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Evapotranspiration (ET) is normally considered as the sum of all water that evaporates from the soil and transpires from plants.
However, accurately estimating ET from complex landscapes can be difficult because of its high spatial heterogeneity and diversity
of driver factors, which make extrapolation of data from a point to a larger area quite inaccurate. In this paper, we hypothesize that
MODIS products can be of use to estimate ET in areas of Caatinga vegetation, the hydrology of which has not been adequately
studied. The experiment was conducted in a preserved level area of Caatinga in which meteorological and water flux measures
were taken throughout 2012 by eddy covariance. Evapotranspiration estimates from eddy covariance were compared with remotely
sensed evapotranspiration estimates from MOD16A2 and SAFER products. Correlations were performed at monthly, 8-day, and
daily scales; and produced 𝑟2 values of monthly scale = 0.92, 8-day scale = 0.88, and daily scale = 0.85 for the SAFER algorithm.
Monthly MOD16A2 data produced a value of 𝑟2 = 0.82, and they may be useful because they are free, downloadable, and easy to
use by researchers and governments.

1. Introduction

The high equipment and maintenance costs involved in mea-
suring water fluxes in agrosystems and natural ecosystems
through field experiments make remote sensing an attractive
alternative [1]. Remote sensing has been used worldwide
as a low cost, fast, and practical methodology to measure
physical and biological parameters at multiple scales from
land surfaces [2]. It has been applied in different climatic
regions to determine and to map the spatial and temporal
variation of components of water balance [3, 4]. It has been
coupled with hydrological models, such as the Soil andWater
Assessment Tool (SWAT), providing input data normally
obtained from agrometeorological stations [5].

Evapotranspiration is normally considered as the sum
of all water that evaporates from the soil and transpires

from plants [6, 7]. It can be used to estimate the amount of
water used by crops and the amount of irrigation required
for optimum crop production [8]. It can also be used as a
component of models used to estimate other components of
the water balance, including surface runoff, lateral flow, base
flow, and percolation to aquifers [5, 9]. Such estimates are
useful for management of water in soils, reservoirs, and even
hydroelectric plants [2]. As human population increases and
climate changes, water management is becoming a greater
concern for researchers [7], farmers, and other decision
makers. The state of Pernambuco has developed policies for
climate change (state law number 14,090 of June 17, 2010) and
coastal management (state law number 14,258 of December
23, 2010) and to combat desertification and mitigate the
effects of drought (state law number 14,091 of June 17, 2010).
These policies are designed to help manage the water in the
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Figure 1: Location of the Flux tower installed in an area of Caatinga at Embrapa Semiárido, which is a research station of the state of
Pernambuco, Brazil. Land use map source: PROBIO.

state, and accurate information about temporal and spatial
variations in ET could assist in their implementation.

Spatial heterogeneity of ET can be great due to spatial
variations in vegetation, weather, soils, and topography. As a
result, extrapolation of ET estimates fromflux towers to larger
areas can be misleading [1, 10]. Also, ET is spatially auto-
correlated, so changes at a point can affect its surroundings
[11]. Direct measurement of ET in the field is expensive and
difficult; therefore, satellite-based products that can be used
to remotely estimate ET have become very popular among
researchers and government agencies. Several models of
landscape energy balance based on remotely sensed data have
been developed, for example, SEBAL (Surface Energy Balance
Algorithm for Land, [12, 13]), MOD16 [7, 14], and SAFER
(Simple Algorithm For Evapotranspiration Retrieving, [8]).
Each of these models has advantages and disadvantages
depending on where they are being applied [15]. Because
models are often based on a global scale [7] or on a model-
species approach [16, 17], calibration and validation may be
required to parameterize a model to a given set of local
conditions [18].

Validation is used to analyze the uncertainties of model
outputs, ensuring the accuracy of remotely sensed ET and
enhancing its applications. Awide range ofmethods has been
used, but in most cases, deviance measures and statistical
tests are recommended ones. The first one evaluates the
differences between the simulated and observed values [19].
With squared deviations, Root Mean Square Errors (RMSE)
can be useful to derive statistical properties. The second one
is better for bias analysis. It is important to use both methods
because a dataset could be extremely close in absolute values
but spatially removed from the perfect covariance fit (i.e.,
regression curve) and vice versa, especially when it is a
nonlinear relationship like an exponential fit. For that, the
coefficient of determination (𝑟2) is usually the measurement
to evaluate the proportion of output variation that can be
explained by the fit curve.

