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74 M. G. Benli et al.

1 Introduction

1.A. Motivation In the study of finiteness conditions on groups, the following type of
question is natural:

Question 1.1 Given a Property (P) of groups, does any finitely generated group
with (P) have a finitely presented cover with (P) ?

A cover of a group G is a group E given together with an epimorphism E � G.
A cover fits into an extension 1→ N → E � G → 1.

The answer can be positive for trivial reasons, for example when Property (P)
holds for free groups (such as exponential growth) or when Property (P) implies finite
presentation (such as nilpotency, or polynomial growth).The answer is also positive
when (P) is Kazhdan’s Property (T ), by a non-trivial result of Shalom [137].

Here, we concentrate on Question 1.1 for amenability, a case in which the answer
is negative. Indeed, the goal of this article is to study examples and results concern-
ing finitely generated amenable groups that do not have finitely presented amenable
covers.

Our motivation is better to understand the class of finitely presented amenable
groups, and related groups. To describe the situation, it is convenient to introduce the
class AG of amenable groups, and the subclass EG of elementary amenable groups,
which is easier to understand (Appendix D is a reminder on these classes, and on
growth).

On the one hand, many examples are known in EG of finitely presented solu-
ble groups, including the standard examples described in the exposition [145], the
Baumslag–Remeslennikov group, which is a finitely presented metabelian group with
derived group free abelian of infinite rank (references in our Remark A.4.c), and the
Kharlampovich group, which is a finitely presented soluble groupwith unsoluble word
problem (references in the proof of Proposition A.5). There are also finitely presented
groups in EG which are not virtually soluble (Example D.1).

In the complement AG � EG, a reasonable number of finitely generated examples
are known, in particular the groups of intermediate growth. Also known are finitely
presented examples, all closely related to self-similar groups. But not enough examples
are known to allow one to guess at a general picture; this is illustrated by the following
old and basic problem in the theory of growth of groups (see, e.g., [105], Problems
4.5.b, 9.8, and 10.11):

Basic problem 1.2 Does there exist a finitely presented group of intermediate growth?

The answer does not seem to be at hand. Here is a possibly easier problem:

Problem 1.3 Does there exist a finitely generated group of intermediate growth that
is the quotient of a finitely presented group without non-abelian free subgroups? or
the quotient of a finitely presented amenable group?

Finitely generated elementary amenable groups are never of intermediate growth
[48], so that Problems 1.2 and 1.3 do not arise in EG. Problem 1.3 involves two
questions, because there exist finitely presented groups that are non-amenable and do
not contain non-abelian free subgroups [126].

123



Finitely presented covers 75

Strictly speaking, the solution of the analogue of Problem 1.2 is known for the class
AG � EG. Indeed, one knows a few sporadic examples of finitely presented groups
in this class, such as the HNN-extension ̂G of the Grigorchuk group [70], and the
HNN-extension of the Brunner–Sidki–Vieira group that appears in [81, Proposition
6] (the latter group is amenable by [13] and not elementary amenable by [81]). The
finitely presented HNN-extension of the basilica group that appears in [81, Theorem
1.7] is not even in the classAG � SG, defined in Appendix D; see also [10, Theorem
12]. But, despite these examples, very little is known about finitely presented groups
in AG � EG, and it would be interesting to find methods providing new examples; a
priori, one could hope and try finitely presented covers, but our paper shows that this
does not look very promising.

Before stating the next problem, here is a definition: the elementary amenable
radical Radea(G) of a group G is its unique maximal normal elementary amenable
subgroup. Note that Radea(G) is contained in the amenable radical of G, that appears
(but for its name) in [56, Lemma 1 of Section 4].

Problem 1.4 Is there a finitely presented group G in AG�EG, with Radea(G) = {1},
that has infinitely presented1 quotients? or that has uncountably many pairwise non-
isomorphic quotients?

1.B. First examplesWhen (P) is amenability, we know two approaches toQuestion
1.1: One is based on the theory of �-invariants, developed in a series of papers by
Bieri, Strebel, and Neumann (see Appendix C). The other involves self-similar groups
and approximation methods (see Sections 2, 3).

The first result we quote is due to Bieri and Strebel [31, Theorem 5.5 and Corollary
5.6]. On the one hand, we reformulate it in a slightly weaker version, assuming that E
is finitely presented (instead of assuming that E has Property FP2, as in the original
paper); on the other hand, we formulate it for virtually metabelian groups, because
this follows immediately from the case of metabelian groups.

Theorem 1.5 (Bieri-Strebel) Let G be a virtually metabelian group that is finitely
generated and infinitely presented.

Any finitely presented cover E of G has non-abelian free subgroups. In particular,
E is non-soluble, indeed non-amenable.

The proof of Theorem 1.5 can now be understood in a much simpler way than in
[31], as we indicate in Corollary C.4. The reason is that we can use better invariants,
namely those defined in [32] and their later reformulations (see Strebel’s exposition
in progress [146]).

Examples of metabelian groups that are finitely generated and infinitely presented

include matrix groups like

(

(

�
m

)Z
Z
[ 1

�m

]

0 1

)

where �, m ≥ 2 are coprime integers,

wreath products A � Z where A �= {1} is a finitely generated abelian group, and free
metabelian groups FSol(k, 2) := Fk/[[Fk, Fk], [Fk, Fk]], where Fk is the free group
on k ≥ 2 generators.

1 A finitely generated group is “infinitely presented” if it is not finitely presented.
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76 M. G. Benli et al.

Appendix A includes a reminder on metabelian groups. Appendix B is a reminder
on wreath products and lamplighter groups. Appendix C is a reminder on Bieri–
Neumann–Strebel invariants. Proposition B.2, Corollary B.3, Proposition B.9, Corol-
lary C.4, and Corollary C.6 give examples of finitely generated groups of which all
finitely presented covers have non-abelian free subgroups.

We denote by G the Grigorchuk group,2 introduced in [66]; see Example 2.16.
Recall here that G is finitely generated, indeed generated by four involutions tra-
ditionally written a, b, c, d. This group has many remarkable properties, including
that of being an infinite 2-group of intermediate growth; in particular it is amenable.
The group G has a presentation, due to Lysenok, with four generators and infinitely
many relators. Appropriate finite subsets of these relators naturally define a sequence
(Gn)n≥0 of four-generated finitely presented groups converging toG (Definition 5.2).

