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Abstract: Taiwan suffers from energy insecurity and the threat of potential damage from 

global climate changes. Finding ways to alleviate these forces is the key to Taiwan’s future 

social and economic development. This study examines the economic and environmental 

impacts when ethanol, conventional electricity and pyrolysis-based electricity are available 

alternatives. Biochar, as one of the most important by-product from pyrolysis,  

has the potential to provide significant environmental benefits. Therefore, alternative uses of 

biochar are also examined in this study. In addition, because planting energy crops would 

change the current land use pattern, resulting in significant land greenhouse gases (GHG) 

emissions, this important factor is also incorporated. Results show that bioenergy production 

can satisfy part of Taiwan’s energy demand, but net GHG emissions offset declines if 

ethanol is chosen. Moreover, at high GHG price conventional electricity and ethanol will be 

driven out and pyrolysis will be a dominant technology. Fast pyrolysis dominates when 

ethanol and GHG prices are low, but slow pyrolysis is dominant at high GHG price, 

especially when land GHG emissions are endogenously incorporated. The results indicate 

that when land GHG emission is incorporated, up to 3.8 billion kWh electricity can be 

produced from fast pyrolysis, while up to 2.2 million tons of CO2 equivalent can be offset if 

slow pyrolysis is applied. 
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Glossary of Abbreviations 

Greenhouse Gas (GHG) 

Carbon (C) 

Nitrogen (N) 

Carbon dioxide (CO2) 

Methane (CH4) 

Nitrous oxide (N2O) 

1. Introduction 

Taiwan is heavily reliant on imported fossil fuels. To enhance energy security, there is interest in 

domestic energy production. Climate change is also a concern for Taiwan with defenseless warming,  

sea level rises and increased incidence of tropical cyclones [1]. Energy based CO2 emissions could be a 

driving force for these disasters [1]. Collectively these forces have raised interest in examining low 

emission, domestic energy sources. Renewable energy produced from agricultural feedstocks  

(hereafter called bioenergy) is one such possibility.  

Bioenergy production requires substantial use of land resources, another scarce resource in Taiwan. 

However, after joining the World Trade Organization (WTO), 280,000 hectares of Taiwan’s agricultural 

land were idled due to reductions in subsidies and increases in imports. This provides some land that 

could be used for bioenergy feedstock production.  

Although bioenergy has the potential to enhance Taiwan’s energy security and reduce its GHG 

emissions [2], one important factor that may affect the net benefits is the total set of land and other based 

GHG emissions involved with feedstock production. When agricultural land is converted to other uses, 

N2O emissions will change and offset CO2 energy related emission reductions. If the change is small this 

can be neglected. Unfortunately, this change can be large [3,4]. For this reason, endogenous 

incorporation of land GHG emissions could have a significant impact on bioenergy production and 

emissions reduction.  

Therefore, examining the desirability of bioenergy production without considering all GHG 

emissions may lead to an incorrect conclusion. This study examines the economic and environmental 

performance of a set of bioenergy production strategies including production of ethanol, direct firing of 

electricity production and pyrolysis-based electricity. They will be evaluated under a range of energy 

and GHG prices. Performance will be considered in terms of GHG emissions, energy production and 

economic implications. The work will simultaneously consider multiple bioenergy technologies, 

multiple energy crops, multiple energy and GHG prices, alternative uses of products from pyrolysis and 

CO2 emissions from land use change. 
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2. Literature Review 

Taiwan can produce bioenergy in the forms of bioethanol, direct feedstock combustion biopower 

(conventional electricity) and biopower using products produced through pyrolysis (pyrolysis-based 

electricity). Since these three technologies are not mutually exclusive and can be employed at the same 

time, the study considers all combinations.  

Pyrolysis involves heating biomass in the absence of oxygen and results in the decomposition of the 

biomass into biooil, biogas and biochar, all of which can be used to generate electricity. Depending on 

the heating rate and time staying in the machine, pyrolysis could be categorized as fast pyrolysis and 

slow pyrolysis. The main difference between fast and slow pyrolysis is that fast pyrolysis yields more 

biooil, while slow pyrolysis yields more biochar [5,6]. Biochar can be used as an energy source or as a 

soil amendment [7–11]. As a soil amendment biochar increases soil water and nutrient holding capacity 

plus seed germination rates and crop yields. In terms of water holding capacity, Glaser et al. [12] find 

that soil water retention increased by 18% after biochar application. In terms of nutrient savings,  

the application of biochar has been found to increase the efficiency of nutrients as discussed in  

