ

2
j

[
∆(H2H3)2/3 + y2/r4

] dzidz̄j . (6.48)

Note that one can obtain the special case of the singular two-charge black hole (super-

star) from the expressions above by setting ϕi = 0. This is very similar to the three-charge

extremal black hole solution (superstar) which we described with the 1/8 BPS examples.

In this case, the harmonic functions are given by

Hi = 1 +
Qi

r2
, (6.49)

where Qi label the black hole charges. The expression for ∆ now simplifies

∆ = (H2H3)
1/3 sin2 θ +

H
1/3
3

H
2/3
2

cos2 θ sin2 α +
H

1/3
2

H
2/3
3

cos2 θ cos2 α, (6.50)
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and so do the derivatives of K:

∂iK
′ =

z̄i

2ΛH2H3ρ
2
i

,

(r̃2K ′)′ =
r2 ∆ (H2H3)

2/3 + r̃2

2∆ (H2H3)2/3
,

∂i∂̄jKdzidz̄j =
∑

i

r2Hi

2ρ2
i

dzidz̄i +
∑

i,j

z̄i zj

2ΛH2H3 ρ2
i ρ2

j

dzidz̄j . (6.51)

The final metric then becomes

ds2
4 =

r2Hi

ρ2
i

|dzi|2 +
z̄i zj

ρ2
i ρ

2
j

[
∆(H2H3)2/3 + y2/r4

]dzidz̄j . (6.52)

We note that, for the specific case of two equal charges, we were also able to embed this

solution directly, without resorting to the 1/8 reduction, and found agreement.

6.2.1 Boundary conditions

We would like to emphasize again that for the LLM 1/2 BPS picture of [1], the boundary

value (on the y = 0 plane) of the function Z gave the black and white coloring of all the

solutions, and was a crucial element in the development of the droplet picture. In this

respect, the 1/4 BPS system is more similar to the LLM case than to the 1/8 BPS case,

as it also involves a y = 0 boundary plane and a binary choice of either the S3 or the S1

collapsing. As in the LLM case, this boundary condition is encoded in the behavior of

Z [defined in the usual manner according to (6.2)] as the y coordinate vanishes. We now

investigate this for the two charge bubble solutions.

We first combine the expressions (6.24) and (6.25) above to find Z for the smooth

two-charge solutions:

Z =
1

2
tanh G =

1

2

r2∆(H2H3)
2/3 − sin2 θ

r2∆(H2H3)2/3 + sin2 θ

=
1

2
− sin2 θ

r2∆(H2H3)2/3 + sin2 θ
. (6.53)

Since y = r sin θ from (6.26), the y → 0 boundary is reached when either r → 0 or θ → 0.

Looking at the non-trivial denominator of the expression above,

r2∆(H2H3)
2/3 + sin2 θ = sin2 θ(1 + r2H2H3)

+r2 H3 cos2 θ sin2 α(sin2 φ2e
−ϕ2 + cos2 φ2e

ϕ2)

+r2 H2 cos2 θ cos2 α(sin2 φ3e
−ϕ3 + cos2 φ3e

ϕ3), (6.54)

one finds that

Z(θ → 0) = +
1

2
. (6.55)

The case of r → 0 with deformations turned on is more delicate, especially since explicit

solutions for H2,3 are not known. However, we note that as long as H2 and H3 approach

– 62 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

a constant (and even in the case H2,3 ∼ 1/r) as r → 0, we find

Z(r → 0) = −1

2
(for ϕ2,3 6= 0). (6.56)

Next, we would like to ask whether the boundary conditions found above translate into

the presence of a three-dimensional surface embedded in four dimensions. From (6.26) we

know that the y coordinate of the two-charge solution was identified to be

y = r sin θ = rµ̃1 . (6.57)

Clearly y vanishes when either r = 0 or when θ = 0. Using
∑

i µ̃
2
i = 1 and the definition

of our complex coordinates, we find

y2 = r2(1 − µ̃2
2 − µ̃2

3)

= r2

[
1 −

∑

i=2,3

1

4ρ2
i

(
e−ϕi(zi + z̄i)

2 − eϕi(zi − z̄i)
2

)]
. (6.58)

Thus, we see that the θ = 0 condition guaranteeing y = 0 corresponds to the surface

[
1 −

∑

i=2,3

1

4ρ̄2
i

(
e−ϕ̄i(zi + z̄i)

2 − eϕ̄i(zi − z̄i)
2

)]
= 0, (6.59)

where ρ̄i ≡ ρi(r = 0) and ϕ̄i ≡ ϕi(r = 0). The surface denotes the boundary between

regions where the S3 shrinks (r → 0) and regions where the S1 shrinks (θ → 0). To see

more explicitly that this surface is in fact an ellipsoid embedded in four dimensions, we

can rewrite it using zi = xi + iyi in the following way:

∑

i=2,3

[
x2

i

e−ϕ̄i

ρ̄2
i

+ y2
i

eϕ̄i

ρ̄2
i

]
= 1. (6.60)

We would like to make a few simple comments about the relation between the ellipsoid

above and the five-dimensional one (5.66) obtained in the 1/8 BPS case. The 1/4 BPS

ellipsoid (6.60) can be thought of as the ϕ1 = 0, ρ̄1 = 1 limit of the 1/8 BPS ellipsoid (5.66),

with the S1 which rotates x1 and x2 shrinking to zero. Furthermore, we can consider the

1/2 BPS limit of (6.60) by setting another charge to zero (say Q2 = 0, or ϕ̄2 = 0), and

looking at the subspace where x2
2 + y2

2 = 0. By doing so, we find a simpler one-dimensional

surface described by

x2
3

e−ϕ̄3

ρ̄2
3

+ y2
3

eϕ̄3

ρ̄2
3

= 1, (6.61)

which is an ellipse in the two-dimensional (LLM) droplet plane. This corresponds to a

horizon-free, smoothed-out solution for the 1/2 BPS singular black hole. One can alter-

natively arrive at this one-dimensional ellipse by considering another limit of the 1/8 BPS

ellipsoid (5.66), in which ϕ1 = ϕ2 = 0, ρ̄1 = ρ̄2 = 1, and the S3 rotating the x1, x2, x3 and

x4 coordinates is shrinking to zero.
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Let us now turn to the two-charge singular black hole (superstar) case, which is ob-

tained by turning off the deformations, i.e. by setting ϕi = 0. Recalling that Hi = 1+Qi/r
2,

we find that the function Z becomes

Z =
1

2
− 1

1 + Q2 + Q3 + r2 + Q2 Q3/r2 + cot2 θ[(r2 + Q3) sin2 α + (r2 + Q2) cos2 α]
.

(6.62)

We can now see that Z approaches the same constant value independently of how y is going

to zero,

Z(θ → 0) = +
1

2
, (6.63)

Z(r → 0) = +
1

2
, (6.64)

provided neither charge vanishes. In particular, it is the Q2 Q3/r
2 factor in the denominator

of Z which causes Z → +1
2 even when r → 0. This is consistent with what we find if we

look at what happens to the radii of S3 and S1 as r → 0:

r(S3) →
√

Q2Q3 sin θ,

r(S1) → 0. (6.65)

On the other hand, when θ → 0, one recovers the usual result, with the S3 staying finite

and the S1 shrinking to zero. It is precisely the fact that S1 → 0 in both limits which

makes Z = 1/2 all the time.

Clearly, if we take one of the two charges in (6.62) to vanish, our result should be

comparable to the one-charge superstar configuration. In that case it was found that, as

r → 0, the function Z approached a Q-dependent factor [1]3

Z → 1

2

Q − 1

Q + 1
. (6.66)

Indeed, if we take, for example, H1 = H2 = 1 and H3 = 1 + Q/r2, we find that Z becomes

Z =
1

2
− 1

1 + r2 + Q + cot2 θ(r2 + Q sin2 α)
−→ 1

2

Q(1 + cot2 θ sin2 α) − 1

Q(1 + cot2 θ sin2 α) + 1
as r → 0 ,

a result that is similar to (6.66), except for some additional angular dependence. To

conclude, we would like to note that the r → 0 behavior (6.64) of Z for the two-charge

black hole is due to the additional presence of flux, forcing the second term in (6.62) to

approach zero.

Finally, we would like to identify, for the superstar, the regions in the four-dimensional

subspace where y = 0. We can take the smooth two-charge solution result (6.58) and set

ϕi = 0. We then see that y vanishes either when r = 0 or on the ellipsoidal surface

∑

i=2,3

|zi|2
ρ̄2

i

= 1. (6.67)

Similarly to the three-charge black hole case, if the charges are the same the surface de-

generates into a sphere.

3Studies have shown that this distribution corresponds to “typical states” given by approximately tri-

angular Young diagrams [36].
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6.3 LLM

We now turn to the embedding of configurations which preserve 1/2 of the available super-

symmetries, namely the LLM solutions. These are clearly a subset of the 1/4 BPS states.

Recall the general form of the LLM metric, which is given in (5.81), and which we repeat

here for convenience

ds2
10 = −ĥ−2(dt̂ + V )2 + ĥ2(|dz1|2 + dŷ2) + ŷ(eĜdΩ2

3 + e−ĜdΩ̃2
3). (6.68)

Note that we have added a hat over LLM quantities to distinguish them from their 1/4 BPS

counterparts. The most straightforward way to embed this into the 1/4 BPS ansatz (6.1)

is to write the second three-sphere S̃3 of (6.68) as the Hopf fibration of U(1) bundled over

CP 1, and then to proceed with the gauged form of the 1/4 BPS ansatz. This is done by

grouping z1 with the complex coordinate on CP 1 to form a four-dimensional Kähler base

ds2
10 = −ĥ−2(dt̂ + Vz1dz1 + Vz1dz1)

2 + ĥ2dŷ2 +
[
ĥ2dz1dz1 + ŷe−Ĝds2(CP 1)

]

+ŷe
bGdΩ2

3 + ŷe−Ĝ(dψ̂ + Â)2, (6.69)

where dÂ = 2Ĵ and Ĵ is the Kähler form on CP 1.