There is a reminder on convergence of groups in Section 3.
Theorem 1.6 [78] Any finitely presented cover of the group G is large.

Recall that a group is large if it contains a subgroup of finite index that has non-
abelian free quotients. Note that large groups have non-abelian free subgroups.

In view of Proposition 3.3 below, Theorem 1.6 is a straightforward consequence
of the main result of [78]; see also Theorem 2.14 and Example 2.16. More precisely,
it was shown in [78] that each Gn is virtually a direct product of finitely generated
non-abelian free groups, this has been sharpened in [11], and can be further improved:
Theorem 1.7 (Section 5) Let G and Gn be as above. For each n ≥ 0, the group Gn

has a normal subgroup Hn of index 22
n+1+2 that is isomorphic to the direct product

of 2n free groups of rank 3.
Another way of sharpening Theorem 1.6 is given in Proposition 5.11, where the

condition of finite presentability for the cover ofG is replaced by theweaker Condition
FP2.

We denote by B the Basilica group. Recall here that B can be generated by two
elements, and is an amenable torsion-free group of exponential growth. See Example
2.17 and Appendix D for some other properties of B.

Theorem 1.8 (Erschler) Any finitely presented cover of the Basilica group B has
non-abelian free subgroups.

Given an invertible automaton (A, τ ) over a finite alphabet X , Erschler introduces a
notion of “automatically presented group G∗(A, τ ) generated by the automaton” (see
[60] for details). She shows that, if G∗(A, τ ) is not virtually abelian, then any finitely
presented cover of it has non-abelian free subgroups. For the Basilica automaton, the
group G∗(A, τ ) coincides with B, and Theorem 1.8 follows.

As noted in [60], these arguments do not apply to the groupG of Theorem 1.6; this
is due to the fact that, for (A, τ ) the automaton of G, the cover G∗(A, τ ) � G has a
non-trivial kernel.

In our setting, for G = B, the universal contracting cover G0 of Definition 2.5 is
free of rank 2 (see Example 2.17), and Theorem 1.8 follows from our Theorem 2.14.
Indeed, our argument shows that any finitely presented cover of B is large.

2 Two of the authors insist that we mention this terminology, often used today. The third author submits.
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Notation: In this paper, the symbolsG andB will be used only for the two groups
introduced above. In Examples 2.18 to 2.21, we introduce four other groups, with
their usual notation in this subject: the iterated monodromy group of z2 + i denoted
by J, the Gupta–Sidki group GS, the Fabrykowski–Gupta group FG, and the Hanoi
Towers group H.

We show in Section 2 that Theorem 2.14 implies Theorems 1.6 on G, 1.8 on B,
and 2.22 on J,GS,FG, and H. We state now a shorthand version of 2.14. Notation
and technical terms are defined in Section 2.

Theorem 1.9 Let G be an infinite finitely generated self-similar group. Assume that
G is contracting faithful self-replicating. Let G0 denote a standard contracting cover
of G, as in Definition 2.8.

If G0 has non-abelian free subgroups, then so does any finitely presented cover of
G.

If G0 is large, any finitely presented cover of G is large.

1.C. Infinitely more examples The group G has uncountably many3 relatives Gω

introduced in [68]. Each of these groups is generated by a set Sω of four involutions.
They are parameterized by the space � = {0, 1, 2}N. We have G = Gω when ω is
the 3-periodic sequence 012012012 · · · . Let �+ denote the complement in � of the
space of eventually constant sequences. Section 4 contains a description of the family
(Gω)ω∈�+ .

Theorem 1.10 For ω ∈ �+, the group Gω is of intermediate growth, and any finitely
presented cover of Gω is large.

Note also the following straightforward consequence of Theorems 1.6, 1.8, and
1.10:

Corollary 1.11 Let H be a finitely generated cover of one of G (as in Theorem 1.6),
B (as in Theorem 1.8), or Gω, ω ∈ �+ (as in Theorem 1.10). Any finitely presented
cover of H is large.

There are several interesting classes of groups that qualify to be the H of Corollary
1.11:

(i) The uncountably many groups of [59], which are finitely generated, of interme-
diate growth, and not residually finite, each one being a central cover of G.

(ii) The groups of [14], which are finitely generated groups of intermediate growth,
with exactly known growth functions, each one being a cover of G.

(iii) Permutational wreath products of the form A �X Gω, where A �= {1} is a finite
group and Gω is as in Theorem 1.10 [15].

There is an uncountable family of finitely generated amenable simple groups, which
are topological full groups of minimal homeomorphisms of the Cantor space [100].
None of these groups is finitely presented (see [114, Theorem 5.7], as well as [86]).
In our context, it is natural to formulate:

3 Here and elsewhere, “uncountably many” groups means “uncountably many pairwise non-isomorphic”
groups.
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Problem 1.12 Let G be one of the finitely generated amenable simple groups that
appears in [100]. Does G have an amenable finitely presented cover?

Remark 1.13 We state two kinds of results concerning appropriate covers: some estab-
lish that the covers are large (see Theorem 1.6), others, weaker, that they contain
non-abelian free groups (see Theorem 1.5). Strong statements do not hold in all cases.

For example, let G = Met(k, �) � Z
[ 1

�m

]

��/m Z, for two coprime integers k,

� ≥ 2 (Definition B.7). Then G satisfies the hypothesis of Theorem 1.5. The
Baumslag–Solitar group BS(�, m) is a finitely presented cover of G; it is known
that BS(�, m) has non-abelian free subgroups, but is not large (Proposition B.6.iv).

1.D. A dual to Question 1.1 Given a Property (P) of groups, it is standard to ask
whether any countable group with (P) is a subgroup of some finitely generated group
with (P). For example, the answer is known to be positive if (P) is solubility [122], or
amenability, or elementary amenability [128, Corollary 1.3]. An earlier result of [96]
also gives a positive answer to a similar question: for a given integer n, if G is a group
that has a presentation with a countable number (possibly infinite) of generators and
n relators, then G can be embedded in a finitely presented group with 2 generators
and n relators. But the answer is negative if (P) is nilpotency, because any subgroup
of a finitely generated nilpotent group is finitely generated. It is also negative if (P) is
metabelianity: indeed, for any prime p, the abelian quasi-cyclic group Z(p∞) cannot
be embedded in a finitely generated metabelian group [122, Lemma 5.3].

