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We show that the No-Scale Flipped SU(5) construction is transparently consistent with recent
LHCD results for BS — putp~ decays, due primarily to suppression from the rather small value
of tan 8 ~ 20 that is globally enforced across the model space. This fact should be interpreted in
conjunction with the demonstrated evasion of mass limits from the ATLAS and CMS SUSY searches
and the more important potential explanation of small observed excesses in the multijet data. The
No-Scale Flipped SU(5) benchmark model that best fits these excesses has a gaugino mass scale of
M, ;5 = 708 GeV, which drives masses for the bino-dominated LSP mgo = = 143.4 GeV, light stop

mg, = 786 GeV, gluino mgz = 952 GeV, and heavy squark My, = 1490 GeV. The corresponding

total prediction for the rare B-decay of Br(BY — putp~) = 3.5 x10~

% suggests that the SUSY

contribution may indeed be much smaller than that expected from the Standard Model in this
framework, fitting quite comfortably within the very tightly constrained region remaining viable

after the most recent LHCb measurements.
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Upon completion of several ATLAS and CMS 5
fb~! supersymmetry (SUSY) searches of the total 2011
LHC data harvest [1H6], interesting correlations [7, [8] be-
gan to emerge between event signatures registered by
the collaborations and a high-energy model framework
known as F-SU(5) (See Refs. |#-17] and all references
therein), which combines the No-Scale Flipped SU(5)
grand unified theory (GUT) with extra vector-like par-
ticles (flippons). Despite an absence of any conclusive
signs of supersymmetry thus far at the LHC, we pre-
sented the case |7, I§] that those studies with curious
event excesses over the expected Standard Model (SM)
background all implicate a consistent narrow swath of
the F-SU(5) SUSY mass scale, subsequent to an embed-
ding of the collaboration selection strategies into that
construction. The largest significance in signal strength
was observed in the ATLAS multijet realm [1, 2], permit-
ting determination of prospective best fit SUSY masses
for a bino-dominated LSP mgo = 143.4 GeV, the light
stop mz, = 786 GeV, gluino mg = 952 GeV, and heavy
squark mg, = 1490 GeV [1]. Intrlgumgly, the most
meaningful signal strength within data reported by CMS
also prevailed in the multijet domain [6]. Given that the
F-SU(5) supersymmetric event landscape at the LHC
is anticipated to be dominated by multijets |9, [L1H15],
the cumulative fidelity of the proffered explanation would
be enhanced by the systematic preference of a budding
phase of SUSY event production for the multijet search
space.

These mounting correlations compel the undertaking
of fresh consistency checks against recently improved

B-decay constraints, specifically those from the flavour
changing neutral current process Bg — pup~ [18], where
the initial quark content is (s,b). We take the branching
ratio from Refs. [19,120], which we write in the form
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where fp_ is the Bs decay constant, mp is the B meson
mass, and 7 is the mean life. The factors C4, Cy are
primarily determined by the Standard Model diagrams,
whereas Cg, C%, Cp, Cp include the SUSY loop contri-
butions resulting from diagrams relating to particles such
as, for example, the light stop, chargino, sneutrino, and
Higgs bosons.

The LHCb has undertaken measurements of rare B-
decay processes with unprecedented precision, establish-
ing an upper bound on the branching ratio of the Bg —
wtpu~ process of Br(BY — ptp~) < 4.5(3.8) x 107°
the 95% (90%) confidence level [21]. With well-defined
predictions in the Standard Model of Br(BY — utu~) =
(3.240.2) x 1079 22, 23], where the loop-level process
employs a virtual W-boson to transmute the quark con-
tent and facilitate a tf — Z° fusion event, severe con-
straints may potentially be placed upon the viable pa-
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rameter spaces of any candidate SUSY framework [24].
In particular, the allowed SUSY contribution to these
rare B-decays is in a state of rapid contraction following
recent CMS [25] and LHCD |21)] high-precision measure-
ments. Simultaneously surviving the swiftly escalating
ATLAS and CMS SUSY mass spectrum constraints while
making only compulsorily insubstantial SUSY contribu-
tions to Bg — puTp~ is truly becoming a fine needle to
thread.

The vector-like flippon multiplets will contribute to the
B rare decays to utu~ since they will contribute to the
two axial-current operators Oq1¢ and O}, from the mix-
ings with the SM fermions [26]. Thus, the process BY —
T~ will give strong constraints on the tree-level flavour
changing neutral current effects [26]. Note that with-
out flippon contributions, we have Br(BY — putu~) =
3.5 x 1072 for the benchmark points of Ref. |7, 16, [17].
Thus, we must suppress the flippon contributions by
some combined effect of i) the natural heaviness of the
multiplets, around a few times the TeV scale, and ii) an
assumption that the mixings between the flippons and
the SM fermions are relatively small.

The F-SU(5) experimentally viable model space
perimeter is shaped by application of the bare-minimal
experimental constraints defined in Ref. [10], which is
defined by simultaneous consistency with i) the dy-
namically established high-scale boundary conditions
Moy=A=B,=0 of No-Scale Supergravity, ii) radiative
electroweak symmetry breaking, iii) precision LEP con-
straints on the lightest CP-even Higgs boson my, |27, [28]
and other light SUSY chargino and neutralino mass con-
tent, iv) a top-quark mass 172.2 GeV < my < 174.4 GeV,
and v) a single, neutral supersymmetric cold dark-matter
(CDM) candidate providing a relic density within the 7-
year WMAP limits 0.1088 < Qcpum < 0.1158 [29]. These
constraints represent those experiments that are regarded
as exhibiting the greatest stability, with conclusions pos-
sessing the broadest acceptance. Moreover, we superpose
on the model space derived out of the bare-minimal con-
straints upper and lower boundaries on the light Higgs
boson mass of 124 < my, < 126 GeV, reflecting the recent
50 over background discovery observed by ATLAS [30],
CMS [31], and CDF/D@ [32]. The flippons fill an essen-
tial role in this context by coupling to the Higgs boson
and naturally generating a 3-4 GeV upward shift |14] to
my, facilitating a physical Higgs boson mass in excellent
conformity with the observations.