A direct comparison of the above with the 1/4 BPS form of the metric (6.1) allows us

to make the identifications:

h = ĥ = (2ŷ cosh Ĝ)−
1
2 , t = t̂, y = ŷ, eG = eĜ, ψ̂ = ψ,

ω = Vz1dz1 + Vz1dz1, A = Â, F = dA = 2Ĵ . (6.70)

The field strength F has flux through CP 1 and is quantized. We also infer that the four-

dimensional subspace is given by:

hij̄dzidz̄j̄ = yeG

[
h2dz1dz1 + ye−G dz2dz2

(1 + |z2|2)2
]

=

(
Z +

1

2

)
dz1dz1 + y2 dz2dz2

(1 + |z2|2)2
, (6.71)

where we have written out the explicit metric on CP 1. Here Z = Z(z1, z1, y) = 1
2tanhG is

just the LLM harmonic function introduced in [1] and satisfying (3.97)

4∂1∂1̄Z + y∂y

(
1

y
∂yZ

)
= 0, (6.72)

where we have used that z1 = x1 + ix2 and have rewritten the two-dimensional Laplacian

in terms of complex derivatives.

It is now clear that the four-dimensional base with metric (6.71) decomposes into a

direct product of two complex subspaces, the first being related to the two-dimensional

LLM base and the second being simply CP 1 warped by y2. To be explicit, we may write

out the Kähler potential yielding (6.71) as a sum of two terms

K =
1

2
y2 log(1 + |z2|2) +

1

2

∫ ∫ z1,z̄1
(

Z(z′1, z̄
′
1, y) +

1

2

)
dz′1dz̄′1, (6.73)
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where the above integral is an indefinite integral (which allows for Kähler transformations).

Lastly, we observe that the harmonic function Z obeys the 1/4 BPS constraint (6.2),

Z = −(y/2)∂yy
−1∂yK. (Note that this condition removes the freedom to perform Kähler

transformations on K.) To see this, it is useful to act on both sides with ∂1∂̄1, sub-

stitute (6.73), and notice that the ensuing equation is nothing but the harmonic equa-

tion (6.72).

To ensure that we really have a valid embedding, we would like to verify that the

non-linear Monge-Ampère equation (6.3) is satisfied as well:

det hij̄ =
y2(Z + 1

2)

(1 + |z2|2)2
= eD

(
Z +

1

2

)
ynη exp

(
1

y
(2 − nη)∂yK

)
, (6.74)

where we have used the explicit form of the four-dimensional metric (6.71). We now see

that the y-dependence matches, provided that we identify the U(1) charge of the Killing

spinor with

nη = 2 . (6.75)

In this case, the final term in (6.74) becomes trivial, and we are left with the identification

eD =
1

(1 + |z2|2)2
, (6.76)

which must be compatible with (6.3), which constrains D. Since D = −2 log(1 + |z2|2), we

see that ∂∂̄D = 4iJ2 where J2 is the Kähler form on CP 1. In this case, it is easy to verify

that

(1 + ∗4)∂∂̄D =
4i

y2
J4, (6.77)

where J4 = i∂∂̄K is the Kähler form on the full base metric (6.71). This verifies that the

constraint (6.3) is indeed satisfied.

6.3.1 Boundary conditions

Finally, we are interested in the lifting of the LLM boundary conditions into the gauged

1/4 BPS ansatz. Here, we notice from (6.70) that, since both y = ŷ and G = Ĝ, the 1/4

BPS function Z is identified with the corresponding LLM one

Z(z1, z2, z̄1, z̄2, y) = ZLLM(z1, z̄1, y). (6.78)

As usual, the boundary conditions are imposed on the y = 0 subspace where either S3 or

S1 (inside S̃3) shrinks to zero size. The LLM solutions are regular if either Z = −1/2,

which corresponds to shrinking S3, or if Z = 1/2, which corresponds to shrinking S̃3.

When lifted to the gauged 1/4 BPS ansatz, the boundary surfaces implied by (6.78) are

z2 independent. This indicates that the 1/2 BPS LLM droplets lift into four-dimensional

droplets which are simply the direct product of of the two-dimensional droplet in the (z1, z̄1)

plane with the CP 1 formed by (z2, z̄2). The boundaries of these droplets are then three-

real dimensional surfaces formed from the direct product of the boundary lines of the LLM

droplets with CP 1.
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Unlike the above two examples of the AdS5×S5 sphere and the ellipsoidal deformations

of the two-charge BPS bubble solution, here the shapes of the droplets are different. The

reason for this is because we have used a different choice of embedding for the LLM system,

corresponding to the gauged ansatz, instead of the ungauged ansatz which was used above.

In fact, because the LLM configurations preserve the full S̃3 isometry, and since the gauged

ansatz has an explicit S1 fiber, the three dimensional boundary surfaces necessarily have a

CP 1 invariance (so that S1 fibered over CP 1 forms the round S̃3). Therefore these surfaces

must be of the form of a direct product of a real curve in the LLM plane with CP 1. (The

CP 1 is determined from the solution for the function D in (6.76).)

Note that, unlike in the case of the (z1, z̄1) LLM plane, which has a regular flat metric,

here the four-dimensional y = 0 subspace given in (6.71) has non-trivial geometry; it is

in fact singular since the CP 1 metric vanishes as y → 0. (In general, the behavior of the

base may be different for the two separate cases Z → 1
2 and Z → −1

2 .) This singularity

as y → 0 is reminiscent of the 1/8 BPS case, where the six-dimensional base also develops

a curvature singularity as the 1/8 BPS y variable approaches zero. Although the full

ten-dimensional metric is non-singular, this nevertheless complicates the issue of making

any direct comparison of the four-dimensional boundary subspace with any corresponding

phase space in the dual gauge theory.

To make a closer comparison with the 1/8 BPS lifting of section 5.4, it may be advan-

tageous to turn instead to an ungauged embedding of LLM into the 1/4 BPS ansatz. This

is perhaps most straightforwardly accomplished by reducing the 1/8 BPS lift of section 5.4

on a circle according to either (3.22) or some variation thereof. However, since the result

of doing so would only yield a modified interpretation of the 1/8 BPS picture considered

in section 5.4, we will not pursue this here.

6.4 General analysis with a decomposable four-dimensional base

The above LLM embedding in the 1/4 BPS ansatz was facilitated by taking the four-

dimensional base to be a warped product of the LLM plane with CP 1. In this subsection,

we address the question of whether new classes of 1/4 BPS solutions may be obtained

where the four-dimensional base, parameterized by the complex coordinates z1, z2, is a

direct product of two Riemann surfaces. In particular, if the base is factorizable, then the

Kähler potential would be given by the sum

K = K1(z1, z̄1, y) + K2(z2, z̄2, y). (6.79)

Following the general outline of the LLM embedding, we shall also assume that

Z = Z(z1, z̄1, y), D = D(z2, z̄2, y). (6.80)

Since Z is related to K by (6.2), the requirement that Z is independent of z2, z̄2 translates

into

∂2∂y

(
1

y
∂yK

)
= 0, ∂2̄∂y

(
1

y
∂yK

)
= 0. (6.81)

Therefore, we find that the y-dependence of K2 is fixed:

K2 = y2k2(z2, z̄2) + k̃2(z2, z̄2 ). (6.82)
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Also, from the second equation in (6.3), we find that

D =
4

y2
(1 − nη)K2 + d(z2, y) + d̄(z̄2, y) . (6.83)

The immediate advantage of the assumptions we have made is that the non-linear

Monge-Ampère equation factorizes. Under these conditions, the first equation in (6.3) is

replaced by the following two equations:

∂1∂1̄K1 =
k(y)

2

(
Z +

1

2

)
exp

(
1

y
(2 − nη)∂yK1

)
,

∂2∂2̄K2 =
1

2k(y)
ynη exp

(
1

y
(2 − nη)∂yK2

)
eD, (6.84)

where k(y) is an arbitrary function. Substituting (6.82) and (6.83) into (6.84), we find

y2∂2∂2̄k2+∂2∂2̄k̃2 =
1

2k(y)
ynη exp

(
2(2−nη)k2

)
exp

(
4

y2
(1−nη)(y2k2+k̃2)+d+d̄

)
. (6.85)

Since k2, and k̃2 are y-independent, matching the y-dependence on both sides of the pre-

vious equation requires that

4(1 − nη)
1

y2
k̃2 + d + d̄ = 0, (6.86)

and

y2 =
1

k(y)
ynη. (6.87)

Here we used the fact that the left-hand side of (6.85) is a polynomial of degree two in

y to infer that the infinite series in y on the right-hand side must truncate. After the

y-dependence has been factored out, we are left with

∂2∂2̄k2 =
1

2
exp

(
2(4 − 3nη)k2

)
. (6.88)

Alternatively, we can rewrite this as a Liouville equation for D:

1

1 − nη
∂2∂2̄D = 2exp

(
4 − 3nη

2(1 − nη)
D

)
. (6.89)

The z1 dependence of the four-dimensional Kähler base is dictated by the remaining equa-

tion:

∂1∂1̄K1 =
1

2
ynη−2

(
Z +

1

2

)
exp

(
1

y
(2 − nη)∂yK1

)
. (6.90)

A further restriction, namely

nη = 2, (6.91)

which is identical to the LLM embedding case (6.75), then allows us to find explicit solu-

tions.

Using (6.91), the Liouville equation for D becomes

∂2∂2̄D + 2eD = 0, (6.92)
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whose solutions are expressed in terms of an arbitrary holomorphic function D(z2):

eD =
|∂2D(z2)|2

(1 + |D(z2)|2)2
. (6.93)

The choice of Killing spinor U(1) charge according to (6.91) leads to a drastic simplification

of (6.90)

∂1∂1̄K1 =
1

2

(
Z +

1

2

)
, (6.94)

which can be easily integrated. Of course, Z is constrained by (6.2). The compatibility of

these two equations yields

4∂1∂1̄Z + y∂y
1

y
∂yZ = 0 , (6.95)

which is the harmonic equation that we encountered before in the context of LLM solutions.