As a digression from our main theme, and since recursively presented groups are
mentioned in Appendix A, we formulate one more question, which is in some sense
dual to Question 1.1.

Question 1.14 Given a Property (P) of groups, is any finitely generated recursively
presented group with (P) a subgroup of some finitely presented group with (P)?

The answer to Question 1.14 is known to be positive if (P) is metabelianity (Propo-
sition A.2), or solubility of the word problem ([49], and also [117, Theorem 2.8]). The
answer is not known if (P) is amenability [128, Problem 1.7]. NP

1.E. Plan of the paper Section 2: Non-abelian free subgroups of finitely presented
covers of contracting self-similar groups. Proofs of Theorems 1.9 and 2.14; proofs of
Theorems 1.6, 1.8, and their analogues for J,GS,FG, and H.

Section 3: Marked groups and the Chabauty topology, a reminder.
Section 4: The analogue of Theorem 1.6 for the family (Gω)ω∈� of [68], Theorem

1.10 and its proof.
Section 5: The group of intermediate growthG, and the proof of Theorem 1.7; this

is a quantitative sharpening of Theorem 1.6. Proposition 5.11 on FP2-covers of G.

• Appendix A: On soluble groups, metabelian groups, and finite presentations.
• Appendix B: On wreath products and lamplighter groups.
• Appendix C: On Bieri–Neumann–Strebel invariants.
• Appendix D: On growth and amenability.
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2 Non-abelian free subgroups of finitely presented covers of contracting
self-similar groups

Let G, H be two groups and X a H -set; here, this means that H acts on X from the
right. The corresponding permutational wreath product is the semi-direct product

G �X H := G(X)
� H.

We denote by G(X) the group of functions (gx )x∈X : X −→ G, x 
−→ gx with finite
support, and we consider the action from the left of H on G(X), for which the action
of h on (gx )x∈X is (gxh)x∈X . Hence the product of two elements in G �X H is given by

((gx )x∈X , h)
(

(g′x )x∈X , h′
) = (

(gx g′xh)x∈X , hh′
)

.

In case G acts from the right on some set W , the group G �X H acts naturally from the
right on W × X , by

(w, y) ((gx )x∈X , h) = (wgy, yh).

In expositions of wreath products and self-similar groups, choices of which groups
actions are from the left and which from the right vary from one paper to the other,
but a (sometimes hidden) mixture of left actions and right actions seems unavoidable.

If G, G ′ are two groups and α : G −→ G ′ a homomorphism, we have a natural
homomorphism

α �X 1H : G �X H −→ G ′ �X H, ((gx )x∈X , h) 
−→ ((α(gx ))x∈X , h) , (1)

where 1H stands for the identity automorphism of H .
If X is clear from the context, we write “�” for “�X”. In particular, with X =

{0, 1, . . . , d − 1} and Sd the full symmetric group of X , we write G � Sd for G �X Sd .
Also, we write 1d for 1Sd , and

((gx )x∈X , τ ) = (g0, . . . , gd−1, τ ) with g0, . . . , gd−1 ∈ G and τ ∈ Sd

for a typical element of G � Sd = G X
� Sd .

The iterated wreath products with Sd are defined inductively, for each integer
n ≥ 0, by

G �n Sd =
{

G for n = 0
(

G �n−1 Sd
) � Sd for n ≥ 1.

We have the following associativity of permutational wreath products: for a H -set
X and a K -set Y , the canonical mapping

{

(G �X H) �Y K −→ G �X×Y (H �Y K )
(

(

(gx,y)x∈X , hy
)

y∈Y , k
)


−→
(

(

gx,y
)

(x,y)∈X×Y ,
(

(hy)y∈Y , k
)

)
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80 M. G. Benli et al.

is an isomorphism of groups (this is standard, see e.g. [115, Chapter 1, Theorem 3.2]).
In particular, for n ≥ 1, we have

G �n Sd =
(

G �n−1 Sd

)

� Sd = (G � Sd) �n−1 Sd = G Xn
� S(n)

d ,

where S(n)
d = (· · · (Sd � Sd) � · · · ) � Sd = S(n−1)

d � Sd is the appropriate permutation
group of Xn , acting here from the right. We write

((gv)v∈Xn , τ ) with gv ∈ G for all v ∈ Xn and τ ∈ S(n)
d

for a typical element of G �n Sd .
Definition 2.1 Let G be a group and d ≥ 2 an integer. A self-similar structure of
degree d on G is a homomorphism

� : G −→ G � Sd . (2)

A self-similar group is such a pair (G,�); when� is clear from the context, we write
also “G is a self-similar group”.

If (G,�) is a self-similar group, the construction (1) gives rise to a sequence of
homomorphisms

�n : G
�n−1−→ G �n−1 Sd

��1dn−1−→ (G � Sd) �n−1 Sd = G �n Sd (3)

for n ≥ 2; we write �0 = idG and �1 = �. Note that, if � is injective, so is �n for
all n ≥ 0. It is routine to check that �m+n is the composition

�m+n : G
�n−→ G �n Sd

�m �1dn−→ (

G �m Sd
) �n Sd = G �m+n Sd (4)

for all m, n ≥ 0.
The composition of �n and the quotient map G �n Sd −→ S(n)

d is a homomorphism

G −→ S(n)
d , g 
−→ τ (n)

g . (5)

Thus, introducing the v-coordinates of �n(·), we have

�n(g) =
(

(gv)v∈Xn , τ (n)
g

)

∈ G �Xn S(n)
d = G �n Sd

for all g ∈ G. Note that

τ (n)
g =

((

τ (n−1)
gx

)

x∈X
, τ (1)

g

)

∈ S(n)
d (6)

for all g ∈ G and n ≥ 1.
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Let X∗ = ⊔n≥0 Xn be the free monoid over X = {0, 1, . . . , d − 1}. The length
of v ∈ X∗ is the integer n = |v| such that v ∈ Xn . The d-regular rooted tree is
the tree with vertex set X∗, and with edges connecting pairs of vertices of the form
(x1 · · · xn, x1 · · · xn xn+1), with n ≥ 0 and x1, . . . , xn+1 ∈ X ; abusively, we denote
this tree also by X∗. The homomorphisms of (5) define an action from the right of G
on the tree X∗.