In this paper, we hypothesize that MODIS products can
be used to accurately estimate ET in areas of Caatinga vege-
tation in northeastern Brazil, which is a neglected Brazilian
vegetation type in terms of research and investments [20]. In
our laboratory, Machado et al. [21] have previously estimated
ET using Landsat imagery, but we believe the MODIS sensor
may be better suited for monitoring ET in Caatinga because
of its high temporal resolution. In this study, we used
eddy covariance data to calibrate MODIS estimates of ET
for Caatinga vegetation on monthly, 8-day, and daily time
scales.

2. Methodology

2.1. Study Area. The experiment was conducted in a pre-
served flat area of Caatinga (≈600 ha) located at Embrapa
Semiárido research station of the state of Pernambuco, Brazil
(40∘19󸀠16󸀠󸀠W, 9∘02󸀠33󸀠󸀠S; 350m) (Figure 1). Caatinga is a
hyperxerophilic vegetation type that consists of deciduous
xerophytic shrubs and trees with an average height of 5m
and over 1,000 vascular plant species [20]. In the study
area, dominant plant species include Poincianella microphylla
(Mart. ex G. Don), Croton conduplicatus (Kunth), Bauhinia
cheilantha (Bong.), Manihot pseudoglaziovii (Pax & Hoff-
man), and Commiphora leptophloeos (Mart.). The climate
type is BSwh (Köopen) or semiarid, with rainy season from
January to April. Average annual rainfall is 510mm, and
it is temporally and spatially very heterogeneous. Mean air
temperature is 26.2∘C [22].

2.2. Eddy Covariance Flux Tower. Meteorological and water
flux measurements were taken throughout 2012 with sensors
installed in a 16m tower located in the study area. A
net radiometer (model CNR-1, Kipp & Zonen B; V; Delft,
Netherlands) installed at 13.3m above the soil surface was
used to determine incoming solar radiation (𝑅𝑆). Air tem-
perature and relative humidity (HMP45C, Vaisala, Helsinki,
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Table 1: List of all MODIS imaged days of the year of 2012 used in the SAFER analysis. All these images were selected by having clear and
high quality data for the pixel regarding an area of Caatinga at Embrapa Semiárido, which is a research station of the state of Pernambuco,
Brazil (9∘05󸀠S; 40∘19󸀠W; 350m).

01/07/2012 04/19/2012 05/31/2012 07/26/2012 10/20/2012
01/10/2012 04/26/2012 06/02/2012 07/31/2012 10/23/2012
01/28/2012 04/28/2012 06/06/2012 08/07/2012 10/26/2012
03/01/2012 04/29/2012 06/07/2012 08/08/2012 10/28/2012
03/02/2012 05/01/2012 06/09/2012 08/10/2012 10/29/2012
03/03/2012 05/03/2012 06/10/2012 08/11/2012 10/30/2012
03/04/2012 05/05/2012 06/15/2012 08/29/2012 12/14/2012
03/07/2012 05/07/2012 06/18/2012 09/04/2012 12/18/2012
03/09/2012 05/12/2012 06/20/2012 09/08/2012 12/20/2012
03/14/2012 05/14/2012 06/21/2012 09/14/2012 12/22/2012
03/17/2012 05/15/2012 06/22/2012 09/21/2012 12/25/2012
03/23/2012 05/16/2012 06/26/2012 09/25/2012 —
03/25/2012 05/17/2012 07/08/2012 09/26/2012 —
03/28/2012 05/29/2012 07/13/2012 10/03/2012 —
04/06/2012 05/30/2012 07/23/2012 10/10/2012 —

Finland) and rainfall (CS700-L Hydrological Services Rain
Gauge, Liverpool, Australia) were measured at 15.7m and
16.3m height, respectively. Wind speed values were obtained
with an ultrasonic anemometer 3D (WindMaster Pro, Gill
Instruments Ltd., Lymington, UK) at 16.9m height, and
ET was directly measured by an Open Path H2O analyzer
(IRGA; model LI-7500, LI-COR Inc., Lincoln, NE, USA).
All sensors were connected to a data logger (model CR1000,
Campbell Scientific Inc., Logan, Utah, USA) set up to take
measurements every 10 seconds. More information on the
study site and monitoring system can be found in a previous
paper [22].

2.3. MOD16A2 Products. MODIS MOD16A2 products were
downloaded for all 8-day and month periods of the year
of 2012 from http://www.ntsg.umt.edu/project/mod16. The
58 images were rescaled from 0.1mm 8-day−1 or 0.1mm
month−1 to correct units (mm 8-day−1 or mm month−1) by
multiplication of all pixels by the 0.1, using the GDAL library
(Geospatial Data Abstraction Library). The ET MOD16A2
dataset is composed of two components, (i) meteorological
and (ii) remote sensing based data, and is computed using
an algorithm, (1); [7, 14], a modification of the equation
described by Cleugh et al. [23], which in turn is a Penman-
Monteith approach to estimate ET [24].