Given the above, it is now easy to see that the base has a metric of the form

ds2
4 =

(
Z +

1

2

)
dz1dz̄1 + y2eDdz2dz̄2

=

(
Z +

1

2

)
dz1dz̄1 + y2 |∂2D(z2)|2

(1 + |D(z2)|2)2
dz2dz̄2. (6.96)

A change of variables z2 → w ≡ D(z2) then results in

ds2
4 =

(
Z +

1

2

)
dz1dz̄2 + y2 dwdw̄

(1 + |w|2)2 , (6.97)

which is identical in form to that of (6.71). This demonstrates that the LLM lift examined

in section 6.3 is essentially the unique configuration corresponding to a decomposable base.

Additional possibilities may exist, however, where the Killing spinors carry a different U(1)

charge, nη 6= 2.

6.5 Flux quantization

Until now, we have focused on developing a droplet picture by examining the loci of shrink-

ing surfaces (S3 or S1) while ignoring flux issues. However, we conclude this section by

considering the IIB five-form flux integral near y = 0, with the goal of obtaining a flux

quantization condition. To obtain explicit results, we limit the following analysis to the

LLM embedding, where the four-dimensional base is decomposable. In this case, the ten-

dimensional metric and flux take the form

ds2
10 = −h−2(dt + ω)2 + h2dy2 + yeGdΩ2

3 + ye−G(dψ + A)2

+
1

yeG

[(
1

2
+ Z

)
|dz1|2 + y2eD|dz2|2

]
, (6.98)

F(5) = (1 + ∗10)

(
d[y2e2G(dt + ω)] + y2(dω − dA)

−i

[(
1

2
+ Z

)
dz1 ∧ dz̄1 + y2eDdz2 ∧ dz̄2

])
∧ Ω3, (6.99)
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where we used (3.45) to obtain the components of the five-form. Note that here we have

explicitly set η = −1.4

We first want to consider the flux that is orthogonal to the (dt+ω)∧dy∧Ω3 directions.

This flux component is easy to identify using (6.99) and (3.45). The integral of its Hodge

dual is given by:
∫

Z=− 1
2

∗10F(5) =

∫

y=0
∗10[∂y(y

2e2G)dy ∧ (dt + ω) ∧ Ω3]

=

∫

y=0

[
2

(
1

2
− Z

)
+

y∂yZ
1
2 + Z

]

y=0

eD i

2
dz1 ∧ dz̄1 ∧

i

2
dz2 ∧ dz̄2 ∧ (dψ + A).

(6.100)

It can be seen from (3.45) that A has components along the coordinates on the four-

dimensional Kähler base only, so dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 ∧ A = 0. We can perform the

flux integral by first integrating out dψ, and then reducing it to an integral over the four-

dimensional Kähler base (at y = 0). Notice that (always assuming we are at y = 0) when

Z = −1
2 , which corresponds to the S3 collapsing to zero size, we have

[
2

(
1

2
− Z

)
+

y∂yZ
1
2 + Z

]

y=0

= 4. (6.101)

Thus, the flux integral reduces to
∫

Z=− 1
2

∗10F(5) =

∫

y=0
(2π)4eD

∣∣
y=0

i

2
dz1 ∧ dz̄1

i

2
∧ dz2 ∧ dz̄2

= 4 Vol
(
Σ3

∣∣
y=0

) ∫

Z=− 1
2

i

2
dz1 ∧ dz̄1 ∼ NZ=− 1

2
, (6.102)

where Vol
(
Σ3

∣∣
y=0

)
=

∫
y=0 eD

∣∣
y=0

i
2dz2∧dz̄2∧(dψ+A) is the volume of a three dimensional

surface at y = 0. This corresponds to the case of D3-branes originally wrapping the S3 in

AdS5 being replaced by five-form fluxes through dual five-cycles (i.e. Σ3

∣∣
y=0

fibered over

the Z = −1
2 region of the z1 plane).

Next, we consider the self-dual five-form with component along dz1 ∧ dz̄1 ∧ Ω3, and

evaluate its flux integral:

∫

Z= 1
2

∗10F(5) =

∫

y=0

[
− i

(
1

2
+ Z

)

y=0

dz1 ∧ dz̄1 ∧ Ω3 +

(
y2e2G 1

y
∂yJ

)

y=0

∧ Ω3

]

=

∫

y=0

[
2

(
1

2
+ Z

)
− y∂yZ

1
2 − Z

]

y=0

−i

2
dz1 ∧ dz̄1 ∧ Ω3. (6.103)

The second term in the first line comes from the y2e2Gdω ∧Ω3 term in the flux near y = 0

in expression (3.45). Notice that, similarly to what happened in (6.100), when Z = +1
2

4In general, taking the period of ψ to be 2π, choosing η = 1 or −1 corresponds to choosing chirality

(1, 2) or (2, 1) under SU(2)L × SU(2)R for the Killing spinors on S3 in (2.11).
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(corresponding to the three-cycle Σ3

∣∣
y=0

collapsing), we have

[
2

(
1

2
+ Z

)
− y∂yZ

1
2 − Z

]

y=0

= 4. (6.104)

Thus, the flux integral reduces to

−
∫

Z= 1
2

∗10F(5) = 4 Vol(S3)

∫

Z= 1
2

i

2
dz1 ∧ dz̄1 ∼ NZ= 1

2
. (6.105)

Once again, this corresponds to the case of D3-branes, originally wrapping the Σ3

∣∣
y=0

in

S5, being replaced by five-form fluxes through dual five-cycles (i.e. S3 fibered over the

Z = 1
2 region of the z1 plane).

7. Regularity conditions for 1/8 BPS configurations

In the previous few sections, we have been concerned with developing a droplet description

of generic 1/8 and 1/4 BPS smooth solutions of type IIB supergravity, corresponding

to bubbling AdS configurations. These configurations have either an S3 isometry, or an

S3 × S1 isometry. The only non-trivial ten-dimensional fields are the self-dual five-form

field strength and the metric. We have also studied in detail several classes of explicit

solutions, and investigated their corresponding boundary conditions at y = 0. It should be

noted, however, that by starting with known regular solutions (such as the three-charge

smooth solutions of [32] or the original 1/2 BPS LLM solutions [1]), we are necessarily

guaranteed to obtain regular examples of 1/4 and 1/8 BPS embeddings.

It would be desirable, of course, to explore both regularity conditions as well as bound-

ary conditions on the BPS geometries directly, without prior knowledge of explicit solutions.

What we mean here by boundary conditions are the conditions specifying the droplets,

i.e. the one or three-dimensional droplet boundaries on the y = 0 subspaces for the cases

of 1/2 and 1/4 BPS solutions, or the five-dimensional droplet boundaries for the 1/8 BPS

case. For 1/2 BPS LLM solutions, the uniqueness of the Green’s function solution to (3.97)

ensures that each droplet picture corresponds to a unique geometry.5 Furthermore, in the

absence of cusps or other pathologies in the droplets, all such 1/2 BPS solutions are regular.

Hence no additional regularity conditions need to be imposed, at least for generic smooth

droplets.

Because of the nonlinear equations underlying the supersymmetry analysis, however,

the regularity situation for 1/4 and 1/8 BPS configurations is less clear. In principle, just

as in the LLM case, it appears that droplets can have any arbitrary shape or configuration;

we simply choose any desired three or five-dimensional boundary surface inside R
4 or R

6,

respectively, for the 1/4 and 1/8 BPS cases. However, it is not obvious that an arbitrary

choice would always lead to a regular smooth geometry in the full ten-dimensional sense.

After all, it is the nature of non-linear equations that they do not always admit well behaved

5Note also that boundary conditions at y → ∞ are encoded in the Green’s function. These are necessary

to ensure a proper asymptotic AdS5 geometry.
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solutions throughout their entire parameter range. Furthermore, even if a regular geometry

exists, its uniqueness could be questioned.

For the droplet picture that we have presented to be useful, each droplet configuration

ought to give rise to a unique geometry. Based on the LLM experience, it certainly seems to

be the case that droplet collections would be unique, so long as we demand the geometry

to be asymptotically AdS5 × S5. We are, however, unable to prove such uniqueness.

Nevertheless, we will motivate this statement by examining the approach to AdS5 × S5

in the asymptotic regime. Before doing so, however, we first examine conditions on the

regularity of the geometry near the y = 0 boundary.

For concreteness, we focus our attention on the 1/8 BPS configurations. (This also

encompasses 1/4 and 1/2 BPS configurations as special cases.6 ) These solutions can be

viewed as R × S3 fibrations over a six-dimensional Kähler base which ends, as y → 0, on

(generally disconnected) five-dimensional surfaces, where the S3 fiber shrinks to zero size.

We are interested in understanding the necessary conditions which ensure the regularity of

such solutions as y → 0. These conditions then allow us to understand the behavior of the

Kähler potential near the five-dimensional droplet boundaries, and will provide additional

insight into the moduli space of droplets in reduced supersymmetry configurations.

7.1 Regular boundary conditions near y = 0

Focusing on 1/8 BPS configurations, we recall from (4.1) that the full ten-dimensional

metric is of the form

ds2
10 = −y2(dt + ω)2 +

2

y2
∂i∂jKdzidz̄j̄ + y2dΩ2

3, (7.1)

where the radial direction y corresponds to the size of the S3

y2 = e2α(zi, z̄j̄). (7.2)

If the scalar field α is constant (as in the case of the AdS3 × S3 × T 4 solution), then the

only regularity condition which must be enforced is on the six-dimensional Kähler metric

hij̄ . Otherwise, y = 0 corresponds to a potentially singular locus, with the three-sphere

dΩ2
3 shrinking to zero size. To avoid this singularity, the ten-dimensional metric must take

the form

ds2
10 = −y2(dt + ω)2 +

1

y2

(
y2dy2 + y2dΣ2

4 + N 2
ψ(dψ + A)2

)
+ y2dΩ2

3, y ≪ 1. (7.3)

As long as the four-dimensional subspace dΣ2
4 is y-independent, then the y2dΩ2

3 + dy2 line

element yields a regular (locally flat) four-dimensional component of the ten-dimensional

geometry. The four-dimensional component dΣ2
4 is similarly regular (at least in terms of

taking the y → 0 limit). Here Nψ is a function of the coordinates on dΣ2
4, and is finite

at y = 0. However, the remaining two-dimensional component involving t and ψ is still

potentially singular, as gtt → 0 and gψψ → ∞.