For n ≥ 1 and v ∈ Xn , we define the stabilizer of v to be the subgroup

StabG(v) =
{

g ∈ G | vτ (n)
g = v

}

, (7)

and we have a homomorphism

�v : StabG(v) −→ G, g 
−→ gv (8)

where gv = �v(g) is the v-coordinate of �n(g).

Lemma 2.2 With the notation above,

gvw = (gv)w, (gh)v = gvh
vτ

(n)
g

, and (h−1)v =
(

h
vτ

(n)

h−1

)−1
,

for all g, h ∈ G, n ≥ 1, v ∈ Xn, and w ∈ X∗.

Proof To illustrate the fact that G acts on X∗ from the right, we spell out the proof of
the second equality, writing vg for vτ

(n)
g . We have on the one hand

((vw)g) h = ((vg)(wgv)) h = (vgh)(wgvhvg)

and on the other hand

(vw)(gh) = (vgh) (w(gh)v)) .

Hence (gh)v = gvhvg . �

Definition 2.3 A self-similar group (G,�) is faithful if its action on the tree X∗
described above is faithful; this implies that the homomorphism� is injective (but the
converse does not hold4).

A self-similar group (G,�) is contracting if there is a finite subset M ⊂ G with
the following property:

for all g ∈ G, there exists an integer k ≥ 0
such that gv ∈M for all v ∈ X∗ with |v| ≥ k.

4 Set H = �−1(G X ). The kernel of the action of G on X∗ is the largest normal subgroup N of G that is
contained in H and such that �(N ) ⊂ N X .
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The smallest such M, namely

N :=
⋃

g∈G

⋂

k≥0
{g ∈ G | ∃h ∈ G, � ≥ k, v ∈ X� with hv = g}

is called the nucleus of (G,�).
A self-similar group (G,�) is self-replicating5 if, for all g ∈ G and x ∈ X , there

exists h ∈ StabG(x) such that hx = g, namely if, for all x ∈ X , the homomorphism
�x of (8) is onto. When this is so, it is easy to check by induction on the level that,
for all g ∈ G, n ≥ 1, and v ∈ Xn , there exists h ∈ StabG(v) such that �v(h) = g,
namely �v is onto.

Observe that, by definition, we have 1 ∈ N . Moreover for g ∈ G, we have g ∈ N
if and only if g−1 ∈ N , by Lemma 2.2.

The following proposition records basic facts about the nucleus of a contracting
group.

Proposition 2.4 Let (G,�) be a contracting self-similar group with nucleus N , as
above.

(i) For g ∈ N and x ∈ X, we have gx ∈ N .
(ii) If (G,�) is self-replicating and G is finitely generated, then N generates G.

Proof For g ∈ N , there exist h ∈ G, k ≥ 0, and v ∈ Xk such that hv = g and
hw ∈ N for all w ∈ X∗ with |w| ≥ k (otherwise, N would not be minimal). Hence
gx = (hv)x = hvx ∈ N for all x ∈ X . This proves (i).

For (ii), we paraphrase [118, Lemma 2.11.3]. Denote by 〈N 〉 the subgroup of G
generated by N . Let S be a symmetric finite generating set of G. For all s ∈ S, there
exists ks ≥ 0 such that sv ∈ N for all v ∈ X∗ with |v| ≥ ks . Set k = max{ks | s ∈ S}.

Let g ∈ G and v ∈ X∗ with |v| ≥ k. There exist s1 . . . , sm ∈ S with g = s1 · · · sm ,
so that

gv = (s1)v(s2 · · · sm)vs1 = · · ·
= (s1)v(s2)vs1(s3)vs1s2 · · · (sm)vs1···sm−1 ∈ 〈N 〉,

where the last inclusion follows from |v| = |vs1| = · · · |vs1 · · · sm−1| ≥ k. In partic-
ular, the image of �v , as defined in (8), is contained in 〈N 〉.

If (G,�) is self replicating, then �v is onto for all v ∈ X∗ with |v| ≥ 1. The
conclusion follows. �


The next proposition was inspired to us by [118, Lemma 2.13.4]. We need some
notation and a definition; our exposition borrows from [7].

Definition 2.5 Let (G,�) be a self-replicating contracting self-similar group, with
nucleus N = {n1, . . . , n�}. Let S = {s1, . . . , s�} be a finite set given with a bijection

5 Or recurrent, or fractal, as in [118, Definition 2.8.1]. See [9] for relations of such groups with fractal
sets.
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s j ↔ n j with N . Let R be the set of relators in the letters of S of one the forms

si = 1 if ni = 1 ∈ G,

si s j = 1 if ni n j = 1 ∈ G,

si s j sk = 1 if ni n j nk = 1 ∈ G.

Note that these relators are of length at most 3; they are indexed by a subset of
N 
N 2 
N 3.

Assume furthermore that G is finitely generated. The universal contracting cover
of G is the finitely presented group Gun

0 defined by the presentation with S as set of
generators and R as set of relators. The assignment πun(si ) = ni extends to a group
homomorphism

πun : Gun
0 = 〈S | R〉 −→ G, (9)

because πun(r) = 1 for any r ∈ R.
Note that πun is onto, by Proposition 2.4. We define finally

π̂un = πun � 1d : Gun
0 � Sd −→ G � Sd . (10)

Remark 2.6 In particular examples, and for simplicity, it is often convenient to delete
from S the generator corresponding to 1 ∈ N , to delete sk if there exist i, j ∈ {1, . . . , �}
with nk = ni n j , and to delete one generator of every pair corresponding to {n, n−1} ⊂
N . For example, in Example 2.17, we haveN = {1, a±1, b±1, c±1} with 7 elements,
and c = a−1b, but S = {a, b} with 2 elements.

Note however that, in Example 2.16, we keep d in the generating set {a, b, c, d} of
G0, even though d = bc.