Steiner et al. [13]. Lehmann et al. [14] also indicates that biochar application would lead to a reduction 

of N leaching by 60 percent with an accompanying 20% savings in fertilizer need. On seed germination 

several studies find that biochar improves seed germination rate [15,16]. In terms of crop yield 

enhancement, Lehmann [8] finds that biochar increases the plants available nutrients and in turn crop 

yields. Crop yield increases have also been found by [13,17–20] with yield increases ranged from  

44% to 249%. Nehls [21] finds rice yield increases ranging from 115% to 320%. Biochar is also stable in 

the soil [13] and offers a chance to sequester carbon [8]. 

Based on these data we assume that rice yields will increase by 5% when biochar is applied and use 

that the seed and nutrient savings are based on Lehmann et al.’s study [13] (20 and 10 %, respectively) 

while water savings are assumed to be 10%. In addition, since water is usually produced during pyrolysis 

and reduces the heating value, so it is important to remove water from the liquid content.  

Since electricity and biochar production vary depending on the pyrolysis systems, we examine fast and 

slow forms of pyrolysis techniques and alternatives uses of biochar.  

Lifecycle analysis [22] has been used to examine GHG emissions from agriculture and bioenergy 

production in a number of settings. Schaufler et al. [23] showed that changes in land-use strongly 

affected GHG fluxes from cropland, grassland, forests and wetland. Grover et al. [4] pointed out that 

soil-based GHG emissions increase from 53 to 70 t CO2-equivalents after land use change. They found 

that N2O and CO2 emissions were highest from grassland soils. Baldos [24] found that the direct 

lifecycle GHG emissions of corn ethanol fuel can exceed the 20% GHG reduction requirement in the 

USA renewable fuel standard. Baggs et al. [25] found that zero tillage resulted in higher N2O emissions 

than conventional tillage and N2O emissions were generally correlated with CO2 emissions.  

Farquharson and Baldock [26] indicated that adding N fertilizers will increase N2O emissions due to 

nitrification and denitrification process. Wang et al., [27] and Searchinger et al. [28] examined the 

impacts of emissions from global land use changes finding they can substantially offset GHG net 

emission gains. Other studies have focused on the land use change emissions when specific land types 

are cultivated for cropland use [29–31].  
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3. Model Structure 

The study will be done using an agricultural sector model. The model used herein is based on price 

endogenous mathematical programming, which is originally illustrated by Samuelson [32] who showed 

a perfectly competitive equilibrium can be simulated by solving an optimization model that maximizes 

the consumers’ plus producers’ surplus. In particular we will use Chen and Chang’s [33] Taiwan 

Agricultural Sector Model (TASM) that we extend TASM to cover bioenergy crop production.  

The TASM is a multi-product partial equilibrium model based on the previous work [34–37].  

TASM has been used in many policy-related studies such as Chang [36] and Chen and Chang [33].  

The current version covers production in 15 subregions aggregated into four major market regions.  

It incorporates price-dependent product demand for 60 traditional crops, five floral crops, seven 

livestock species, three types of forests (conifers, hardwoods, and bamboo), and 27 secondary 

commodities. The total value of these primary commodities accounts for more than 85 percent of 

Taiwan’s total agricultural product value. Availability of cropland, pasture land, set aside and forest land 

plus crop and livestock mix constraints are specified at the sub-regional level. Input markets for farm 

labor are specified at the regional level with supply curves.  

3.1. Modified Taiwan Agricultural Sector Model 

For this analysis we extend the TASM version of Chen and Chang [33] adding features related to 

farm support, bioenergy and GHG emissions. The algebraic form of the modified TASM is as follows: 
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Equation (1) is the objective function. The area under the domestic demand curve is the 1st term 

while input costs are in the 2nd term. Then the area under the cropland and labor supply curves are in the 

3rd and 4th terms, respectively. The 5th, 6th and 7th terms reflect the government subsidies on rice 

purchase, set-aside lands and the planting of energy crops. The 8th and 9th terms represent the area 

under the rest of world export excess demand curve and the 10th term stands for the area under the rest of 
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world excess supply curve. The 11th term is tariff revenue. The final term models GHG offset payments 

under a carbon dioxide equivalent price.  

Equation (2) is the balance constraint for commodities. The first three terms give alternative demands 

which includes domestic demand (Qi), export demand (Qi
X
), and government purchases (Qi

G
).  