ET = Δ (𝑅𝑛 − 𝐺) + 𝜌𝐶𝑝 (𝑒𝑠 − 𝑒𝑎) /𝑟𝑎
Δ + 𝛾 (1 + 𝑟𝑠/𝑟𝑎) , (1)

where 𝑅𝑛 is radiation budget (Jm−2 day−1), 𝐺 is soil heat
flux (≈0 Jm−2 day−1), 𝜌 is the air density (kgm−3), 𝐶𝑝 is the
specific heat of air at constant pressure (1013 J kg−1K−1),𝑒𝑠 is saturation vapor pressure (Pa), 𝑒𝑎 is current vapor
pressure (Pa), Δ is the slope of the curve pressure versus
air temperature (PaK−1), and 𝛾 is the psychometric constant
(kPaK−1). The meteorological input data for that equation is

always provided by the Global Modelling and Assimilation
Office (GMAO) and includes daily total downward radiation
(𝑅𝑆; MJm−2 day−1), daily average air temperature (T; ∘C),
daytime and nighttime air temperatures (𝑇𝐷, 𝑇𝑁; ∘C), daily
minimum air temperature (𝑇min;

∘C), and vapor pressure
(𝑒𝑠, 𝑒𝑎; kPa), all at 1.0∘ × 1.25∘ spatial resolution. The land
surface inputs are acquired from threeMODIS products, with
a spatial resolution from 500 to 1,000m2. These products are
MOD12Q1 [25], MOD15A2 [26], and MCD43B2/B3 Collec-
tion 5 (albedo) [27]. Further details of MOD16 algorithm are
given in Mu et al. [14].

2.4. SAFER Products. To create SAFER products, we used
images of level 1B MOD021KM products from sensor
Terra/MODIS for the year of 2012. Firstly, all 366
images were downloaded through the Level 1 and
Atmosphere Archive and Distribution System (LAADS;
https://ladsweb.nascom.nasa.gov/data/search.html), and sec-
ondly, 71 imageswere selected as having clear and high quality
data for the pixel regarding Embrapa Semiárido (Table 1).
The MOD021KM product has 36 spectral bands, from
0.405 𝜇m to 14,385 𝜇m, with different spatial resolutions,
from 250 to 1,000m2. The SAFER algorithm is basically
a simplified and calibrated version of SEBAL [12, 13] for
Brazilian semiarid conditions [15]. It was first proposed by
Teixeira [8] using Landsat imagery, but MODIS application
details can be found in Teixeira et al. [3]. It utilizes only four
bands in a five-step process to acquire ET. The first step was
to convert the digital numbers (DN) of two bands from the
visible spectrum (bands 1 and 2) into reflectance (𝑝𝑏) and
DN of two thermal bands (bands 31 and 32) into radiance
(𝐿𝑏; Wm−2 sr−1 𝜇m−1). For that, we used following equation:

𝑝𝑏 = 𝑎 (DN𝑏 − 𝑏) , (2)

where DN is the digital number and 𝑎 and 𝑏 are calibrated
constants retrieved from the metadata of each product.

http://www.ntsg.umt.edu/project/mod16
https://ladsweb.nascom.nasa.gov/data/search.html
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The second step is used to calculate values of albedo, as
recommended by Valiente et al. [28]:

𝛼𝑠 = 𝑎 + 𝑏𝑝1 + 𝑐𝑝2, (3)

where 𝑎, 𝑏, and 𝑐 are 0.08, 0.41, and 0.14, which are values
calibrated to Brazilian semiarid by Teixeira et al. [29]. The
third step is to process the Normalized Difference Vegetation
Index (NDVI), which can be acquired as follows [30]:

NDVI = (𝑝2 − 𝑝1𝑝2 + 𝑝1) , (4)

where 𝑝1 and 𝑝2 are the reflectance of band 1 and 2,
respectively. The fourth step is used to calculate surface and
brightness temperatures:

𝑇𝑏 = ( 𝐾2
ln (𝐾1/𝐿𝑏 + 1)) ,

𝑇0 = 𝑎𝑇31 + 𝑏𝑇32,
(5)

where 𝑇31 and 𝑇32 are brightness temperatures from band 31
and 32, respectively, 𝑎 and 𝑏 are both coefficients with value
of 0.5 [29], 𝑇𝑏 is brightness temperature of each band 𝑏, 𝐿𝑏 is
spectral radiance, and 𝐾1 and 𝐾2 are conversion coefficients
in Wm−2 sr−1 𝜇m−1. 𝐾1 and 𝐾2 can be calculated with the
following equations [31]:

𝐾1 = 2ℎ𝑐2𝜆−510−6,
𝐾2 = ℎ𝑐

𝜎𝜆 ,
(6)

where ℎ is the Planck constant (6.62606896 ⋅ 10−34 J s−1),𝑐 is the speed of light (2.99792458 ⋅ 108ms−1), 𝜎 is the
Boltzmann constant (1.3806504 ⋅ 10−23 J K−1), and 𝜆 is the
mean wavelength for each thermal band in meters (11.0186 ⋅10−6 and 12.0325 ⋅ 10−6 for bands 31 and 32 resp.). Finally
for the ET ratio (ET : ET0), inputs are NDVI, 𝛼𝑠, and 𝑇0 (7).
The ET ratio is related with soil moisture and vegetation
chlorophyll content. It can be used to estimate components
of the water balance at the scale of the remote sensing pixels,
which may include different agrosystems and natural plant
communities.

ET
ET0

= exp [𝑎 + 𝑏( 𝑇0𝛼𝑠NDVI)] , (7)

where ET0 is the reference evapotranspiration and 𝑎 and 𝑏
are regression coefficients of values 1.90𝑒−0.008, respectively
for Brazilian semiarid conditions [8]. All calculations were
performed with the GDAL library.

2.5. Reference Evapotranspiration. To estimate the reference
evapotranspiration (ET0) required by the last step of SAFER
algorithm, we used the following equations with daily resam-
pled data from the eddy covariance Flux tower:

ET0

= 0.408Δ (𝑅𝑛 − 𝐺) + 𝛾 (900/ (𝑇 − 273)) 𝑢2 (𝑒𝑠 − 𝑒𝑎)Δ + 𝛾 (1 + 0.34𝑢2) , (8)

where 𝑅𝑛 is radiation budget (MJm−2 day−1), 𝐺 is soil heat
flux (≈0MJm−2 day−1), 𝑇 is air temperature at 2m (∘C), 𝑢2
is wind speed at 2m (m s−1), 𝑒𝑠 is saturation vapor pressure
(kPa), 𝑒𝑎 is current vapor pressure (kPa), Δ is the slope of
the curve pressure versus air temperature (kPa ∘C−1), and 𝛾
is the psychometric constant (kPa ∘C−1). 𝑅𝑛 was calculated
following this series of equations:

𝑅ns = (1 − 𝛼) 𝑅𝑆,
𝜑 = 𝜋

180 𝑙,
𝑑𝑟 = 1 + 0.033 cos( 2𝜋

365𝑗) ,
𝛿 = 0.409 sin( 2𝜋

365𝑗 − 1.39) ,
𝜔𝑠 = arccos [− tan (𝜑) tan (𝛿)] ,
𝑅𝑎 = 24 (60)

𝜋
⋅ 𝐺SC𝑑𝑟 [𝜔𝑠 sin (𝜑) sin (𝛿) cos (𝜑) cos (𝛿) sin (𝜔𝑠)] ,

𝑅𝑆0 = (0.75 + 2 ⋅ 10−5𝑧) 𝑅𝑎,
𝑅nl = 𝜎𝑇4 (0.34 − 0.14√𝑒𝑎) × (1.35 𝑅𝑆𝑅𝑆0 − 0.35) ,
𝑅𝑛 = 𝑅ns − 𝑅nl,

(9)

where 𝑅ns is net solar or net shortwave radiation (MJm−2
day−1); 𝛼 is albedo or canopy reflection coefficient, which
was considered 0.175 as indicated by de Souza et al. [22] for
the study area; 𝑅𝑆 is measured incoming solar radiation from
meteorological tower (MJm−2 day−1); 𝑙 is latitude in degrees;𝜑 is latitude in radians; 𝑑𝑟 is the inverse relative Earth-Sun
distance; 𝑗 is the number of the day in the year; 𝛿 is the
solar declination; 𝜔𝑠 is the sunset hour angle (radians); 𝑅𝑎
is daily extraterrestrial radiation (MJm−2 day−1); 𝐺SC is the
solar constant (0.0820MJm−2min−1); 𝑅𝑆0 is clear-sky solar
radiation (MJm−2 day−1); 𝑧 is elevation above sea level in
meters; 𝑅nl is net longwave radiation (MJm−2 day−1); and 𝜎
is the Boltzmann constant (4.903 ⋅ 10−9MJK−4m−2 day−1).
The parameters 𝑢2, 𝑒𝑠, 𝑒𝑎, Δ, and 𝛾 were acquired with the
equations below, respectively, where 𝑢𝑧 is wind speed at
elevation 𝑧 (m s−1) and RH is relative air humidity (%).