Proposition 2.7 Let (G,�) be a self-replicating contracting self-similar group of
degree d, with nucleus N . Assume that G is finitely generated. Let Gun

0 = 〈S | R〉 and
πun : Gun

0 � G be the universal contracting cover and the projection of Definition 2.5.
Then there exists a homomorphism

ϕun
1 : Gun

0 −→ Gun
0 � Sd

such that the self-similar group (Gun
0 , ϕun

1 ) is contracting, with nucleus S. Moreover
the diagram

Gun
0

ϕun
1−→ Gun

0 � Sd

πun ↓ ↓ π̂un

G
�−→ G � Sd

(11)

commutes.
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Proof Step 1, definition of ϕun
1 . Denote by � the order of N , and write N =

{n1, . . . , n�}, as above. Let i ∈ {1, . . . , �}. By Proposition 2.4, there exist
i0, . . . , id−1 ∈ {1, . . . , �} and τi ∈ Sd such that

�(ni ) = (ni0 , . . . , nid−1 , τi ).

We set

ϕun
1 (si ) = (si0 , . . . , sid−1 , τi ) ∈ Gun

0 � Sd ,

and we claim that this extends to a group homomorphism ϕun
1 as in (11).

Consider a relator as in Definition 2.5, say si s j sk = 1 (shorter relators are dealt
with similarly); hence ni n j nk = 1 ∈ G. Choose x ∈ X ; recall that X stands for
{0, . . . , d − 1}. There exist p, q, r ∈ {1, . . . , �} and τp, τq , τr ∈ Sd such that the
x-coordinate and the last coordinate of �(ni n j nk) can be written as

(

ni n j nk
)

x = n pnqnr and τni n j nk = τpτqτr .

Since ni n j nk = 1 ∈ G, we have

n pnqnr = 1 ∈ G ∀x ∈ X and τpτqτr = 1 ∈ Sd .

Hence ϕun
1 (si )ϕ

un
1 (s j )ϕ

un
1 (sk) = 1 ∈ Gun

0 . The claim is proven.
Step 2: (Gun

0 , ϕun
1 ) is a contracting group with nucleus S. For any word w in the

letters of S, we have to show that there exists a vertex v ∈ X∗ such that (w)v ∈ S. By
induction on the word length, and by Lemma 2.2, it is enough to show this for a word
of length 2.

Let si , s j ∈ S and v ∈ X∗ be such that (ni n j )v ∈ N , say (ni n j )v = nk . We have

(ni )v(n j )vτ
(|v|)
ni

= nk in G,

which is a relator of length at most 3. Hence the corresponding relator (si s j )v = sk

holds in S.
It follows that S is the nucleus of the group (G, ϕun

1 ).
Step 3, commutativity of the diagram.This can be checked on the set S of generators

of Gun
0 . �


The universal contracting cover (Gun
0 , ϕun

1 ) of (G,�) is uniquely defined by (G,�),
and contracting. But we believe it need not be self-replicating (even though we do not
know of any specific example). In all cases, (Gun

0 , ϕun
1 ) has quotients by finite sets

of relations that are self-replicating contracting covers of (G,�), as described in the
Definition 2.8 and Proposition 2.9. Note however that these quotients are no more
uniquely defined by (G,�), since choices are involved.

In each of Examples 2.16 to 2.21 below, the universal contracting cover is self-
replicating.
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Definition 2.8 Let (G,�) be a self-replicating contracting self-similar group, with
nucleus N = {n1, . . . , n�}; assume that G is finitely generated. Let S = {s1, . . . , s�}
be in bijection with N , and (Gun

0 , ϕun
1 ) the universal contracting cover of (G,�), as

in Definition 2.5. Let πun : Gun
0 −→ G be as in (9).

Let x ∈ X and ni ∈ N . Since the pair (G,�) is self-replicating, there exists6

g(x, ni ) ∈ StabG(x) such that (g(x, ni ))x = ni . Since πun is onto, there exists
h(x, ni ) ∈ Gun

0 such that πun(h(x, ni )) = g(x, ni ); moreover, since π̂un is the iden-
tity on the permutations of the wreath product, we have h(x, ni ) ∈ StabGun

0
(x). By

commutativity of Diagram (11), we have πun((h(x, ni ))x ) = ni . Set w(x, ni ) =
(h(x, ni ))x s−1i ; then w(x, ni ) belongs to the kernel of πun.

Again, by commutativity of (11), we have (w(x, ni ))v ∈ ker(πun) for all v ∈ X∗.
Since (Gun

0 , ϕun
1 ) is contracting, the subset

E(x, ni ) = {g ∈ Gun
0 | g = (w(x, ni ))v for some v ∈ X∗}

of Gun
0 is finite. Define

E =
⋃

x∈X,n∈N
E(x, n) and H = 〈〈E〉〉 ⊂ Gun

0 ,

where 〈〈E〉〉 denote the normal subgroup of Gun
0 generated by E .

A standard contracting cover of G is a quotient group of the form G0 = Gun
0 /H ,

with H as above; the image of S in G is a generating set, that we denote again
(abusively) by S. Note that E is a finite subset of Gun

0 , and consequently that G0 is a
finitely presented group.

The epimorphism πun factors through a homomorphism π : G0 −→ G, because
E is a subset of ker πun. It follows from the definition that the restriction of π to the
generating set S of G0 is injective.

The following proposition is the analogue of proposition 2.7 for G0.

Proposition 2.9 Let (G,�) be a self-replicating contracting self-similar group of
degree d, with nucleusN . Assume that G is finitely generated. Let G0 and π : G0 � G
be a standard contracting cover of (G,�) and its projection to G, as in Definition 2.8.

Then there exists a homomorphism

ϕ1 : G0 −→ G0 � Sd

such that the self-similar group (G0, ϕ1) is contracting and self-replicating with
nucleus S. Moreover the diagram

6 Note that a choice is involved here.
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(12)

commutes.

Proof By construction of the set E , for any element g ∈ E and any x ∈ X , we have
gx ∈ E . Hence the homomorphism ϕun

1 : Gun
0 −→ Gun

0 �Sd induces a homomorphism
ϕ1 : G0 −→ G0 � Sd . Since (Gun

0 , ϕun
1 ) is contracting with nucleus S, the self-similar

group (G0, ϕ1) is contracting with nucleus S.
Let x ∈ X , and ni ∈ N . We continue with the notation of Definition 2.8. By

construction of G0, the relation h(x, ni ) = si holds in G0; moreover h(x, ni ) is an
element of StabG0(x). This shows that the pair (G0, ϕ1) is self-replicating.