6In appendix D we perform a regularity analysis directly on the 1/4 BPS solutions with an ungauged

S3
× S1 isometry.
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To completely elucidate the y → 0 behavior of the 1/8 BPS solution, we first turn to

the requirement that the six-dimensional base is Kähler. In this case, we may take the

three complex coordinates to be given by

zj = rje
iφj , j = 1, 2, 3. (7.4)

Furthermore, the metric is determined by the Kähler potential K(zi, z̄j̄)

ds2
6 = hmndxmdxn = 2hij̄dzidz̄j̄ = 2∂i∂j̄Kdzidz̄j̄ , (7.5)

where m and n are real indices and i and j are complex indices. Assuming toric geometry,

we now introduce a new real function F , defined in the following way:

y2 ≡ F (r2
1 , r

2
2, r

2
3). (7.6)

We are looking for a Kähler potential which will give us, in the region near y = 0, a metric

of the form

ds2
6 = y2dy2 + y2dΣ2

4 + N 2
ψ(dψ + A)2. (7.7)

Henceforth our analysis will refer strictly to the y ≪ 1 region. A Kähler potential satisfying

our requirement is

K(zi, zj̄) =
1

4
y4 + O(y6), (7.8)

up to an irrelevant constant. Given the definition of y in (7.6), it follows that for y ≪ 1, the

six-dimensional base is toric, with a U(1)3 isometry. This may be too strong a requirement,

but it allows us to consider a rather large class of solutions (F is only required to be a

smooth non-singular function of r2
1, r2

2, r2
3), and at the same time to be very specific. Then,

using the chain rule

ydy = F1r1dr1 + F2r2dr2 + F3r3dr3, Fi =
∂F

∂r2
i

, (7.9)

we find

ds2
6 =

3∑

a=1

[
F 2

a r2
a + y2(Faar

2
a + Fa)

] (
dr2

a + r2
adφ2

a

)

+2

3∑

a<b

[
FaFb + y2Fab

]
r2
ar

2
b

(
dradrb

rarb
+ dφadφb

)
, (7.10)

where

Fij =
∂2F

∂r2
i ∂r2

j

. (7.11)

From y2 = F (r2
1, r

2
2 , r

2
3), by eliminating, say, r1 in favor of y,

r2
1 = f(y2, r2

2 , r
2
3), (7.12)

we can express the metric in terms of the {y, φ1, r2, φ2, r3, φ3} coordinates.
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The leading order terms of the six-dimensional metric are

ds2
6 = dy2 y2 +

1

f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)

2

+

[
dr2

2

y2

fy

(
−f2 − f22r

2
2 +

f2
2 r2

2

f

)
+ dr2

3

y2

fy

(
−f3 − f33r

2
3 +

f2
3 r2

3

f

)

+2dr2dr3
y2

fy
r2r3

(
−f23 +

f2f3

f

)

+dφ2
2

y2r2
2

f2
y

(
2r2

2f2yf2 − f2fy − r2
2fyf22 −

r2
2f

2
2fyy

fy

)

+dφ2
3

y2r2
3

f2
y

(
2r2

3f3yf3 − f3fy − r2
3fyf33 −

r2
3f

2
3fyy

fy

)

+2dφ2dφ3
y2r2

2r
2
3

fy
(−f23 + f2yf3 + f3yf2 − f2f3fyy)

]
, (7.13)

where

fy =
∂f

∂y2
, f2 =

∂f

∂r2
2

, f2y =
∂2f

∂r2
2∂y2

, etc . . . . (7.14)

The subleading terms in this metric are given in appendix E. A direct comparison of (7.13)

and (7.7) shows that in the y ≪ 1 region they are identical, provided that we identify

ψ ≡ φ1. Therefore, as anticipated, the Kähler potential K = y4/4 yields a six-dimensional

metric which is of the desired form, as in (7.7).

We now have all the necessary ingredients to study the regularity of the ten-dimensional

metric. As discussed above, any potentially singular behavior as y → 0 would come from

the following two-dimensional part of the ten-dimensional metric

ds2
2 = −y2(dt + ω)2 +

1

y2f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)

2. (7.15)

We now recall that the one-form ω is determined by the Kähler potential of the six-

dimensional base

2ηdω = R, (7.16)

where R is the Ricci form of the base. Noting that

R = iRij̄dzi ∧ dz̄j̄ =
i

2
∂i∂j̄ log(det hmn)dzi ∧ dz̄j̄ (7.17)

is a (1, 1) form and that d = ∂ + ∂̄, we have

ω = ωidzi + ω̄j̄dz̄j̄ , ωi = − iη

8
∂i log(dethmn), ω̄j̄ = (ωj)

∗. (7.18)

Since
√

det hmn is a scalar density, this means that ω in (7.18) is locally defined. From (7.10)

we find that dethmn = O(y8) in the coordinate system of {ri, φi}. Thus, the leading order

term in ω is

ω =
η

8

3∑

a=1

∂ra log(det hmn) radφa

=
η

8

8

y2
(F1r

2
1dφ1 + F2r

2
2dφ2 + F3r

2
3dφ3) + O(y0), (7.19)
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where, on the second line, we have used the chain rule to evaluate (dz1∂1 − dz̄1∂1̄) log(y8)

etc. To leading order in y, we find that

ω =
1

y2fy
(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3) + O(y0). (7.20)

Plugging this expression back into (7.15), the potentially singular terms cancel, and we

arrive at

ds2
2 = − 2

fy
dt(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3) + O(y2), (7.21)

which is regular.

To summarize, we have investigated the region of the 1/8 BPS solutions near y = 0.

Assuming a toric base, we have seen that the y = 0 locus is a five-dimensional surface Σ5

specified by

F (r2
1, r

2
2, r

2
3) = 0. (7.22)

Furthermore, the y coordinate is orthogonal to Σ5. The complete ten-dimensional solution

is generated by choosing an arbitrary smooth (generally disconnected) five-dimensional

surface embedded in the six-dimensional Kähler base. Then the ten-dimensional solution

will be non-singular provided that, in the vicinity of the Σ5 surface,

ds2
10 = −gtt

∣∣
y=0

dt2 +

(
f

fy
+ 9a

f2

f2
y

− 3f2fyy

f3
y

)(
dφ1 −

f2r
2
2

f
dφ2 −

f3r
2
3

f
dφ3 − wtdt

)2 ∣∣∣∣
y=0

+
2f

fy

(
dφ1 −

f2yr
2
2

fy
dφ2 −

f3yr
2
3

fy
dφ3

)2 ∣∣∣∣
y=0

+ dΣ̃4
2(r2, φ2, r3, φ3) + dR4

2, (7.23)

where gtt

∣∣
y=0

is finite and dΣ̃4
2(r2, φ2, r3, φ3) is the metric of a four dimensional surface, and

dR4
2 = dy2 + y2dΩ2

3. More details of the intermediate steps are presented in appendix E.

The cancellation of the leading order O(y−2) terms in dφ2
1, which was necessary to

ensure the regularity of the solution at y = 0, forces us to keep the subleading O(y2) terms

from (7.13). As we show in appendix E, we also take into account the leading order terms

generated from the correction to the Kähler potential, δK = ay6. For the ten-dimensional

metric, all the terms collected in (7.23) are of the same order, namely O(y0). Note that, for

regularity, one must also require that (f/fy)
∣∣
y=0

is finite as a function of r2
2, r2

3. We remind

the reader that the function f is defined through r2
1 = f(y2, r2

2 , r
2
3), so the five-dimensional

surface at y = 0 is given by the constraint r2
1 = f(0, r2

2 , r
2
3).

The full Kähler potential is obtained by evolving the approximate K = y4/4 + O(y6)

according to (3.21)

¤6R = −RmnRmn +
1

2
R2, (7.24)

where R is the Ricci scalar of the six-dimensional Kähler base, and m,n = 1, . . . , 6 are real

indices.

For completeness we shall also verify two consistency conditions. Since we have iden-

tified the three-sphere warp factor e2α with y2, and since y = (−8/R)1/4, we must check
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that indeed R = −8/y4 to leading order for y ≪ 1. From the expression of the Ricci tensor

on a Kähler space

Rij̄ = ∂i∂j̄

√
dethmn, (7.25)

we find that, to leading order in y,

Rij̄ = −2
FiFjrirj

y4
+ O(y−2), Fi = ∂r2

i
F, etc . . . . (7.26)

Hence

Rrarb
= −4

FaFbrarb

y4
+ O(y−2), Rφaφb

= −4
FaFbr

2
ar

2
b

y4
+ O(y−2). (7.27)

By inverting the Kähler metric (7.10) we can evaluate the Ricci scalar

R = Rmnhmn = − 8

y4
, (7.28)

as anticipated. The corrections to the Kähler potential are expected to cancel any potential

contributions to order y−2 from the Kähler metric (7.10). The second check we perform on

the Kähler potential is that, to leading order in y, the equation (7.24) is satisfied. Indeed

this is so, since

RmnRmn =
96

y8
+ O(y−6), R2 =

64

y8
+ O(y−6), ¤6R = −64

y8
+ O(y−6). (7.29)

We now turn to a discussion of the fluxes. Near each disconnected component of

the five dimensional surface, we may perform an integral of F5 over the five-surfaces and

measure the number of flux-quanta threading it. We use the y ≪ 1 metric (7.3) and the

flux

F5 = ∗10F5 = (1 + ∗10)(d[y4(dt + ω)] − 2ηJ (6)) ∧ Ω3. (7.30)

The component of F5 which is needed contains (dt + ω) ∧ dy ∧ Ω3. We consider its Hodge

dual,

∗10F5 = 4y3 1

y3
Nψ(dψ + A) ∧ VolΣ4 + · · · , (7.31)

and see that the y dependence cancels nicely, which is a consequence of the regularity of

the expression (7.3) for the metric. Hence the integral of the five-form flux through the

i-th disconnected piece of the 5d surface Σ
(i)
5 is

∫

Σ
(i)
5

∗10F5 =

∫
4Nψ(dψ + A) ∧ VolΣ4 = Ni, (7.32)

which is expected to be quantized. The total D3 brane flux quanta N of the solution

is the sum of the flux quanta threading each disconnected component of the surfaces,

i.e. N =
∑

i Ni.