𝑢2 = 𝑢𝑧 4.87
ln (67.8𝑧 − 5.42) , (10)

𝑒𝑠 = 0.6108 exp( 17.27𝑇
𝑇 + 273) , (11)

𝑒𝑎 = RH
100𝑒𝑠, (12)
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Figure 2: Meteorological scenario for the year of 2012 recorded by the Flux tower installed in an area of Caatinga at Embrapa Semiárido,
which is a research station of the state of Pernambuco, Brazil. Global radiation is themonthlymean of accumulated daily incoming radiations;
air, temperature, and relative humidity are presented as monthly mean of the daily mean; and rainfall is the monthly sum of all precipitations.

Δ = 4098 × 0.6108𝑒𝑠
(𝑇 + 273)2 , (13)

𝛾 = 0.665 ⋅ 10−3 (101.3 (293 − 0.0065𝑧
293 )5.26) . (14)

2.6. Statistical Analysis. Covariance between SAFER and
MOD16A2 and tower estimates of ET were analyzed
using linear and nonlinear regressions. Normality and
homoscedasticity of all ET data were testedwith ShapiroWilk
test and Brown Forsyth test, respectively [32].The differences
between the simulated and observed absolute values were
evaluated using RMSE [19, 32]. All statistical analyses were
performed with the package R (v3.2.3; [33]), and results were
considered to be significant when 𝑝 ≤ 0.05. Graphs were
plotted with the software Veusz (v1.24; [34]).

3. Results and Discussion

3.1. Climatology and Surface Properties. A first analysis of the
weather data showed that, in general, global radiation (𝑅𝑆),
air temperature (𝑇), and relative humidity (RH) exhibited
normal behavior in 2012, with low values of𝑅𝑆 and𝑇 and high
values of RH in July and August (Figure 2). Exceptions in the
patterns were observed only for February, April, and Novem-
ber, when rainfall had a strong direct or indirect influence.
Annual precipitation was 90.42mm, which was only 17% of
historical averages for the area (510mm). Temporal variation
in rainfall was large, with peaks in February, April, and
November. February was a cloudy month, with 𝑅𝑆 reaching
values similar to July and 𝑇 decreasing as RH increased. The
effects of the February rainfall peak can also be observed
in ET0, which decreased to 76.6% of January’s (Figure 3).
Global radiation measured in meteorological stations can be
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Figure 3: Monthly variation of all input parameters used in the SAFER algorithm for the year of 2012 in an area of Caatinga at Embrapa
Semiárido, which is a research station of the state of Pernambuco, Brazil. NDVI, albedo, and Surface Temperature are presented as monthly
mean of all available data and evapotranspiration is the monthly mean of all available data multiplied by the number of days in that month.

drastically decreased during cloudy days, and that might
significantly affect the amount of energy available to the pro-
cess of evapotranspiration. Also, ET0 is a modelled variable
and varies positively in function of 𝑅𝑆. For these ground
measurements, cloudy days still produce reliable data, since
surface data is acquired beneath the clouds, which is not true
for satellite-based data that attempts to acquire surface data
from above it. The values of NDVI, 𝛼𝑠, and 𝑇0 could not
be processed to February due to these interferences. April
presented a pattern inverse to February, with high 𝑅𝑆 and 𝑇
and low values of RH. Although it was a dry month, NDVI
were still high because of the existing lag between rainfall
and vegetation cover dynamics, and that kept 𝛼𝑠, 𝑇0, and ET0
stable. November was again a rainy month that followed the
same pattern as February, but since vegetation cover is lower
in November than in February, 𝑇 was proportionally higher
than in February.

3.2. Monthly Evaluation. The ET estimates for the MODIS
pixel of Caatinga in which the tower was located were com-
pared with the observations in loco performed by equipment
installed on that tower. The relationship between observed
data and MOD16A2 products presented coefficients of deter-
mination (𝑟2) of 0.77 for the linear fit and 0.82 for the
exponential one (Figure 4). These values are comparable to
that found by Ruhoff et al. [9] (𝑟2 = 0.89) when comparing
MOD16A2 ET against eddy covariance measurements in an
area of Cerrado, which is a Brazilian ecosystem that consists
of a dense vegetation dominated by shrubs and trees with 5–
10m height. When using SAFER data instead of MOD16A2,
we obtained 𝑟2 of 0.92 for a linear relation and 0.79 for an
exponential relation.