The commutativity of diagram (12) can be checked on the generators of G0. �


From here to Corollary 2.15, we keep the same notation as in Definition 2.8 and
Proposition 2.9 for G0, π , and ϕ1, in relation with a given contracting self-replicating
self-similar group (G,�), with G finitely generated.

Definition 2.10 For an integer n ≥ 0, define

(i) the homomorphism ϕn : G0 −→ G0 �n Sd as in (3),
(ii) its kernel Nn = ker(ϕn) and the quotient Gn = G0/Nn ,
(iii) the homomorphism

π̂n = π � 1dn : G0 �n Sd −→ G �n Sd (13)

as in (1); note that π̂1 is the π̂ of (10).

We have �nπ = π̂nϕn , i.e. the diagram

(14)

commutes. Observe that N0 ⊂ · · · ⊂ Nn ⊂ Nn+1 ⊂ · · · and define

N =
∞
⋃

n=0
Nn .

Remark 2.11 As noted in Definition 2.8, the restriction of π to S is injective. More
generally, in Definition 2.10, the restriction of π̂n to the subset (SXn

, 1) of G0 �n Sd =
G Xn

0 � S(n)
d is injective.
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Lemma 2.12 Let (G,�) be a self-similar group; assume that G is finitely generated
and that (G,�) is faithful contracting self-replicating. With the notation above, we
have

N = ker π, namely G0/N = G,

so that

lim
n→∞Gn = G

in the space of marked groups on |S| generators (in the sense of Section 3).

Proof Let g ∈ N . Let n ≥ 1 be such that g ∈ ker(ϕn). Then�nπ(g) = π̂nϕn(g) = 1,
hence g ∈ ker(π) by the faithfulness assumption.

Conversely, let k ∈ ker(π). On the one hand, since (G0, ϕ) is contracting, there
exists n ≥ 0 such that kv ∈ S for all v ∈ Xn . On the other hand, π(k) = 1 implies
π(kv) = 1 for all v ∈ Xn ; moreover, the S(n)

d -coordinate of ϕn(k) is 1, by commuta-
tivity of Diagram (14). Hence, by Remark (2.11), we have kv = 1 for all v ∈ Xn , and
therefore k ∈ Nn = ker(ϕn), a fortiori k ∈ N . �

Lemma 2.13 In the situation of the previous lemma, for all n ≥ 1, we have

Nn = ϕ−11

(

N d
n−1
)

so that ϕ1 : G0 −→ G0 � Sd induces a homomorphism

ψn :
{

Gn −→ Gn−1 � Sd

gNn 
−→
(

(ϕ1(g)x Nn−1)x∈X , τ
(1)
g

)

.

Moreover ψn is injective.

Proof For g ∈ G, write

ϕ(g) =
(

(gx )x∈X , τ (1)
g

)

and ϕn(g) =
(

(gv)v∈Xn , τ (n)
g

)

. (15)

Assume first that g ∈ Nn . Thus (gx )v′ = 1 and τ
(n−1)
gx = 1 for all x ∈ X and

v′ ∈ Xn−1. This can be written

ϕn−1(gx ) =
(

((gx )v′)v′∈Xn−1 , τ (n−1)
gx

)

= 1 ∀x ∈ X,

namely gx ∈ Nn−1 ∀x ∈ X . We have checked that ϕ1(Nn) ⊂ N d
n−1, and Nn ⊂

ϕ−11 (N d
n−1) follows.

Assume now that g ∈ ϕ−11 (N d
n−1), namely that (gx )v′ = 1 and τ

(n−1)
gx = 1 for all

x ∈ X and v′ ∈ Xn−1. This can be written gv = 1 for all v ∈ Xn and τ
(n)
g = 1, namely

g ∈ Nn . Hence ϕ−11 (N d
n−1) ⊂ Nn . �
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The next theorem is a detailed version of Theorem 1.9.

Theorem 2.14 Let (G,�) be a self-similar group; assume that G is finitely gener-
ated and that (G,�) is faithful contracting self-replicating. Let G0 be a standard
contracting cover, as in Definition 2.8.

Assume that G0 contains non-abelian free subgroups. Then, for each n ≥ 0, the
group Gn of Definition 2.10 contains non-abelian free subgroups. More generally,
every finitely presented cover of G contains non-abelian free subgroups.

Assume moreover that G0 is large. Then every finitely presented cover of G is large.

Proof Let S(0)
d be the subgroup of Sd of permutations fixing the letter x = 0. For

n ≥ 1, let Hn be the finite index subgroup of Gn defined by

Hn = ψ−1n (G{0,1,...,d−1}n−1 � S(0)
d ),

where ψn is as in Lemma 2.13. Projection onto the first coordinate (i.e. the coordinate
x = 0)

p(0)
n : G{0,1,...,d−1}n � S(0)

d −→ Gn

defined by

p(0)
n ((gx Nn)x∈X , τ ) = g0Nn

is a group homomorphism. It turns out that the composition

q(0)
n : Hn

ψn−→ ψn(Hn)
p(0)

n−1−→ Gn−1

defines a group homomorphism from Hn to Gn−1.
Given a generator s Nn−1 of Gn−1 (where s is a generator of G0), using the self-

replicating property of (G0, ϕ1), let h ∈ StG0(0) be such that ϕ1(h)0 = s. It turns out
that q(0)(hNn) = s Nn−1 which shows that q(0)

n is onto Gn−1. The conclusion is that
for each n ≥ 1, Gn contains a finite index subgroup Hn which maps onto Gn−1.

Therefore, if G0 contains non-abelian free subgroups (respectively is large), by
induction on n, each Gn will contain non-abelian free subgroups (respectively will be
large). Then by Lemma 2.12 and Corollary 3.4 below, every finitely presented cover
of G will contain non-abelian free subgroups (respectively will be large). �

Corollary 2.15 Let G be as in Theorem 2.14. If G0 contains non-abelian free sub-
groups, then G is infinitely presented.

Proof Since G0 does contain non-abelian free subgroups, by assumption, and G does
not, by [119, Theorem 4.2], G cannot be finitely presented, by the previous theorem.

�
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Consider integers d, � ≥ 1, and a system of relations

⎧

⎨

⎩

s1 = ((s1)0, . . . , (s1)d−1) τ1
. . . . . .

s� = ((s�)0, . . . , (s�)d−1) τ�

(16)

with

(s j )x ∈ {s1, . . . , s�} and τ j ∈ Sd

for j ∈ {1, . . . , �} and x ∈ X = {0, . . . , d − 1}.