The last two terms in the supply-demand balance constraint represents the supply side and include 

domestic production (  i   i ) and imports (Qi
M

 + TRQi). Table 1 depicts the details of variables. 

Table 1. Variables and their descriptions. 

 
 
 Domestic Demand of Product 

 
i
  Government purchases quantity for price supported product 

 
i
  Import quantity of product 

 
i
  Export quantity of product 

   
i
  Inverse demand function of product 

 i
  Government purchase price on product 

Ci  Purchased input cost in region for producing  product 

 i  Land use for commodities produced in region 

    Land use for energy crop produced in region 

   Land supply in region 

       Land inverse supply in region  

   Labor supply in region 

 
 
  

 
  Labor inverse supply in region 

   Set-aside subsidy 

A   Set-aside acreage in region 

     Subsidy on planting energy crop 

 C   Planted acreage of energy crop in region 

    
i
   Inverse excess import demand curve for product 

    
i
   Inverse excess export supply curve for product 

T  
i
 Import quantity exceeding the quota for product 

     T  
i
  

Inverse excess demand curve of product that the import quantity 

is exceeding quota 

ta i Import tariff for product 

outta i Out-of-quota tariff for product 

 i  Per hectare yield of commodity produced in region 

Egik greenhouse gas emission from product in region 

     Price of GHG gas 

   g Global warming potential of greenhouse gas 

   g Net greenhouse gas emissions of gas 

 aselineg Greenhouse gas emissions under the baseline of the gas 

Equations (3) and (4) are the resource endowment constraints. Equation (3) controls cropland 

insuring that planted land plus set-aside land cannot exceed total land and reflects competition by 

agricultural crops, energy crops and set-aside hectares. Equation (4) is the constraint for other resources 

such as fertilizer, irrigation and labor requirement. Equation (5) is the net greenhouse gas balance which 

accounts for the net gain in emissions relative to the baseline as in McCarl and Schneider [38].  
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3.2. Modeling Farm Support Policy 

In order to incorporate ongoing domestic policies that support rice prices and set-aside cropland,  

the modified TASM required the addition of variables that reflected the government rice purchasing 

program and the set-aside program. The rice purchasing program provides farmers with a guaranteed 

price that is higher than the market equilibrium price. Letting Pi
G
 be the weighted government 

guaranteed purchase price and Qi
G
 be the total amount of government purchase. The farm revenue 

realized from the government rice purchase program is added into the objective function as an additional 

farm revenue source. At the same time, it removes rice from the market place up to the amount allowed. 

The other set of policy variables related to the land set-aside program are discussed next.  

If farmers choose to participate in this program, then those farmers will receive a set-aside payment (P
L
). 

The purpose of the objective function that includes consumer and producer surplus is to derive the 

equilibrium under a perfectly competitive market. We add the government expenditure to the objective 

function; however, this does not mean that we treat the government expenditure as social welfare; 

instead, it reflects the distorted demand function. 

3.3. Modeling Energy Crops and Conversion 

Production activities for raising sweet potatoes, poplar and switchgrass as bioenergy feedstocks plus 

their conversion into ethanol and electricity are incorporated into the modified TASM. Here we discuss 

that modeling. 

First, under current policy there is a substantial amount of set-aside land and these crops are modeled 

as using that land. Second in terms of crops sweet potatoes are currently produced in Taiwan,  

but not poplar and switchgrass. For this reason, input costs and yields for those crops are obtained from 

the literature and established models. Aylott et al. [39] showed that the yield of poplar is generally from 

5.77 to 9.59 t/ha per year and this difference is caused by the quality of soil at the plantation and local 

weather. Sandy soil usually has the lowest yield. Since soil on Taiwan set-aside land is not sandy,  

this study takes average poplar yield. Switchgrass is a robust lowland energy crop most suited to the 

southern USA and has been tested in Auburn University test plots. In general, it has produces more than 

10 tons per acre per year. Some U.S. government projects show that the yield of switchgrass is between 

2 and 4 tons per acre per year and therefore, to be conservative, we use the average yield from 

government studies in our analysis. Since 1 hectare is 2.471 acres, the assumed annual yield of 

switchgrass is 3 × 2.471 = 7.4 t/ha per year.  