The lower 𝑟2 obtained with MOD16A2 compared with
SAFER suggest that the limitations cited by Mu et al. [7]
may be operative. Those limitations include (i) inaccuracy
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Figure 4: Monthly linear and exponential regression of MOD16A2 evapotranspiration (superior part) and SAFER evapotranspiration
(inferior part) versus evapotranspiration from a Flux tower installed in an area of Caatinga at Embrapa Semiárido, which is a research station
of the state of Pernambuco, Brazil, for the year of 2012.

of algorithm inputs, such as MODIS LAI (Leaf Area Index)
that tends to be overestimated [35] andmay result in overesti-
mates of ET; inaccuracy of MODIS EVI that may lead to mis-
calculation of vegetation cover fraction; andmisclassification
of land cover (MOD12Q1) that may result in incorrect VPD
and minimum air temperature values in equations [7, 25]
and (ii) average parameter values for stomatal dynamics that
may not represent well all species within that biome [36, 37].
On the other hand, the SAFER algorithm was created and
validated for the Brazilian semiarid. Its greatest advantage is
that both the algorithm itself [8] and its inputs (𝛼𝑠 and 𝑇0
in Teixeira et al. [15]) have been calibrated for the Caatinga
conditions.

The exponential model performed better than the linear
one forMOD16A2, indicating that the product’s ET estimates
saturate and lose sensitivity at high ET rates. However, that
is not a disadvantage of the SAFER algorithm. Since SAFER

uses an exponential regression. This saturation pattern is
based on an intrinsic behavior of the vegetation indexes used
in both MOD16A2 and SAFER equations that are often over-
or underestimated at low and high values for the Caatinga,
respectively, and also on their relationships with LAI that
has proven to be always exponential. For example, Costa et
al. [38] (15) and Domiciano Galvı́ncio et al. [39] (16) have
found exponential relationships between LAI and NDVI for
Caatinga vegetation. In addition, vegetation indexes produce
nonlinear relationships with LAI due to their mathematical
structure [40].

LAI = 0.6401𝑒(2.6929×NDVI); (15)

LAI = exp [1.426 + (−0.542
NDVI

)] . (16)
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Figure 5: Monthly regression standardized residuals versus regression standardized predicted values of all models. (a) and (b) are linear and
exponential models for MOD16A2, respectively, and (c) and (d) are linear and exponential models for SAFER algorithm, respectively.

Linear estimation of ET using MOD16A2 produced a
greater average residual (3.98mmmonth−1) than exponential
one (2.82mmmonth−1).These results corroborate theNDVI-
LAI relation that is better for nonlinear than linear equations.
Also, the linear model violates assumptions of linearity and
homoscedasticity. We can observe curvilinearity in the data,
and residuals are greater for greater values of predicted ET
(Figure 5(a)). Note that themodel should only be used within
the range of data used to develop the model, which in
our case is from 4.31 to 40.15mm of ET. The exponential
model for MOD16A2 was similar to the linear model, but it
violates only the assumption of homoscedasticity, presenting
the same increasing relation of residual’s variances and
regression predicted values (Figure 5(b)). That is, estimates
of small values of ET are more precise than large values. For
SAFER, neither linear nor exponential models present any
specific pattern of errors, suggesting that the assumptions
were met (Figures 5(c) and 5(d)). However, the linear model
is preferred because its 𝑟2 is greater and its residuals are
smaller (1.6mm month−1) when compared with exponential
estimates (2.43mmmonth−1).

3.3. Eight-Day Evaluation. The relationship between ob-
served ET and MOD16A2 estimates presented 𝑟2 values of
0.62 and 0.69 for a linear and exponential fit, respectively
(Figure 6). These values are again close to that found by
Ruhoff et al. [9] in the Cerrado (𝑟2 = 0.78), when comparing
8-day MOD16A2 ET with tower flux measurements of ET.
Limitations regardingMOD16A2 products and linearmodels
are the same as described for monthly data. Residuals
from the linear model using MOD16A2 presented a greater
average residual (1.56mm 8-day−1; Figure 7(a)) than the
exponential model (1.2mm 8-day−1; Figure 7(b)), and we
can observe the same pattern as in the monthly analysis,
where both show signs of heteroscedasticity, and only the
linear model violates the linearity assumption. However, the
8-day exponential model overestimates ET more than the
monthly model. The mean positive residuals were 90.7%
greater than the mean negative residuals in the 8-day model,
while in the monthly model, mean positive residuals were
12.4% larger. That corroborates results of Ruhoff et al. [9]
in which MOD16A2 overestimated ET for another biome
in Brazil. We obtained 𝑟2 values of 0.88 and 0.65 for linear
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Figure 6: 8-day linear and exponential regression of MOD16A2 evapotranspiration (superior part) and SAFER evapotranspiration (inferior
part) versus evapotranspiration from a Flux tower installed in an area of Caatinga at Embrapa Semiárido, which is a research station of the
state of Pernambuco, Brazil, for the year of 2012.