By induction on n ≥ 0, the system (16) defines a set S of automorphisms of the
d-regular rooted tree X∗, again denoted by s1, . . . , s�. These generate a group G = 〈S〉
of automorphisms of the tree X∗, and (16) define a self-similarity structure � on G;
thus G is a self-similar group as in Definition 2.1, and moreover G is faithful. The
system (16) is often denoted by � again.

We review below some classical examples of self-similar groups defined this way.

Example 2.16 The 4-generated group G = 〈a, b, c, d〉 of Theorem 1.6 and [66,67]
is a self-similar group of degree 2, with � : G −→ G � C2 defined by

�(a) = (1, 1)τ,�(b) = (a, c),�(c) = (a, d),�(d) = (1, b).

Here, C2 = {1, τ } denotes the cyclic group of order 2 (written S2 in Definition 2.1).
The self-similar group (G,�) is faithful, contracting, and self-replicating. The group
G is of intermediate growth.

The nucleus is

N = {1, a, b, c, d}.

The universal contracting cover of Definition 2.5 has the presentation

G0 = 〈a, b, c, d | a2, b2, c2, d2, bcd〉 � C2 ∗ V,

whereC2 is now the group {1, a} and V theKleinVierergruppe {1, b, c, d}, isomorphic
to C2 ×C2. The sign � indicates an isomorphism of groups. It can easily be checked
that this cover is self-replicating, so that a cover as in Definition 2.8 is not needed here.

Proofs of these facts, and of other properties ofG, can be found in [66], [93, Chapter
VIII], or [118, Section 1.6], to quote some of the existing expositions only; see also
our Section 5. The groupG can be viewed as the IMG of an orbifold version of the tent
map T : [0, 1] −→ [0, 1], defined by T (x) = 2x for x ≤ 1/2 and T (x) = 2− 2x for
x ≥ 1/2 [120, Section 5.3]. Here and below, “IMG” stands for “Iterated Monodromy
Group” (see [118]).

Observe thatC2∗V is virtually a non-abelian free group, because it is a free product
of finite groups, distinct from C2 ∗C2 (see for example [136, Proposition 4 in Number
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I.1.3, p. 14]). It contains a free subgroup F3 of index 8; one easy way to check this
involves computing virtual Euler-Poincaré characteristics, as in [136, Section 1.8]: if

Fx = ker(p : C2 ∗ V
canonical−→ C2 × V ),

where Fx stands for the free group of rank x , then

χ(C2 ∗ V ) = 1

2
+ 1

4
− 1 = 1

[C2 ∗ V : ker p]χ(Fx ) = 1

8
(1− x),

and therefore x = 3.
Hence Theorem 1.6 is a particular case of Theorem 2.14.

Example 2.17 The 2-generated Basilica group B = 〈a, b〉 is a self-similar group of
degree 2, with homomorphism � : B −→ B � C2 defined by

�(a) = (b, 1)τ,�(b) = (a, 1).

The self-similar group (B,�) is faithful, contracting, and self-replicating. The group
B is of exponential growth.

The nucleus is

N = {1, a±1, b±1, c±1},where c = a−1b.

The universal contracting cover has the presentation

G0 = 〈a, b | ∅〉 � F2.

It is self-replicating.
The group B has been introduced in [80,81]. The name “Basilica” was given by

Mandelbrot to the Julia set of the quadratic transformation z 
−→ z2−1 of the complex
plane, in honour of the Basilica Cattedrale Patriarcale di San Marco, and its reflection
in Venetian waters [112, p. 254]. The group B was identified as IMG(z2 − 1) in
[9, Theorem 5.8],7 and the group was named “Basilica” in [10,101,118].

Our notation for �(a) and �(b) is essentially that of [118, p. 208]; the roles of a
and b are exchanged in [80].

Again, Theorem 1.8 is a particular case of Theorem 2.14.
Incidentally, sinceB is amenable (references in Appendix D), Theorem 1.8 shows

that B is not finitely presented. Since we could not find references for a direct proof
the latter statement in the literature, let us allude to two other simple ways to show that
B is not finitely presented. One, suggested by Julia Bartsch (private communication),
uses the infinite presentation of B given in [81] and obtained together with Laurent
Bartholdi; then a nice argument concludes that this presentation is minimal (erasing
any of its relators would change the group). The other uses the contracting property
of the Basilica group established in [80] and follows the idea indicated in [66] for G.

7 As acknowledged in [9], part of the credit for this is due to Richard Pink.
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Example 2.18 The IMG of z2 + i

J = IMG(z2 + i) = 〈a, b, c〉

is defined by

�(a) = (1, 1)τ,�(b) = (a, c),�(c) = (b, 1).

It was studied in detail in [84], and was shown to be of intermediate growth in [40].
Its nucleus is

N = {1, a, b, c},

and the only non-trivial relators of length ≤ 3 among elements of N are a2 = b2 =
c2 = 1 (this can best be checked with the GAP package (http://www.gap-system.org/
Packages/automgrp.html). Thus the universal contracting cover

G0 = 〈a, b, c | a2, b2, c2〉 � C2 ∗ C2 ∗ C2

has a free subgroup of finite index (indeed a subgroup F5 of index 8). It is self-
replicating.

Example 2.19 The Gupta–Sidki group GS = 〈a, b〉 is the 2-generated group of
automorphisms of the ternary rooted tree defined by

�(a) = (1, 1, 1)τ,�(b) = (a, a−1, b),

where τ ∈ S3 is the cyclic permutation (0, 1, 2). It is the infinite 3-group introduced in
[88]; it is just infinite [8, Proposition 8.3]; it can be viewed as an IMG[120, Section 4.5].

Its nucleus is

N = {1, a, a−1, b, b−1}.

The universal contracting cover is

G0 = 〈a, b | a3, b3〉 � C3 ∗ C3,

and contains a free subgroup F4 of index 9. It is self-replicating.
The growth type of GS is not known.