Third, in terms of transformation to energy ethanol and electricity transformations are included in the 

model (in US dollars). For sweet potato, we added a facility construction cost of NT$2.4 per liter and  

a processing cost of NT$8.4 per liter. We also added a hauling cost of NT$1 per liter of ethanol that was 

estimated following McCarl et al.’s 2000 [40] hauling cost formula. For poplar and switchgrass,  

ethanol cost data is from FASOM [41]. After adjusting for Taiwanese consumer price index, the 

processing cost (including fixed cost, hauling cost and other costs) is NT$12 per liter for poplar and 

NT$11 per liter for switchgrass. Since poplar and switchgrass are not planted in Taiwan, elasticities of 

demand are set equal to the elasticity of hardwood varieties. Outputs are calculated based on the data of 

Aylott et al. [39] while production costs are calculated based on the information from  
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FASOMGHG [42]. Fertilizer and chemical costs per hectare are calculated to NT$11,885 for poplar and 

$18,763 for switchgrass. Per hectare energy and seed costs are calculated to NT$706 and NT$5,410 for 

poplar and NT$488 and NT$306 for switchgrass, respectively. We also compute the net mitigation of 

carbon dioxide using an estimate from Weber and Johannes [43]. They show that net carbon dioxide 

emissions are reduced by 0.107 ton per 1,000 liters of ethanol. Electricity generated from a kg of poplar 

is about 0.768 kWh and 0.919 kWh per kg for switchgrass. Therefore, a kg of poplar and switchgrass are 

equivalent to 0.125 kg and 0.149 kg of coal, respectively. McCarl [44] estimates that poplar can offset 

about 71.3% of carbon dioxide emissions relative to the fossil fuel, 83.4% and 75.1% for switchgrass 

and the associate emissions reduction is 0.28 kg CO2 per kg of poplar and 0.246 kg CO2 for switchgrass.  

3.4. Modeling Pyrolysis and Biochar 

In this study, sweet potato, poplar and switchgrass are examined as potential pyrolysis feedstocks. 

Pyrolysis yields biooil, biogas and biochar. Following McCarl et al. [11] biooil and biogas are modeled 

as being used for bioelectricity generation, while biochar has multiple uses. First, biochar can be burned 

to provide electricity and reduce production cost. Second, biochar can be applied on cropland and obtain 

agricultural benefits such as higher crop yields and lower irrigation water use.  

Table 2 shows the pyrolysis outputs for sweet potato, poplar and switchgrass. The pyrolysis yields for 

sweet potato we used in this study are based on He et al. [45]. Pyrolysis yields of poplar are based on 

Bridgwater and Peacocke [46]. Because we analyze the different uses of biochar, the net electricity 

produced from pyrolysis will be different if biochar is not used for electricity generation.  

Data from Table 2 is further processed to remove water content from biooil, which better simulate the 

net electricity production. The lower heating value of the biochar, biooil and biogas are taken as  

11.4 MJ per kg [11], 17.3 MJ per kg and 6.5 MJ per kg [47], respectively. By using these estimates,  

we calculate the electricity generated from the pyrolysis of each energy crop.  

Table 2. Outputs from Fast and Slow Pyrolysis.  

Pyrolysis Type Output Poplar Sweet Potato Switchgrass 

Fast Pyrolysis 

Biooil 66% 87.56% 69% 

Biogas 13% NA 11% 

Biochar 14% 12.44% 20% 

Slow Pyrolysis 

Biooil 56% 51.52% 58.55% 

Biogas 7% 34.99% 5.92% 

Biochar 31% 13.50% 44.29% 

Source: [44,46]. 

3.5. Modeling GHG Emissions and Markets 

The net GHG emissions offsets from pyrolysis, including both uses of biochar, are presented in Table 2. 

When burning biochar, all biochar is used to provide energy and therefore, we don’t need to consider 

hauling emissions. However, the GHG emissions offset from burning biochar in the pyrolysis plant as it 

displaces fossil fuels must be added. If biochar is used as a soil amendment, hauling is considered. 

Below presents the hauling cost for ethanol production. For sweet potatoes, we follow McCarl et al. [11] 
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and assume that the ethanol plant is in the center of a square surrounded by a grid layout of roads.  

In turn, the hauling cost (H) and average hauling distance ( D ) is given by the following formula: 

H = (b0 + 2b1 D ) S/Load         (6) 

and: 

D  = 0.4714
Y

S

640          
(7) 

where D  is the average distance that the feedstock is hauled in miles; S is the amount of feedstock input 

for a bio-refinery to fuel the plant, which we assume is 1 Mt (annual input) plus an adjustment for an 

assumed 5% loss in conveyance and storage; Load is the truck load size, which we assume to be 23 t  

(a general truck load size in Taiwan); Y is the crop yield (40 tons per ha per year) multiplied by an 

assumed crop (sweet potato) density of 38%; 640 is a conversion factor for the number of acres  

per square mile; B0 is a fixed loading charge per truckload and is assumed to be NT$2,700 per truckload 

for a 23 ton truck; and B1 is the charge for hauling including labor (per mile) and maintenance costs. 