We have thus seen that, in order for the ten-dimensional 1/8 BPS configurations to

be regular, we need to specify the following boundary conditions. We begin with defining
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a five-dimensional surface via the algebraic constraint y2 ≡ F (r2
1 , r

2
2, r

2
3) = 0 (for generic

non-toric geometries, we should allow for a dependence on the three angular coordinates

as well, even though we have not done so here). Then we require that the Kähler potential

behaves (up to an irrelevant constant) as y4/4, to leading order in y for y ≪ 1. This

guarantees that the dy2 + y2dΩ2
3 part of the ten-dimensional metric will be regular, and

it ensures that, at leading order, there will be no mixing between y and the remaining

coordinates. Further requiring that the remaining part of the metric be regular imposes

additional constraints on the function F (r2
1 , r

2
2, r

2
3). In particular, a necessary condition for

regularity is that (f/fy)
∣∣
y=0

is finite, where f was defined in (7.12). So, in the end, the

six-dimensional Kähler base is allowed to end only on smooth five-dimensional surfaces.

Other than for this smoothness condition, we have shown (at least locally near y = 0)

that arbitrary droplet configurations are allowed by regularity. Of course, it remains to

be seen whether this conclusion holds globally as well. Proving this appears to be highly

non-trivial, although there are no obvious obstructions to the existence of global solutions

starting from arbitrary droplet data.

7.2 Asymptotic conditions at large y

Finally, while we do not address the uniqueness of solutions directly, we now turn to an

examination of the asymptotic boundary conditions. In addition to addressing regularity

and uniqueness issues, these asymptotic conditions are also useful for identifying the 1/8

BPS N = 4 SYM states that are dual to this class of regular supergravity solutions. (Other

asymptotic boundary conditions could correspond to 1/4 BPS or 1/2 BPS states of N = 2

or N = 1 gauge theories arising from D3 branes.)

As we have seen earlier, demanding that the asymptotic geometry approaches AdS5×S5

gives rise to a leading Kähler potential of the form (5.23)

K =
1

2
|zi|2 −

1

2
log(|zi|2) + · · · . (7.33)

Since the small y Kähler potential behaves as (7.8)

K =
1

4
y4(zi, z̄i) + · · · , (7.34)

a complete solution would interpolate between (7.33) in the asymptotic region and various

expressions behaving as (7.34), one for each disconnected component of the y = 0 boundary.

The question of uniqueness is then whether the 1/8 BPS condition (7.24) admits a unique

solution with these boundary conditions.

As a preliminary step, we may consider the asymptotic expansion of K, and in par-

ticular the form of the correction terms in (7.33). Recall that a general 1/8 BPS droplet

configuration can be described by excising regions from C
3, coordinatized by z1, z2 and

z3. Near asymptotic infinity, the geometry of these excised regions may then be encoded

by generalized multipole moments. This then allows a multipole expansion of the Kähler

potential at infinity. Instead of developing the general multipole expansion, we give as

an example the next-to-leading expression of K for 1/8 BPS solutions with three U(1)

– 77 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

R-charges (J1, J2, J3) ∝ (Q1, Q2, Q3) turned on. It suffices to obtain this term from the

asymptotic expression of the 1/8 BPS smooth configuration given by the elliptic surface

in (5.66).

Since we need the next-to-leading terms, we can start from the expression in (5.75)

and keep leading terms in 1/(R + 1) or 1/R and linear in Qi:

ρ2
i ≃ (R + 1)

(
1 +

Qi

R + 1

)
. (7.35)

Note that if Qi = 0, we find ρ2
i = (R + 1), corresponding to the AdS5 × S5 vacuum. We

want to solve for R in terms of |zi|2. We have the constraint equation

∑

i

|zi|2
ρ2

i

≃
∑

i

|zi|2
R + 1

(
1 − Qi

R + 1

)
≃ 1, (7.36)

which then gives

R + 1 ≃
∑

i

|zi|2 −
∑

i Qi|zi|2∑
i |zi|2

. (7.37)

We also checked that the above expression satisfies (5.57) by plugging in (5.56):

Λ =
∑

i

|zi|2
ρ2

i Hi
≃ 1 −

∑
i Qi|zi|2

(
∑

i |zi|2)2
. (7.38)

In the asymptotic region, the leading and next-to-leading terms in the Kähler potential

are expected to be a function of |zi|2, i = 1, 2, 3,

K = K(|zi|2). (7.39)

Note that the derivatives of K are known, since they were evaluated in (5.55)

∂|zj |2∂|zi|2K =
1

2ΛH1H2H3ρ
2
jρ

2
i

≃ 1

2(
∑

i |zi|2)2
+

3
∑

i Qi|zi|2
2(

∑
i |zi|2)4

− Qj + Qi

2(
∑

i |zi|2)3
−

∑
i Qi

2(
∑

i |zi|2)3
.

(7.40)

After integrating
∫

d|zj |2
∫

d|zi|2 we get

K ≃ 1

2

∑

i

|zi|2 −
1

2
log

(∑

i

|zi|2
)

+
1

4

∑
i Qi|zi|2

(
∑

i |zi|2)2
− 1

8

∑
i Qi

(
∑

i |zi|2)
. (7.41)

The first two terms provide the leading AdS5 × S5 behavior of (7.33), while the latter two

terms give the first order deviations from the AdS5 × S5 vacuum that are linear in the

R-charges, which characterize the solutions.

In principle, this expansion can be carried out to higher orders, and with more general

multipole distributions. In this case, individual complex components zi and z̄i would also

begin to enter into the expansion of K. Nevertheless, since any arbitrary distribution of

droplets in C
3 may be fully characterized by their (infinite set of) multipole moments, and

since the multipole expansion of K appears to be unique (although we have not proven

this), this provides evidence that the droplet description of bubbling AdS is well defined

in the sense that there is a one-to-one mapping between droplets and geometries.
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8. Conclusions

In this paper we investigated the supergravity duals of BPS states in N = 4 super Yang-

Mills. We found evidence for a universal bubbling AdS picture for all 1/2, 1/4 and 1/8

BPS geometries in IIB supergravity for these states. This picture emerges from a careful

consideration of the necessary conditions which ensure the regularity of these supergravity

solutions.

In the case of generic 1/8 BPS solutions, which have an S3 isometry and are time-

fibered over a six-real dimensional Kähler base, regularity is enforced when the radius of S3

(denoted by y) vanishes: y = 0. Since y is a function of all the base coordinates, y = y(xi),

i = 1, . . . , 6, the geometric locus where the S3 shrinks to zero size is a generally disconnected

five-dimensional boundary surface. We have found that regular 1/8 BPS geometries are

determined by the following boundary data: the general smooth five-dimensional surfaces

located at y = 0 and the six-dimensional Kähler potential K = 1
4y4 + O(y6) near y = 0.

The interior of these five-dimensional surfaces is excised from the six-dimensional base,

since the base ends at y = 0. Each regular solution is thus associated with a smooth

five-dimensional surface. For example, the boundary data for the AdS5 × S5 ground state

is a five-dimensional round sphere, whose interior, i.e. a round ball, is removed from the

six-dimensional base. A generic 1/8 BPS state is then characterized by a combination of

topologically trivial deformations of the S5 (gravitons), topologically non-trivial ones (giant

gravitons), and/or excisions of other six-dimensional droplets from the base (dual giant

gravitons). One may view these surfaces as the locus where the matrix eigenvalues of the

three complex scalars in the dual theory are distributed. In order for these configurations

to be dual to N = 4 super Yang-Mills states, we must impose additional conditions such

that asymptotically one recovers an AdS5 × S5 geometry.

In the case of 1/4 BPS solutions, which have an S3 × S1 isometry, we have iden-

tified a four-dimensional Kähler base where the regularity conditions must be imposed.

The droplets are four-dimensional regions of shrinking S3 inside a background where the

S1 shrinks to zero size. This is a natural extension of the LLM droplet picture of 1/2

BPS states, which was obtained by specifying the two-dimensional regions inside a two-

dimensional phase-space where the S3 inside AdS5 collapses. Therefore the 1/4 BPS regular

solutions are characterized by three dimensional surfaces separating the regions where ei-

ther the S3 or the S1 collapses. For example, in the ungauged 1/4 BPS case, the AdS5×S5

ground state corresponds to a round three-sphere in the four-dimensional base space, and a

generic 1/4 BPS state is given by a deformation and/or topologically non-trivial distortion

of the round three-sphere.

We discussed several examples to better illustrate the universality of the ‘bubbling

AdS’ picture in the 1/2, 1/4 and 1/8 BPS sectors. Given the non-linearity of the equa-

tions which determine the explicit form of the 1/4 and 1/8 BPS solutions, our regularity

analysis focused on the small y region of the ten dimensional geometry and our analysis

of the boundary behavior of the Kähler potential is perturbative in small y; the boundary

conditions ensure the regularity of the ten-dimensional solution in a neighborhood patch

near y = 0. Although we have given plausibility arguments, we have not rigorously shown
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Figure 4: Schematic picture of a 1/2 BPS configuration corresponding to four dual giant gravitons

excited on top of the AdS vacuum (central sphere). Giant gravitons expanding on S5 are not

pictured, but would correspond to giving the AdS sphere a non-trivial topology. These 1/2 BPS

configurations always preserve an S̃3 invariance corresponding to rotations in the z2-z3 planes.

that the solutions which are generated after specifying the boundary data are unique, nor

can we say whether the perturbative analysis near the y = 0 region is sufficient to guarantee

the regularity in the whole space at arbitrary non-zero y. Clearly such questions deserve

a more thorough investigation. Although the differential equations determining the whole

geometry are non-linear, the mapping between the topology of the boundary surfaces in

the Kähler base and the topology of the eigenvalue distributions of the complex scalars in

the dual N = 4 gauge theory should be quite straightforward and robust.

The family of 1/2, 1/4 and 1/8 BPS geometries may be summarized using the generic

1/8 BPS picture, where the droplets live on C
3, the coordinate space of the six-real di-

mensional Kähler base. As shown in section 5.4, 1/2 BPS (i.e. lifted LLM) configurations

are described by S̃3 invariant droplets in the z1 plane. Such configurations are shown

schematically in figure 4. Moving to 1/4 BPS geometries entails generalizing the droplets

to lie anywhere in the z1-z2 planes, but to maintain an S1 invariance corresponding to

rotations in the z3 plane. This is shown in figure 5. Finally, generic 1/8 BPS droplets may

lie anywhere in C
3, as indicated in figure 6.