and exponential SAFERmodels, respectively (Figure 6), with
average residuals of 0.81mm 8-day−1 and 1.15mm 8-day−1
for linear and exponential models, respectively (Figures 7(c)
and 7(d)). For the linear model, symmetry of residuals was
quite large with small differences (6.2% for 8-day), but again
the monthly model was better with only 0.01% of difference
between average negative and positive residuals.

3.4. Daily Evaluation. As monthly and 8-day SAFER linear
models gave better results than the exponential ones, we
decided to develop a linear model for daily ET. This model
gave 𝑟2 of 0.85 with residuals varying from −0.4 to 0.6mm
(Figure 8). In comparison, Teixeira [1] found 𝑟2 of 0.89 in a
linear relation between SAFER data and field measurements
of irrigated crops and Caatinga. In our study, the patterns of
residuals suggested heteroscedastic behavior. This result was

inconsistent with residuals of the linear monthly and 8-day
SAFER models, possibly the result of temporal downscaling
of weather data. However, daily ET data is essential for a
precise environment monitoring, especially in the case of the
Brazilian semiarid where there is a high space-time variation
of rainfall [41], for example, 20% of the yearly rainfall may
occur in a single day or 60% in a month [42]. Because
of limitations in quantity and quality of weather station
data in Brazil, use of remotely sensed data by researchers
and government agencies has increased. Among the various
sensors with freely available data that have been used to
estimate ET,MODISmay be themost widely used. It provides
data on a daily basis (250 to 1,000m), which not only allows
precise monitoring of ET at daily, monthly, and yearly scales,
but also can provide daily inputs to hydrological models like
SWAT [5].
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Figure 7: 8-day regression standardized residuals versus regression standardized predicted values of all models. (a) and (b) are linear and
exponential models for MOD16A2, respectively, and (c) and (d) are linear and exponential models for SAFER algorithm, respectively.

3.5. Temporal Evaluation. ET estimates of the SAFER algo-
rithm were closer to Flux tower estimates than MOD16A2
estimates (Figure 9), especially from April to December,
where the mean monthly difference between the tower and
remotely sensed estimateswas−0.26mmmonth−1 for SAFER
in comparison to 11.08mm month−1 for MOD16A2, and
the mean 8-day differences were 0.019 and 2.89mm 8-day−1
for SAFER and MOD16A2, respectively. However for the
period between January and March, the differences were
not as great: −0.012mm month−1 and 0.17mm 8-day−1 for
SAFER compared to 16.36mmmonth−1 and 4.31mm8-day−1
for MOD16A2. For the daily scale, the differences between
SAFERandFlux tower ET estimateswere 0.017mmday−1 and
0.21mm day−1 for the first and second periods, respectively.
The SAFER model gave better results than the MOD16A2
model at all evaluated temporal scales. MOD16A2 tended
to overestimate ET, due, we suggest, to the meteorological
input data used in MOD16A2 algorithm. It is derived from
a 1.00∘ × 1.25∘ grid, while meteorological input data for the
SAFER algorithm was acquired from the Flux tower itself.

Mu et al. [14] have reported that GMAO data produces
biases if compared to measures frommeteorological stations.
The period when all products and the Flux tower were
closest was from September to October. As we showed in
the residual analysis, low values of ET tend to have smaller
variances than high values. In thosemonths, both SAFER and
MOD16A2 presented the smallest values of ET because this
was the only period that a dry month (≈0mm of rainfall) was
followed by another dry month and no soil water recharge
occurred. However, even during these months when no
rainfall occurred, we observed levels of ET varying from ≈3
to 10mm. This ET may result from plant transpiration of
water from deep soil layers and soil evapotranspiration of
dew. In northern Israel during the dry season, Agam and
Berliner [43] found that even when no dew is deposited on
the soil surface, soil evaporation can be observed, suggesting
that humidity is absorbed by the soil during the night and
evaporates during the day.

SAFER linear ET models more closely matched Flux
tower estimates of ET than all other models (Table 2), with
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Table 2: Brief statistical summary and Root Mean Square Error (RMSE) of all nine evapotranspiration models.