Based on Chen’s estimation, we assumed it equal NT$66 and a 5% yield loss during transportation.  

Hauling cost of feedstock to pyrolysis plant follows the same methodology, given a needed feedstock 

production area of 1,268 ha of cropland this yields an average hauling distance of 2.7 km with a cost of 

NT$133.5 per ton. This cost stands for the hauling cost of transporting biomass to the pyrolysis plant. 

We also incorporate: (1) a cost of purchasing biochar and (2) a cost of hauling biochar from the plant to 

rice producing lands into the model. The biochar cost comes from its relationship with coal where it has 

about 40% of the energy content and with a coal price of NT$1 per kg we assume the biochar price is 

NT$1 per kg. Table 3 details the GHG offset potential of various feedstocks. 

Table 3. Carbon Dioxide Offset from Burning Biooil, Biogas and Biochar (ton CO2 per ton  

of feedstock).  

Type of Pyrolysis Sweet Potato Poplar Switchgrass 

Pyrolysis optimized for energy 0.31 0.4 0.418 

Pyrolysis optimized for biochar 0.542 0.62 0.647 

Source: Use Gaunt and Lehmann’s estimates [48] for GHG offset calculation.  

4. Study Setup 

This study examines Taiwan’s bioenergy production under alternative energy prices, and carbon 

prices. In particular we use three ethanol prices (NT$20, 30 and 40 per liter), two coal prices  

(NT$1.7 and 3.45 per kg), six GHG prices (NT$5, 15 and 30 per ton CO2e) and assumed GHG emissions 

from land use change. We also consider cases where the biochar is applied to land and where it is used to 

generate electricity. The study examines Taiwan’nudy e amines Taiwanwd where it is used to generate 

electricity.ricity.t is used to generaticity, and GHG emissions offset by utilizing current set-aside land 

with the consideration of the emissions from fertilizer use and land use change. Three gasoline prices 

(NT$20, 30, 40 per liter), two coal prices (NT$1.7, 3.45 per kg), six GHG prices (NT$5, 10, 15, 20, 25, 

30 per ton) plus estimated emissions from fertilizer use and land use change. The simulated gasoline and 
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coal prices are selected based on the ranges of their market prices in 2012. Since Taiwan has not 

established a GHG trading mechanism and GHG emission is currently of no value in Taiwan,  

the study examines several potential GHG prices based on the opinion of Chen, who is familiar with and 

engaged in Taiwanese agricultural and environmental policies.  

GHG emissions from land use change are estimated by Liu et al.[3], who calculate that annual mean 

GHG fluxes from soil of plantation and orchard are 4.70 and 14.72 Mg CO2-C ha
−1

·yr
−1

,  

−2.57 and −2.61  g C 4-C ha
−1

·yr
−1

 and 3.03 and 8.64 kg N2O-N ha
−1

·yr
−1

, respectively. Qin et al. [49] 

also indicated that the average N2O flu  is 1.8  g N ha−1 and most of the simulation results are less than 

5 kg·N·ha
−1

. Because CO2 and N2O emissions are highly correlated with each other [25], we assume that 

the emission profile of CO2 and N2O are staying at the same level. In addition, Snyder et al. [50] show 

that fertilizer induced N2O emissions from soil equates to a GWP of 4.65 kg CO2 kg
−1

 of N applied.  

With these estimates, we arrive at the estimated emission level from fertilizer use and land use change 

(Table 4).  

Table 4. Net CO2e emissions from land use change under different GHG emission rates. 

GHG CO2 N2O CH4 
Net CO2e Emissions from 

Land Use Change 

Unit Mg ha−1·yr−1 kg ha−1·yr−1 kg ha−1·yr−1 Mg ha−1·yr−1 

Land GHG 

Emissions 
4.7 26.86 -2.57 11.62 

The data on agricultural commodity market conditions largely are updates of that in TASM which 

was based on published government statistics and research reports including the FASOMGHG,  

Taiwan Agricultural Yearbook, Production Cost and Income of Farm Products Statistics, Commodity 

Price Statistics Monthly, Taiwan Agricultural Prices and Costs Monthly, Taiwan Area Agricultural 

Products Wholesale Market Yearbook, Trade Statistics of the Inspectorate-General of Customs,  

Forestry Statistics of Taiwan.  