It is interesting to note that the droplets which comprise the boundary data for 1/2n

BPS geometries belong to a 2n (n = 1, 2, 3) real-dimensional Kähler space, which is natu-

rally endowed with a symplectic form, and therefore admits a phase-space interpretation.

It is also endowed with a complex structure, which is naturally related to the existence
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Figure 5: Picture of a 1/4 BPS configuration with five dual giant gravitons. The configuration is

symmetric under S1 rotations in the z3 plane (which, however, cannot be directly visualized since

the imaginary components of the axes are suppressed).

of the n complex scalars in the dual theory. This observation should be sharpened after

quantizing the 1/4 and 1/8 BPS classical solutions discussed here. The five-dimensional

surfaces that we observe are expected to become non-commutative after the quantization.

It is expected that the 1/2 BPS droplets of figure 4 are non-interacting (as they admit

a dual free-fermion description). This is supported by the linearity of the LLM harmonic

function equation (3.97). Furthermore, the complex z1 plane is unaffected by the presence

of the droplets, and hence remains flat regardless of the details of the 1/2 BPS configuration.

This is no longer true in the reduced supersymmetry cases. In particular, note that figures 5

and 6 visualize the 1/4 and 1/8 BPS droplet data in coordinate space, given by Euclidean

C
3. The Kähler metric itself is highly non-trivial, so the geometry of the Kähler base is

curved by the droplets themselves; in fact, the curvature on the 1/8 BPS base blows up

(R → −∞) as one approaches the boundaries of the droplets. This suggests that the 1/4

and 1/8 BPS droplets will have non-trivial interactions, as would also be expected based

on reduced supersymmetry.

Understanding this non-trivial geometry on the Kähler base and its implications for

droplet dynamics seems to be essential in constructing the moduli space of these BPS

configurations. Among other things, this geometry should shed light on the scattering of

BPS droplets in a non-trivial background.
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Figure 6: Schematic picture of a 1/8 BPS configuration with seven dual giant gravitons. In general,

1/8 BPS droplets may have any topology and geometry allowed by regularity.

Acknowledgments

SC would like to thank Joan Simon for critical comments and suggestions, and Scott Wat-

son for useful discussions. JTL wishes to thank David Berenstein for his valuable insight,

and for discussions related to [23]. AD wishes to thank Antal Jevicki. HL would like to

thank Oleg Lunin and Juan Maldacena for helpful communications and Harvard Univer-

sity and the City University of New York for hospitality. SC and JTL would like to thank

the KITP for hospitality. The work of SC is supported in part by the Michigan Society of

Fellows. The work of BC was partially supported by NSFC Grant No. 10405028, 10535060,

NKBRPC (No. 2006CB805905) and the Key Grant Project of the Chinese Ministry of Ed-

ucation (No. 305001). FLL and WYW acknowledge the support of the Taiwan NSC under

Grants 94-2112-M-003-014 and 95-2811-M-002-028. JTL was supported in part by the

Stephen Hawking Chair in Fundamental Physics at the Mitchell Institute for Fundamental

Physics, Texas A&M University. This research was supported in part by the MCTP, the

US Department of Energy under Grant Nos. DE-FG02-91ER40688-Task A and DE-FG02-

95ER40899 and the National Science Foundation under Grant No. PHY99-07949.

A. Differential identities for the S
3 reduction

The seven-dimensional system given in section 2.1 comprises a metric, scalar and two-

form field strength, (gµν , α, F(2)). The differential identities are obtained by taking the
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supersymmetry variations (2.12) and (2.13) and contracting on the left with either ǫ or ǫc

along with a complete set of Dirac matrices {1, γµ, γµν , γµνλ}.
After appropriate rearrangement, most of the differential identities for the Dirac bilin-

ears {f,K, V, Z} may be written in form notation

iKdα = 0, (A.1)

d(e−αf) = 0, (A.2)

d(e3αf) = −iKF, (A.3)

d(e2αK) = −e−αfF − 2ηeαV, (A.4)

d(e−2αK) = −e−5α ∗ (F ∧ Z) + 2ηe−3αV, (A.5)

d(eαV ) = 0, (A.6)

d(e2α ∗ V ) = 2ηeα ∗ K, (A.7)

d(e4αZ) = eαF ∧ V − 4ηe3α ∗ Z, (A.8)

d(e3α ∗ Z) = 0. (A.9)

The remaining identities are of the form

0 = FµνV µν + 8ηe2αf, (A.10)

∇(µKν) = 0, (A.11)

∇µVνλ =
1

4
e−3α(2Zµ[ν

ρFλ]ρ − Zνλ
ρFµρ − gµ[νZλ]ρσF ρσ), (A.12)

∇µZνλρ =
1

4
e−3α

(
− 1

2
ǫµνλρ

αβγFαβKγ + 3Fµ[νVλρ] + 3F[νλVρ]µ + 6gµ[νFλ
σVρ]σ

)
. (A.13)

Note, in particular, that (A.11) demonstrate that Kµ is a Killing vector. Although the ‘di-

latino’ variation (2.13) leads to algebraic expressions on the spinor bilinears, they naturally

combine with the gravitino variation expressions, and this is what we have done above in

writing down a complete set of differential identities on the Dirac bilinears.

For the Majorana bilinears {fm, Zm}, we find instead

ηfm = 0, (A.14)

d(eαfm) = 0, (A.15)

d(e−3αfm) =
i

2
e−α(Zm

µνλF νλ)dxµ, (A.16)

d(e2αZm) = −2ηeα ∗ Zm, (A.17)

d(eα ∗ Zm) =
i

4
e−2αfm ∗ F, (A.18)

∇µZm
νλρ =

i

16
e−3α

(
− 2

3
δα
µǫνλρ

βγδǫ + gµ[νǫλρ]
αβγδǫ − 2δα

[νǫλρ]µ
βγδǫ

)
FαβZm

γδǫ. (A.19)

Since η = ±1 is non-vanishing (for Killing spinors on S3), the first expression, (A.14),

immediately demonstrates that the Majorana scalar invariant vanishes, fm = 0. This

leads to the identification of SU(3) structure and a resulting simplification of the above

expressions, as discussed in section 3.1.
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B. Differential identities for the S
3

× S
1 reduction

In section 2.2, we presented the reduction of the bosonic fields of IIB supergravity on

S3×S1 along with the relevant set of supersymmetry variations (2.26) and (2.27). Here we

present a partial list of differential identities related to these variations. However, before

doing so, we recall that the bosonic fields in six dimensions are the metric gµν , two abelian

gauge fields Aµ and Aµ, as well as two ‘dilatonic’ scalars α and β and one ‘axionic’ scalar

χ. The differential identities serve to related these fields with each other, as well as the

Dirac {f1, f2,K,L, V, Y, Z} and Majorana {fm, Y m, Zm} bilinears given in (3.27).

Because of the large number of fields and bilinears, the complete list of differential

identities is rather long. Here we only list the more relevant ones to the supersymmetry

analysis. We begin with the scalar identities

0 = iKdα = iKdβ = iKdχ, (B.1)

0 = FµνV µν + 2e−βLµ∂µχ + 8ηe2αf2, (B.2)

0 = FµνY µν − 8e3αLµ∂µα − 8ηe2αf1, (B.3)

0 = FµνV µν + 4e−βLµ∂µ(α + β) + 4ηe−α−βf1 + 4ne−2βf2, (B.4)

0 = FµνY µν + 2e−3α−2βLµ∂µχ + 4ηe−α−βf2 − 4ne−2βf1, (B.5)

0 = ηfm = nfm, (B.6)

0 = FµνY m µν = FµνY m µν . (B.7)

Although the U(1) charge n of the Killing spinor may vanish, the S3 Killing spinor param-

eter η = ±1 cannot vanish. As a result, (B.6) indicates that fm = 0. This vanishing of the

Majorana scalar invariant simplifies the structure analysis of section 3.2, and is needed for

the demonstration of U(2) structure.

After some rearrangement, the one-form identities may be written as

d(e−αf2) = 0, (B.8)

d(e2α+βf1 + e−αf2χ) = −2ηeα+βL, (B.9)

d(e3αf2) = −iKF + e−βf1dχ, (B.10)

d(e−βf1) = −iKF , (B.11)

d(eα+2βf2) = −1

2
eα+3β ∗ Zµ

νλFνλdxµ + e−2α+βf1dχ − 2neα+βL, (B.12)

d(e−2α+βf1) =
1

2
e−5α+β ∗ Zµ

νλFνλdxµ + 2ηe−3α+βL, (B.13)

D(eαfm) = 0, (B.14)

D(e−3αfm) =
i

2
e−6αZm

µ
νλFνλdxµ + ie−6α−βY m

µ
ν∂νχdxµ, (B.15)

D(e−α−2βfm) =
1

2
e−α−β ∗ Zm

µ
νλFνλdxµ + ie−4α−3βY m

µ
ν∂νχdxµ, (B.16)

where D = d + inA is the U(1) gauge covariant derivative.
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Turning to the two-form identities, we have

d(e2αK) = −e−αf2F − e2α+βf1F − 2ηeαV, (B.17)

d(e−2αK) =

[
− 1

4
e−5α∗Yµν

λσFλσ+
1

2
e−5α−β∗Zµν

λ∂λχ

]
dxµ ∧ dxν−e−2α+βf1F+2ηe−3αV,

(B.18)

d(e2βK) =

[
− 1

4
e−3α+2β ∗ Yµν

λσFλσ − 1

4
e3β ∗ Vµν

λσFλσ

]
dxµ ∧ dxν − 2neβY, (B.19)

d(eα+βL) = 0, (B.20)

dL =
1

2
eβFµ

λVνλdxµ ∧ dxν − 1

4
e−3α−βZµν

λ∂λχdxµ ∧ dxν , (B.21)

d(e2αL) =
1

2
e−αFµ

λYνλdxµ ∧ dxν +
1

2
e2α+βFµ

λVνλdxµ ∧ dxν . (B.22)

In addition

∇(µKν) = 0, (B.23)

∇(µLν) =
1

8
e−3α(4F(µ

λYν)λ − gµνFλσY λσ) +
1

2
eβF(ν

λVν)λ. (B.24)

In particular, this shows that Kµ is a Killing vector. Also, while Lµ is not a closed one-form,

the combination eα+βL is.