Model Product Min and max obs. values (mm) Min and max pred. values (mm) RMSE (mm)
𝑦 = 0.7341𝑥 − 5.67 Monthly MOD16A2

4.31 to 40.15

0.83 to 32.4 4.91
𝑦 = 3.0195𝑒0.0477𝑥 4.6 to 35.8 3.68
𝑦 = 0.6376𝑥 + 3.0758 Monthly SAFER 4.5 to 28.94 1.97
𝑦 = 5.1181𝑒0.0469𝑥 5.68 to 34.32 2.86
𝑦 = 0.7699𝑥 − 1.7182 8-day MOD16A2

0.83 to 18.95

0.33 to 12.17 2.18
𝑦 = 0.7933𝑒0.1679𝑥 1.07 to 16.47 1.99
𝑦 = 0.6856𝑥 + 0.8387 8-day SAFER 1.06 to 13.02 1.13
𝑦 = 1.4401𝑒0.1566𝑥 1.49 to 23.3 2.27
𝑦 = 0.5351𝑥 + 0.1067 Daily SAFER 0.07 to 1.91 0.12 to 1.45 0.15
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Figure 8: Daily regression of SAFER evapotranspiration versus
evapotranspiration fromaFlux tower installed in an area ofCaatinga
at Embrapa Semiárido, which is a research station of the state of
Pernambuco, Brazil, for the year of 2012. In the insets, dispersion
pattern of residuals is relative to the model.

Root Mean Square Errors (RMSE) of 1.97 and 1.13mm for
monthly and 8-day scales, respectively, while MOD16A2’s
errors ranges were 1.99 and 4.91mm, respectively. In the
Cerrado, Ruhoff et al. [9] found RMSEs of 19 and 0.78mm
when comparing monthly and 8-day ET estimates from
MOD16A2 to tower flux measurements, respectively, with
monthly differences between predicted and measured data
ranging from 0 to 40mm. We also compared the min-
imum and maximum predicted values from the SAFER
and MOD16A2 estimates to the Flux tower dataset. The
MOD16A2 linear model underestimated the minimum Flux
tower value by 81% for the monthly scale and by 60%
smaller for the 8-day scale. In contrast, SAFER linear and
MOD16A2 exponential models showed minimum values of

only 4% and 7% greater than the observed minimum values
from Flux tower dataset for monthly scale, and both were
28% greater for the 8-day scale. For the maximum values,
the 8-day SAFER exponential model overestimated Flux
tower estimates by 23%. Daily SAFER linear model showed
0.15mm RMSE, over- and underestimating the minimum
and maximum values, respectively, compared to the RMSE
of 0.34mm found by Teixeira [1], when analyzing ET field
measurements and SAFER data. The SAFER algorithm was
compared with another algorithm by its developers in their
report [44], and they argued that SAFER outperformed
because it estimates the ratio ET : ET0 instead of ET, which
allows spatial extrapolation of ET [44]. However, since the
MOD16A2 model estimates the same ratio, we suggest that
the regionally calibrated inputs [8] are the reason that SAFER
estimates may be more accurate over other methods.

4. Conclusion

In this study, we compared ground-based ET with remotely
sensed ET from MOD16A2 and SAFER products, and it
produced 𝑟2 values of monthly scale = 0.92, 8-day scale
= 0.88, and daily scale = 0.85 for the SAFER algorithm.
Monthly MOD16A2 data produced a value of 𝑟2 = 0.82,
and 8-day value = 0.69. Although, dataset variance increased
in temporal downscaling ET data, we showed that MODIS
derived products can be of use to model ET for the Caatinga
ecosystem,with acceptable 𝑟2 values for the SAFER algorithm
at all temporal scales. Moreover, we also recommend the
use of MOD16A2 monthly products to monitor the Caatinga
when if locally observedmeteorological data are not available
to produce SAFER estimates. MODIS data produced satis-
factory estimates of Flux tower observed data and are freely
downloadable at http://www.ntsg.umt.edu/project/mod16.
We believe this study contributes to the assessment evap-
otranspiration data via remote sensing techniques, which
may provide better understanding of the evapotranspiration
dynamics of the Caatinga ecosystem, which might be a world
reference in the future for ecological disturbances due to
climate changes or simply key information to help federal and
municipal governments plan land use changes with rational
criteria.

http://www.ntsg.umt.edu/project/mod16
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Figure 9: Monthly, 8-day, and daily variations of MOD16A2 and SAFER evapotranspiration and evapotranspiration from a Flux tower
installed in an area of Caatinga at Embrapa Semiárido, which is a research station of the state of Pernambuco, Brazil, for the year of 2012.
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