5. Results 

The simulation results indicate that only sweet potato should be used as a feedstock due to its higher 

production rate, lower cost per ton and harvest frequency (Appendix Table A1). Comparisons between 

bioenergy production and GHG emission reduction are also provided. Figure 1a,b shows the levels of 

ethanol production with and without endogenously incorporating land GHG emissions under various 

GHG prices. We find that when GHG prices increase, ethanol production decreases because ethanol 

offsets relative less GHG emissions than electricity and under higher GHG prices, ethanol production is 

replaced by pyrolysis-based electricity. Moreover, when biochar is used as an energy source,  

ethanol production is higher than when it is used as a soil amendment. This is explained by a 

combination of high returns to biochar use as a soil amendment, coupled with feedstock competition 

where more sweet potatoes are used for pyrolysis. However, if GHG price is low, ethanol is the  

better alternative. However, incorporation of land GHG emissions changes the ethanol production 

significantly. Ethanol production shrinks dramatically when land emissions are considered,  

especially for the burning biochar scenarios. This is because emissions from land-use change further 
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reduces the net emissions offset of ethanol production and therefore, ethanol production drops to an even 

lower level at high GHG prices.  

Figure 1. (a) Ethanol production when biochar is burned for energy; (b) Ethanol production 

when biochar is used as a soil amendment.  

 

 

Figure 2a,b shows the levels of electricity production under alternative biochar uses. Here we see that 

when the GHG price is high, electricity production generally increases. When GHG price is low, 

producers will adopt fast pyrolysis and generate more electricity. However, when the GHG price 

becomes higher there is a switch to slow pyrolysis to yield more biochar with an associated reduction in 

electricity production but an increase in GHG emission offsets. This situation is more obvious when we 

compare the electricity production under land emissions scenarios. If land emissions are endogenously 

incorporated, electricity production is generally lower than that under no land emission scenarios.  

This is due to the higher GHG price has a significant impact on electricity production and hence more 

sweet potatoes are used in slow pyrolysis to gain better returns. This causes the net electricity production 

to decrease.  
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Figure 2. (a) Electricity production when biochar is burned for energy;  

(b) Electricity production when biochar is used as a soil amendment. 

 

 

Figure 3a,b indicates the net GHG emissions from bioenergy production. As expected,  

net GHG emissions offsets increase when the GHG price increases. When land emissions are 

incorporated and biochar is applied to cropland, the highest net GHG emissions reductions are achieved. 

This result indicates that there is competition between domestic energy production and climate change 

mitigation. The result indicates that the largest net GHG emissions reduction occurs when Taiwan’s 

bioenergy production does not achieve the maximal. Slow pyrolysis and biochar application to crops is 

the best GHG alternative while fast pyrolysis with the biochar burned for electricity is the best energy 

alternative. The net GHG emission reduction of burning biochar scenarios when considering land 

emissions is higher than that in no land emissions scenarios because higher portion of electricity are 

produced from slow pyrolysis, which yield low electricity but high biochar. However, although slow 

pyrolysis produces more biochar, land emissions do offset the environmental benefits from using 

biochar as a soil amendment. Therefore, net emissions offset is lower when land emissions  

are incorporated. 
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Figure 3. (a) Net GHG emissions offset when biochar is burned for energy; (b) Net GHG 

emissions offset when biochar is used as a soil amendment. 

 

 

The study also shows that when multiple bioenergy techniques such as ethanol, conventional electricity 

and pyrolysis-based electricity are competing with each other, conventional electricity is not competitive. 

The results also indicate that when land GHG emissions are incorporated, ethanol production decreases 

across all scenarios. Throughout all scenarios, simulation result can be interpreted as:  

(1) When land GHG emissions are endogenously considered, electricity and ethanol production 

will have a significant shrink, compared to the no land emissions scenarios. 

(2) When biochar is used as an energy source, more sweet potatoes are used in fast pyrolysis and 

lead to a larger reduction on ethanol production. 

(3) Slow pyrolysis dominates fast pyrolysis, ethanol and conventional electricity at high  

GHG price. Fast pyrolysis dominates all other alternatives at low GHG price. 
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(4) Net GHG emission offset will increase in burning biochar scenarios but decrease in hauling 

biochar scenarios. The maximum amount of GHG emissions reduction from Taiwanese 

bioenergy production is lower when land emissions are endogenously considered into the 

production process. 