For the three-form identities, we have

d(eαV ) = eα+βF ∧ L, (B.25)

d(e−α+2βV ) =
1

2
e−4α+2βZµν

σFλσdxµ ∧ dxν ∧ dxλ−e−α+3βik∗F−2ne−α+β ∗ Z, (B.26)

d(e3α+2βV ) =−e3α+3βiK ∗ F − eβY ∧ dχ − 2ne3α+β ∗ Z, (B.27)

d(eβY ) =−e−3α+βiK ∗ F, (B.28)

d(eαY ) =−1

2
e−2α(iK ∗F−F ∧ L)+

1

4
eα+βZµν

σFλσdxµ ∧ dxν ∧ dxλ+η ∗ Z, (B.29)

d(e3αY ) = F ∧L+
1

4
e3α+βZµν

σFλσdxµ∧dxν ∧ dxλ+
1

2
e−βV ∧dχ + 3ηe2α ∗ Z, (B.30)

D(e2α+βY m) = 2ηeα+β ∗ Zm − ine2αZm, (B.31)

D(eβY m) =

[
i

4
e−3α+β ∗ Zm

µν
σFλσ+

i

12
e−3α∗Y m

µνλ
σ∂σχ

]
dxµ∧dxν∧dxλ − inZm,(B.32)

D(eαY m) =

[
1

4
eα+βZm

µν
σFλσ+

i

12
e−2α−β∗Y m

µνλ
σ∂σχ

]
dxµ∧dxν ∧ dxλ+η ∗ Zm. (B.33)

When the indices are not taken to be fully antisymmetric, we must also include the identities

∇µVνλ = −1

4
e−3α(Zνλ

σFµσ − 2Zµ[ν
σFλ]σ + gµ[νZλ]

αβFαβ) + eβFµ[νLλ]

−1

4
e−3α−β(Yνλ∂µχ − 2Yµ[ν∂λ]χ + 2gµ[νYλ]

σ∂σχ), (B.34)

∇µYνλ =
1

4
e−3α(∗Fµνλ

σKσ − FνλLµ + 2Fµ[νLλ] − 2gµ[νFλ]
σLσ) +

1

2
eβZνλ

σFµσ

+
1

4
e−3α−β(Vνλ∂µχ − 2Vµ[ν∂λ]χ + 2gµ[νVλ]

σ∂σχ), (B.35)
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DµY m
νλ = − i

4
e−3α(∗Zm

νλ
σFµσ − 2 ∗ Zm

µ[ν
σFλ]σ + gµ[ν ∗ Zm

λ]αβFαβ) +
1

2
eβZm

νλ
σFµσ

+
i

4
e−3α−β(∗Y m

µνλ
σ∂σχ − 2fmgµ[ν∂λ]χ). (B.36)

C. Differential identities for the S
3

× S
3 reduction

For the round S3 × S3 reduction, corresponding to the original LLM system of [1], the

relevant supersymmetry variations are given by (3.83). Many of the differential identities

for this system have been tabulated in appendix C of [4]. We nevertheless give them here

again, using our present notation.

Most of the differential identities can be presented in form notation. For the Dirac

bilinears {f1, f2,K,L, Y }, the scalar (or zero-form) identities are

0 = iKdα = iKdβ, (C.1)

0 = iLd(α + β) + ηe−αf1 + η̃e−βf2, (C.2)

0 = iLd(α − β) − 1

4
e−3αFµνY µν + ηe−αf1 − η̃e−βf2, (C.3)

1

8
e−3αFµν ∗ Y µν = η̃e−βf1 = ηe−αf2. (C.4)

The one-form identities are

d(e−βf1) = 0, (C.5)

d(eαf1) = −ηL, (C.6)

d(e3βf1) = e−3α+3βiK ∗ F, (C.7)

d(e−αf2) = 0, (C.8)

d(eβf2) = −η̃L, (C.9)

d(e3αf2) = −iKF. (C.10)

The identities given here are derived by taking linear combinations of those in [4]. Of

course, the particular choice we have made for which linear combinations to take is not

unique. However, we find the above choice particularly useful when completing the solution

in section 3.3. Continuing with the two-form identities, we have

dK = −1

2
e−3α(f2F − f1 ∗ F ), (C.11)

d(e2αK) = −e−αf2F + 2ηeα ∗ Y, (C.12)

d(e2βK) = −e−3α+2βf1 ∗ F − 2η̃eβY, (C.13)

dL = 0, (C.14)

d(eα+βL) = 0, (C.15)

d(e2αL) =
1

2
e−αFµ

λYνλdxµ ∧ dxν . (C.16)
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Finally, we give the three-form identities

d(eβY ) = 0, (C.17)

d(e−αY ) = −ηe−2α ∗ K, (C.18)

d(e−3βY ) = −e−3α−3βL ∧ F, (C.19)

d(eα ∗ Y ) = 0, (C.20)

d(e−β ∗ Y ) = −η̃e−2β ∗ L, (C.21)

d(e−3α ∗ Y ) = e−6αL ∧ ∗F. (C.22)

Additional information is contained in the original (non-form notation) differential

identities obtained from the gravitino variation

∇µKν = −1

4
e−3α(f2Fµν − f1 ∗ Fµν),

∇µLν =
1

4
e−3α

(
2F(µ

λYν)λ − 1

2
gµνFρλY ρλ

)
,

∇µYνλ = −1

4
e−3α(FνλLµ + 2gµ[νFλ]

σLσ − 2Fµ[νLλ]). (C.23)

Note that the vector identities may be decomposed into antisymmetric and symmetric

parts. The former are contained in (C.11) and (C.14), while the latter are

2∇(µKν) = 0, (C.24)

2∇(µLν) = e−3α

(
F(µ

λYν)λ − 1

4
gµνFρλY ρλ

)
. (C.25)

For the Majorana bilinears {Km, Y m}, we have the gravitino differential identities

∇µKm
ν =

1

8
e−3α

(
1

2
gµνFρσ ∗ Y m ρσ − 2F(µ

λ ∗ Y m
ν)λ

)
,

∇µY m
νλ =

1

2
e−3α

(
∗ Fµ[νKm

λ] − gµ[ν ∗ Fλ]ρK
m ρ − 1

2
∗ FνλKm

µ

)
, (C.26)

as well as the zero-form identities

FµνY m
µν = 0, (C.27)

d(∗Km) = 0, (C.28)

d(eα+β ∗ Km) = 0, (C.29)

d(e4α ∗ Km) = −eαF ∧ Y m, (C.30)

two-form identities

dKm = 0, (C.31)

d(eαKm) =
1

4
e−2αFµ

λ ∗ Y m
νλdxµ ∧ dxν − iη ∗ Y m, (C.32)

d(eβKm) = −1

4
e−3α+βFµ

λ ∗ Y m
νλdxµ ∧ dxν + iη̃Y m, (C.33)
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and three-form identities

d(e−βY m) = 0, (C.34)

d(eαY m) = iη ∗ Km, (C.35)

d(e3βY m) = e−3α+3β(∗F ) ∧ K, (C.36)

d(e−α ∗ Y m) = 0, (C.37)

d(eβ ∗ Y m) = iη̃ ∗ Km, (C.38)

d(e3α ∗ Y m) = −F ∧ Km. (C.39)

D. Regularity analysis for 1/4 BPS solutions

As an example of how we uncover the droplet picture for the 1/4 BPS geometries from a

regularity analysis, we consider the case when the U(1) charge of the Killing spinor is

nη = 1, (D.1)

which corresponds to the ungauged S3 × S1 reduction, as discussed in section 3.2. Under

this assumption, since D(zi, z̄j̄) is constrained by (1 + ∗4)∂∂̄D = 0, it follows that D is a

harmonic function of the four-dimensional Kähler base parametrized by z1, z2.

The metric given in (6.1) is potentially singular when y = 0, i.e. when the radius

of either the S3 or S1 shrinks to zero. To avoid conical singularities at y = 0, G ought

to behave such that e±G = yf±(z1, z̄1, z2, z̄2) + O(y2) where the ± sign corresponds to

having either the S3 or S1 collapse to zero size. Since Z = 1
2tanhG is also tied to the

four-dimensional base Kähler potential Z = −1
2y∂y

1
y ∂yK, this yields

K =
1

2
y2 ln y + f0 +

y2

2
f2 −

y4

4
f4 + . . .

or

K = −1

2
y2 ln y + g0 +

y2

2
g2 +

y4

4
g4 + . . . (D.2)

where f0,2,4 and g0,2,4 are functions of z1, z2 and their complex conjugates. In the first

case Z → −1
2 as y → 0 and in the second, Z → 1

2 as y → 0. The y = 0 four-dimensional

base is then decomposed into regions (“droplets”) with Z → ±1
2 , similar to the LLM

decomposition of the two-dimensional base. The requirement that the asymptotics of

the 1/4 BPS solutions be AdS5 × S5 introduce the additional constraint that the droplet

distribution must be such that, at large |z1|2 + |z2|2, one sees a large spherical droplet

plus small distortions which can appear as deformations of the large droplet and/or as

additional disconnected small droplets.

To confirm that the complete ten-dimensional geometry is non-singular we first notice

that h−2 = 2y cosh G is finite at y = 0. Second, from ln dethij̄ = ln(Z+ 1
2)+ln y+ 1

y∂yK+D

we find that

dethij̄ = y4eD+ 1
2
+f2f4 + . . . , or det hij̄ = y0eD− 1

2
+g2 + . . . (D.3)

– 88 –



J
H
E
P
1
0
(
2
0
0
7
)
0
0
3

The regularity of the full ten-dimensional metric is assured since the Kähler subspace,

together with its warp factor (Z + 1
2)−1, is non-singular. This follows from the evaluation

of the volume of this subspace at y = 0:

det

(
h2

(
Z +

1

2

)−1

hij̄

)
= finite at y = 0. (D.4)

E. Detailed analysis of regularity conditions for 1/8 BPS configurations

In this appendix we present the details of the regularity analysis of 1/8 BPS configurations

as discussed in section 7.