The F-SU(5) model space remaining after implemen-
tation of the bare-minimal constraints plus the 124-126
GeV Higgs mass limits is illustrated in Figure () as a
function of the gaugino mass M, ; and flippon mass My,
encompassing a narrow sliver confined to the region of
400 < Myo < 900 GeV, 194 < tanf < 23, and 950
< My < 6000 GeV. The lowermost boundary at M1/2
= 400 GeV is demanded by the LEP constraints, while
the uppermost boundary at M/, = 900 GeV is a conse-
quence of a charged stau LSP exclusion around tang ~
23. The SUSY particle masses and B-decay branching ra-

tios are calculated with MicrOMEGAs 2.1 [33], applying a
proprietary modification of the SuSpect 2.34 [34] code-
base to run the flippon-enhanced renormalization group
equations (RGEs).

We inset into Figure () the multi-axis cumulative x>
fitting of Ref. [7], linked to the horizontal axis Mj .
Clearly illustrated is the well of the x? at My, = 708
GeV, representing the best fit SUSY mass to those AT-
LAS SUSY searches demonstrating a signal significance
of S/v/B + 1 > 2. The smoothly graded contours of color
depict the value of Br(B% — p™u™). The rate for the
SUSY contribution to By — pTu~ is proportional to the
sixth power of tang, and due to the fact that F-SU(5)
globally enforces a relatively small value of 19.4 < tang
< 23, the F-SU(5) model space within the median fit of
the x? well resides at Br(B% — putu~) < 3.6 x 1077,
with Br(B% — ptp~) = 3.5 x107? at M, )5 =708 GeV,
both comfortably in accordance with the very tight LHCb
constraint of Br(B% — utp™) < 4.5 (3.8) x1079 at the
95% (90%) confidence level. So indeed, it seems No-Scale
F-SU(5) has successfully threaded the needle of ATLAS
and CMS SUSY mass constraints in parallel with an ex-
ceptionally small SUSY contribution to B — u*u~, the
combination deemed to be so intractable for the typical
SUSY framework.

Conclusions-The LHC has amassed a total of 5
fb~! of integrated luminosity at /s = T TeV through
the close of 2011. Consequently, the entire landscape
of supersymmetric models has dwindled considerably, as
the increasing SUSY mass limits have invalidated many
prior contenders. For those few high-energy frameworks
left standing, the unprecedented precision of the LHCb
measurements of the B-decay process By — putu~ could
have been the final blow. In spite of this dim outlook,
we showed here that No-Scale F-SU(5), which has al-
ready demonstrated the capacity to evade the encroach-
ing ATLAS and CMS SUSY mass constraints while per-
haps moreover ezrplaining the origin of small excesses in
the 5 fb~! multijet data observations, is in fact further
bolstered by the new LHCb results. Due to the relatively
small globally allowed range of 19.4 < tan 8 < 23, the F-
SU(5) SUSY contribution to Br(B% — utpu~), which is
proportional to the sixth power of tan(, is much smaller
than the effect expected within the Standard Model.
Thus, a large value of Br(B% — pu™) could have dealt
a very damaging hit to F-SU(5). On the contrary, the
now apparent insubstantial SUSY contribution measured
at the LHCb is very consistent with that required in a No-
Scale F-SU(5) universe. Indeed, we demonstrated that
the SUSY mass spectrum of an LSP mge = 143.4 GeV,
light stop mz = 786 GeV, gluino mg = 952 GeV,
and heavy squark mg, = 1490 GeV, which can effi-
ciently explain the ATLAS multijet data observation ex-
cesses, exhibits a B-decay of Br(Bg — putuT) =35
x107?, well within the quite constrained LHCb result
of Br(BY — ptu~) < 4.5 (3.8) x107 at the 95%
(90%) confidence level. Whether nature is herself truly
described by No-Scale F-SU(5) remains, for now, be-
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FIG. 1: We depict the experimentally viable parameter space of No-Scale F-SU(5) as a function of the gaugino mass M, and
flippon mass My . The surviving model space after application of the bare-minimal constraints of Ref. ] and Higgs boson mass
calculations of Ref. Iﬂ] is illustrated by the narrow strip with the smoothly contoured color gradient. The gradient represents
the total branching ratio (SM+SUSY) of the B-decay process BY — utp™, numerically scaled as displayed in the color bar
legend. The inset diagram (with linked horizontal scale) is the multi-axis cumulative x? fitting of Ref. ﬂ], depicting the best
SUSY mass fit and Standard Model limit of only those ATLAS and CMS SUSY searches exhibiting a signal significance of
S/v/B+1 > 2. Shown is the best fit benchmark of Ref. [1] at M, /» = 708 GeV, with Br(B% — u*u~) = 3.5x 107°, consistent

with the recent LHCb measurements of Br(B% — utu™) < 4.5 (3.8) x107° at 95% (90%) confidence level.

yond our capacity to establish; however, it is becom-
ing increasingly clear that her actions, spanning a broad
and non-trivially correlated space of observations, con-
form remarkably well to the predictions that this model
makes. This elegant evasion of myriad potential pitfalls,
the rare B-decay limits being but one example among
many, serves to highlight the sharp differences in phe-
nomenology that exist between the F-SU(5) framework
and the traditional CMSSM/mSUGRA constructions.
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