(5) If land GHG emissions are not considered, simulation result for ethanol and electricity 

production and GHG emissions reduction will be too optimistic.  

6. Conclusions 

This study examined the trade-off relationship between Taiwanese bioenergy production and 

associated GHG emissions when ethanol, conventional bioelectricity and pyrolysis-based bioelectricity 

can be produced. The results show that when biochar is for electricity that, pyrolysis can provide up to  

3.8 billion kWh or about 1.73% of Taiwan’s annual electricity demand while offsetting up to 2.2 million tons  

of GHG emissions (or 1.58% of Taiwan’s annual GHG emissions).  

We find that ethanol will not be competitive when land based emissions are considered under high 

GHG prices because of its low GHG offset levels. However, when ethanol price is higher than  

NT$40 per liter and GHG price is lower than NT$15 per ton, ethanol production is desirable and 

provides a substantial amount of ethanol for blended gasoline. Based on the simulation results, there are 

tradeoffs between energy production and GHG offsets and between electricity and ethanol production.  

Those crafting Taiwan’s bioenergy strategy may well want to consider these tradeoffs.  

Larger amounts of imported energy can be replaced with production of ethanol and fast pyrolysis based 

electricity but larger GHG emissions reductions occur with slow pyrolysis based electricity and land 

application of biochar. The result indicates that when land use emissions are endogenously incorporated, 

the best technique for climate change mitigation is slow pyrolysis and both ethanol and pyrolysis based 

electricity will decrease significantly. However, fast pyrolysis would still be a better technique for the 

concern of energy security and most of ethanol and conventional bioelectricity would be driven out.  

This study has limitations. The findings are a reflection of the assumptions used such as feedstock 

yields, energy recovery rates, pyrolysis yields and land emission rates. The accuracy of such 

assumptions could be improved. Also we also ignore the differences of weather and soil between 

counties that may actually lead to different crop yields and biochar application effects. These limitations 

can be addressed once related experimental data is available.  
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Appendix 

Table A1. Simulation results of bioenergy production and GHG emissions offset for with 

and without endogenous land GHG emissions. 

When Biochar is Burned for Electricity Unit      

 Ethanol Price NT$ per liter 20 20 20 30 30 

 Coal Price NT$ per kg 1.7 1.7 1.7 1.7 1.7 

 GHG Price NT$ per ton 5 15 30 5 15 

 Ethanol production 1,000 liter 222,347  130,000  69,550  236,740  156,000  

With Land 

GHG 

Electricity 1,000 kWh 773,500  1,627,877  2,130,621  773,500  1,430,823  

 GHG emission reduction ton 450,882  1,004,075  1,313,363  450,997  882,866  

 Ethanol production 1,000 liter 228,822  192,163  192,096  306,243  269,840  

Without Land 

GHG 

Electricity 1,000 kWh 2,364,700  3,315,000  3,315,000  825,600  1,712,750  

 GHG emission reduction ton 253,214  340,569  340,562  108,743  195,062  

 Coal Price NT$ per kg 3.45 3.45 3.45 3.45 3.45 

When Biochar is Burned for Electricity Unit      

 GHG Price NT$ per ton 5 15 30 5 15 

 Ethanol production 1,000 liter 156,000 130,000 69,550 156,000 156,000 

With Land 

GHG 

Electricity 1,000 kWh 1,417,259 1,637,981 2,130,662 1,408,645 1,436,500 

 GHG emission reduction ton 824,125 1,010,301 1,313,389 819,125 886,364 

 Ethanol production 1,000 liter 224,534 201,321 192,097 242,777 220,524 

Without Land 

GHG 

Electricity 1,000 kWh 2,475,200 3,094,000 3,315,000 2,408,900 2,983,500 

 GHG emission reduction ton 263,370 320,325 340,562 259,032 311,840 

 Ethanol Price NT$ per liter 30 40 40 40  

 Coal Price NT$ per kg 1.7 1.7 1.7 1.7  

 GHG Price NT$ per ton 30 5 15 30  

 Ethanol production 1,000 liter 130,000  238,218  240,546  130,000   

With Land 

GHG 

Electricity 1,000 kWh 1,651,857  773,500  773,500  1,651,857   

 GHG emission reduction ton 1,018,851  451,009  478,525  1,018,851   

 Ethanol production 1,000 liter 207,660  306,797  306,954  264,866   

Without Land 

GHG 

Electricity 1,000 kWh 3,315,000  773,500  773,500  1,856,400   

 GHG emission reduction ton 342,305  108,806  108,823  208,331   

When Biochar is Burned for Electricity Unit      

 Ethanol Price NT$ per liter 30 40 40 40  

 Coal Price NT$ per kg 3.45 3.45 3.45 3.45  

 GHG Price NT$ per ton 30 5 15 30  

 Ethanol production 1,000 liter 130,000 238,236 156,000 130,000  

With Land 

GHG 

Electricity 1,000 kWh 1,651,898 773,500 1,435,372 1,651,897  
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Table A1. Cont. 