In order to bring the ten-dimensional metric near y = 0 to the form (7.3), the Kähler

potential has a Taylor expansion of the form

K(zi, zj̄) =
1

4
y4 + ay6 + · · · , (E.1)

up to a unimportant shift via a Kähler transformation, and where a = a(r2
2, r

2
3) at y = 0.

First we calculate the metric of the six-dimensional base to leading order in y. The

leading order (except in the 1st, 2nd, and 4th lines, which also contain O(y2) terms) six-

dimensional base metric is given by

ds2
6 = dy2 y2

[
1 +

y2

fy

(
fy −

ffyy

fy

)]

+2dydr2 y3r2

(
f2 −

ff2y

fy

)
+ 2dydr3 y3r3

(
f3 −

ff3y

fy

)

+
1

f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)

2

+dφ2
1

fy2

f2
y

(
fy−

ffyy

fy

)
+2dφ1dφ2

y2fr2
2

f2
y

(
f2fyy

fy
−f2y

)
+2dφ1dφ3

y2fr2
3

f2
y

(
f3fyy

fy
−f3y

)

+dr2
2

y2

fy

(
−f2 − f22r

2
2 +

f2
2 r2

2

f

)
+ dr2

3

y2

fy

(
−f3 − f33r

2
3 +

f2
3 r2

3

f

)

+2dr2dr3
y2

fy
r2r3

(
−f23 +

f2f3

f

)

+dφ2
2

y2r2
2

f2
y

(
2r2

2f2yf2 − f2fy − r2
2fyf22 −

r2
2f

2
2 fyy

fy

)

+dφ2
3

y2r2
3

f2
y

(
2r2

3f3yf3 − f3fy − r2
3fyf33 −

r2
3f

2
3 fyy

fy

)

+2dφ2dφ3
y2r2

2r
2
3

fy
(−f23 + f2yf3 + f3yf2 − f2f3fyy). (E.2)
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The leading metric pertaining to the four-dimensional surface is

dΣ2
4 = dr2

2
1

fy

(
−f2 − f22r

2
2 +

f2
2 r2

2

f

)
+ dr2

3
1

fy

(
−f3 − f33r

2
3 +

f2
3 r2

3

f

)

+2dr2dr3
1

fy
r2r3

(
−f23 +

f2f3

f

)

+dφ2
2

r2
2

f2
y

(
2r2

2f2yf2 − f2fy − r2
2fyf22 −

r2
2f

2
2 fyy

fy

)

+dφ2
3

r2
3

f2
y

(
2r2

3f3yf3 − f3fy − r2
3fyf33 −

r2
3f

2
3 fyy

fy

)

+2dφ2dφ3
r2
2r

2
3

fy
(−f23 + f2yf3 + f3yf2 − f2f3fyy). (E.3)

We also notice that the leading piece of the (1/y2f2
y )(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3)

2 term

cancels with the leading y2ω2 term coming from gtt in the ten-dimensional metric, as

discussed in section 7. We therefore need to consider the subleading contributions of these

terms to the ten-dimensional metric.

We focus on the O(y2) piece of the metric components for dφ2
1, 2dφ1dφ2 and 2dφ1dφ3

from the six-dimensional base, and refer to these as a subspace of the ten-dimensional

metric. These components come from the subleading terms of K = 1
4y4 and the leading

terms of δK = ay6.

The terms originating from K = 1
4y4 are

ds2
10

∣∣
subspace

=
−2fyy

f3
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)

2

+
2

f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)(fydφ1 − f2yr

2
2dφ2 − f3yr

2
3dφ3)

+
f

f2
y

(
fy −

ffyy

fy

)
dφ2

1

+2
fr2

2

f2
y

(
f2fyy

fy
− f2y

)
dφ1dφ2 + 2

fr2
3

f2
y

(
f3fyy

fy
− f3y

)
dφ1dφ3. (E.4)

Next we calculate the terms from δK = ay6. We define

F̃ =
√

2ay3 =
√

2aF 3/2, F ≡ y2, (E.5)

and we have

F̃a =
√

2a
3

2
F 1/2Fa =

√
2a

3

2
yFa. (E.6)

Notice that we can use the general formula (7.10):

ds2
6 = 2

3∑

a=1

[
F̃ 2

a r2
a + F̃ (F̃aar

2
a + F̃a)

] (
dr2

a + r2
adφ2

a

)

+4

3∑

a<b

[
F̃aF̃b + F̃ F̃ab

]
r2
ar

2
b

(
dradrb

rarb
+ dφadφb

)
. (E.7)
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It is easy to see that the first terms in each of the two sums are of order O(y2), while the

second terms are of order O(y4) or higher. So we only keep

ds2
6 = 2

3∑

a=1

[
F̃ 2

a r2
a

] (
dr2

a + r2
adφ2

a

)
+ 4

3∑

a<b

[
F̃aF̃b

]
r2
ar

2
b

(
dradrb

rarb
+ dφadφb

)

= 9ay2

{
3∑

a=1

[
F 2

a r2
a

] (
dr2

a + r2
adφ2

a

)
+ 2

3∑

a<b

[FaFb] r
2
ar

2
b

(
dradrb

rarb
+ dφadφb

)}
. (E.8)

In other words, the subleading contribution from δK = ay6 is actually 9ay2 times the

leading order metric coming from 1
4y4.

Focusing on the subspace mentioned above, we find that the contribution from δK =

ay6 is:

ds2
10

∣∣
subspace

=
9a

f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)

2. (E.9)

The total contribution to the ten dimensional metric in this subspace is then given by:

ds2
10

∣∣
subspace

=

(−2fyy

f3
y

+
9a

f2
y

)
(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3)

2

+
2

f2
y

(fdφ1 − f2r
2
2dφ2 − f3r

2
3dφ3)(fydφ1 − f2yr

2
2dφ2 − f3yr

2
3dφ3)

+
f

f2
y

(
fy −

ffyy

fy

)
dφ2

1

+2
fr2

2

f2
y

(
f2fyy

fy
− f2y

)
dφ1dφ2 + 2

fr2
3

f2
y

(
f3fyy

fy
− f3y

)
dφ1dφ3

=

(−3fyy

f3
y

+
9a

f2
y

+
fy

ff2
y

)
(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3)

2

+2
f

f3
y

(fydφ1 − f2yr
2
2dφ2 − f3yr

2
3dφ3)

2

+2
1

f2
y

f2f2yr
4
2dφ2

2 + 2
1

f2
y

f3f3yr
4
3dφ2

3 + 2
1

f2
y

(f2f3y + f3f2y)r
2
2r

2
3dφ2dφ3

− 1

f2
y

(
fy

f
− fyy

fy

)
(f2

2 r4
2dφ2

2 + f2
3 r4

3dφ3
2 + 2f2f3r

2
2r

2
3dφ2dφ3)

−2
f

f3
y

(f2
2yr

4
2dφ2

2 + f2
3yr

4
3dφ2

3 + 2f2yf3yr
2
2r

2
3dφ2dφ3), (E.10)

where the dφ2
2, dφ2

3 and dφ2dφ3 terms in the last three lines will be combined into dΣ̃2
4.

Thus the ten dimensional metric near y = 0 goes like

ds2
10 = − 2

fy
dt(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3)

∣∣∣∣
y=0

+

(−3fyy

f3
y

+
9a

f2
y

+
fy

ff2
y

)
(fdφ1 − f2r

2
2dφ2 − f3r

2
3dφ3)

2

∣∣∣∣
y=0

+2
f

f3
y

(fydφ1 − f2yr
2
2dφ2 − f3yr

2
3dφ3)

2

∣∣∣∣
y=0

+ dΣ̃4
2(r2, φ2, r3, φ3)

+dR4
2. (E.11)
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We can also rewrite it in the form

ds2
10 = −gtt

∣∣∣∣
y=0

dt2 +

(
f

fy
+

9af2

f2
y

− 3f2fyy

f3
y

)
(dφ1 −

f2r
2
2

f
dφ2 −

f3r
2
3

f
dφ3 − wtdt)2

∣∣∣∣
y=0

+
2f

fy

(
dφ1 −

f2yr
2
2

fy
dφ2 −

f3yr
2
3

fy
dφ3

)2 ∣∣∣∣
y=0

+ dΣ̃4
2(r2, φ2, r3, φ3)

+dR4
2, (E.12)

where

dΣ̃4
2(r2, φ2, r3, φ3)=dΣ2

4+2
1

f2
y

f2f2yr
4
2dφ2

2+2
1

f2
y

f3f3yr
4
3dφ2

3+2
1

f2
y

(f2f3y+f3f2y)r
2
2r

2
3dφ2dφ3

− 1

f2
y

(
fy

f
− fyy

fy

)
(f2

2 r4
2dφ2

2 + f2
3 r4

3dφ2
3 + 2f2f3r

2
2r

2
3dφ2dφ3)

−2
f

f3
y

(f2
2yr

4
2dφ2

2 + f2
3yr

4
3dφ2

3 + 2f2yf3yr
2
2r

2
3dφ2dφ3)

=dr2
2

1

fy

(
− f2 − f22r

2
2 +

f2
2 r2

2

f

)
+ dr2

3

1

fy

(
− f3 − f33r

2
3 +

f2
3 r2

3

f

)

+2dr2dr3
1

fy
r2r3

(
− f23 +

f2f3

f

)

+dφ2
2

r4
2

f2
y

(
4f2yf2 −

f2fy

r2
2

− fyf22 −
fyf

2
2

f
−

2ff2
2y

fy

)

+dφ2
3

r4
3

f2
y

(
4f3yf3 −

f3fy

r2
3

− fyf33 −
fyf

2
3

f
−

2ff2
3y

fy

)

+2dφ2dφ3
r2
2r

2
3

fy

(
− f23 + f2yf3 + f3yf2 − f2f3fyy +

f2f3y

fy
+

f3f2y

fy

−f2f3

f
+

f2f3fyy

f2
y

− 2ff2yf3y

f2
y

)
. (E.13)
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