When Biochar is Burned for Electricity Unit 

 GHG emission reduction ton 1,018,876 451,009 885,669 1,018,876  

 Ethanol production 1,000 liter 207,660 251,907 235,769 208,261  

Without Land 

GHG 

Electricity 1,000 kWh 3,315,000 2,187,900 2,607,800 3,315,000  

 GHG emission reduction ton 342,305 238,785 277,390 342,372  

When Biochar. is Hauled to Cropland Unit      

 Ethanol Price NT$ per liter 20 20 20 30 30 

 Coal Price NT$ per kg 1.7 1.7 1.7 1.7 1.7 

 GHG Price NT$ per ton 5 15 30 5 15 

 Ethanol production 1,000 liter 156,000 130,000 69,550 220,800 148,602 

With Land 

GHG 

Electricity 1,000 kWh 773,500 845,476 1,246,679 773,500 773,500 

 GHG emission reduction ton 1,088,257 1,271,000 1,627,488 552,498 1,232,109 

 Ethanol production 1,000 liter 156,000 156,000 5,200 284,650 156,000 

Without Land 

GHG 

Electricity 1,000 kWh 2,607,800 1,740,322 3,353,446 773,500 1,743,157 

 GHG emission reduction ton 603,841 1,163,300 2,208,492 216,557 1,165,167 

When Biochar. is Hauled to Cropland Unit      

 Ethanol Price NT$ per liter 20 20 20 30 30 

 Coal Price NT$ per kg 3.45 3.45 3.45 3.45 3.45 

 GHG Price NT$ per ton 5 15 30 5 15 

 Ethanol production 1,000 liter 156,000 69,550 69,550 156,000 130,000 

With Land 

GHG 

Electricity 1,000 kWh 773,500 1,314,196 1,288,531 773,500 844,497 

 GHG emission reduction ton 1,048,141 1,550,040 1,642,042 1,098,684 1,269,077 

 Ethanol production 1,000 liter 179,070 156,000 5,200 202,828 156,000 

Without Land 

GHG 

Electricity 1,000 kWh 2,519,400 1,740,847 3,308,116 2,475,200 1,745,286 

 GHG emission reduction ton 587,067 1,163,646 2,178,646 564,761 1,166,568 

When Biochar. is Hauled to Cropland Unit      

 Ethanol Price NT$ per liter 30 40 40 40  

 Coal Price NT$ per kg 1.7 1.7 1.7 1.7  

 GHG Price NT$ per ton 30 5 15 30  

 Ethanol production 1,000 liter 130,000 275,667 156,000 156,000  

With Land 

GHG 

Electricity 1,000 kWh 808,214 151,032 773,500 773,500  

 GHG emission reduction ton 1,333,213 350,500 1,093,777 1,227,404  

 Ethanol production 1,000 liter 130,000 287,430 156,000 156,000  

Without Land 

GHG 

Electricity 1,000 kWh 2,043,067 773,500 1,748,897 1,788,248  

 GHG emission reduction ton 1,359,715 201,581 1,168,946 1,194,854  
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Table A1. Cont. 

When Biochar. is Hauled to Cropland Unit      

 Ethanol Price NT$ per liter 30 40 40 40  

 Coal Price NT$ per kg 3.45 3.45 3.45 3.45  

 GHG Price NT$ per ton 30 5 15 30  

 Ethanol production 1,000 liter 130,000 220,819 156,000 130,000  

With Land 

GHG 

Electricity 1,000 kWh 819,030 773,500 773,500 819,030  

 GHG emission reduction ton 1,361,671 552,499 1,105,395 1,361,671  

 Ethanol production 1,000 liter 130,000 217,112 156,000 156,000  

Without Land 

GHG 

Electricity 1,000 kWh 2,028,091 2,165,800 3,274,577 1,788,649  

 GHG emission reduction ton 1,349,855 498,605 776,957 1,195,118  
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