Example 2.20 The Fabrykowski–Gupta group FG = 〈a, b〉 is the 2-generated
group of automorphisms of the ternary rooted tree defined by

�(a) = (1, 1, 1)τ,�(b) = (a, 1, b),

with τ as in Example 2.19 [61,62]. It is of intermediate growth (see the original
papers, and an exposition with improved estimates of growth in [12]), it is just infinite
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[8, Proposition 6.2], and it is the IMG of the cubic polynomial z3(− 3
2 + i

√
3
2 ) + 1

[120, Section 5.4].
As in the previous example, the nucleus is

N = {1, a, a−1, b, b−1}.

The universal contracting cover is

G0 = 〈a, b | a3, b3〉 � C3 ∗ C3.

It is self-replicating.

Example 2.21 The ternary Hanoi Towers group H = 〈a, b, c〉 is the 3-generated
group of automorphisms of the ternary rooted tree defined by

�(a) = (a, 1, 1)τ1,2,�(b) = (1, b, 1)τ0,2,�(c) = (1, 1, c)τ0,1

where τ1,2 is the transposition of S3 exchanging 1 and 2, and similarly for τ0,2, τ0,1.
It was introduced in [82] as a model for the well-known Hanoi Towers problem; it is
known to be of exponential growth ([83, Subsection 6.1] and [74]), and isomorphic to
IMG(z2 − 16

27z ) [83, Example 8].
The nucleus is

N = {1, a, b, c}.

The universal contracting cover is

G0 = 〈a, b, c | a2, b2, c2〉 � C2 ∗ C2 ∗ C2.

It is self-replicating.

Theorem 2.22 Any finitely presented cover of one of the groups J,GS,FG,H, of the
four previous examples is large.

This is a straightforward consequence of Theorem 2.14. In Section 4, we will show
how to modify 2.14 to cover uncountably many examples.

Remark 2.23 Groups of interest here are often known to have rather few quotients, of
special kinds. Let us illustrate this as follows.

(i) A group is just infinite if all its proper quotients are finite. The group G is just
infinite. More generally, with the notation of section 4, the group Gω is just infinite
for all ω ∈ �0 (as we repeat below in Proposition 4.2.ii).

(ii) Without recalling here the technical definitions, let us mention the following
property of a finitely generated group G assumed to be branch, or even weakly branch:
for any normal subgroup N �= {1} of G, there exists an integer n ≥ 1 such that N
contains the derived group of the rigid stabilizer RistG(n); this follows from the proof
of [72, Theorem 4].
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As a consequence, if G is branch, then any proper quotient of G is virtually abelian.
In particular, any proper quotient of one of the groups J,GS,FG, and H, is virtually
abelian.

(This does not apply to B, which is weakly branch but not branch group. This
applies to G, but it is of little interest in this case since the property of (i) is strictly
stronger.)

(iii) It is shown in [70] that G has a finitely presented HNN-extension ̂G which
is in SG � EG. Any proper quotient of ̂G is metabelian and virtually abelian
[133, Theorem 2.3].

(iv) The Basilica group B is just non-soluble, which means that all its proper
quotients are soluble [80, Proposition 6].

(v) Recall however that there exist groups of intermediate growth with uncountably
many quotients: see [69] and Definition 4.13.

3 Marked groups and the Chabauty topology

For k a positive integer, let Fk denote the free group of rank k, given together with
an ordered free basis (s1, . . . , sk) of generators. A marked group of rank k is a pair
(G, S) where G is a group and S an ordered set of k generators (for distinct s, t ∈ S,
equalities s = 1 and s = t ∈ G are allowed). To such a pair corresponds a free cover
πG : Fk � G, with πG(s j ) being the j th generator of S(1 ≤ j ≤ k). We denote by
Mk the set of marked groups on k generators, identified here with the set of normal
subgroups of Fk via the bijection (G, S) ←→ ker πG .

The idea to furnish a space of (sub)groups with a topology goes back at least to
Chabauty [45], and has been revisited on many occasions, among others by Bourbaki
[36, chapitreVIII, § 5],Gromov [87, final remarks], one of us [68], Stepin [144],Cham-
petier [46], Champetier and Guirardel [47], and Ceccherini-Silberstein and Coornaert
[43].

The Chabauty topology on Mk , also called the Cayley topology, is that defined
by the basis8

OK ,K ′ =
{

N � Fk : N ∩ K = ∅ and K ′ ⊂ N
}

, (17)

with K , K ′ finite subsets in Fk . This topology makes Mk a totally disconnected
compact space. It is also completelymetrisable, aswenow recall. For two subsets A, A′
in Fk , let v(A, A′) denote the largest integer n such that A ∩ B Fk

S (n) = A′ ∩ B Fk
S (n),

where S = (s1, . . . , sk) in Fk is as above, and where balls B Fk
S (n) are as in Appendix

D. Set d(A, A′) = exp(−v(A, A′)). Then d is a metric (indeed an ultrametric) and
makes the set 2Fk of subsets of Fk a totally discontinuous compact metric space, in

8 There is an equivalent definition in terms of the subbasis

OK ,V = {N � Fk : N ∩ K = ∅ and N ∩ V �= ∅} ,
indexed by pairs (K , V ) where K is a finite subset of Fk and V a subset of Fk . With K compact and V
open, it has the advantage to carry over to the space of closed subgroups of a locally compact group G.
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which the space Mk of marked groups on k generators (namely the space of normal
subgroups of Fk) is closed. The topology induced by d on Mk coincides with that
defined by (17).

Here is an elementary and basic fact about this topology. The earliest written ref-
erence we know for it is [53, Lemma 1.3 and Lemma 1].

Proposition 3.1 Let k, � be two positive integers. Let (G, S) ∈Mk and (G, T ) ∈M�

be two marked groups with the same underlying group. Then there exist neighbour-
hoods U ⊂Mk of (G, S) and V ⊂M� of (G, T ) that are homeomorphic.

In loose words, local properties of (G, S) are properties of G itself.

This proposition justifies the following definitions: a property (P) of finitely gen-
erated groups is open [respectively closed] if, for any positive integer k, the subset
of Mk of marked groups (G, S) such that G has Property (P) is open [respectively
closed]. A finitely generated group G is isolated if, for any ordered generating set
S = (s1, . . . , sk) of G, the point (G, S) is isolated inMk . We collect a few examples
as follows:

Proposition 3.2 For k ≥ 2, in the space Mk of marked groups of rank k:

(i) “Being abelian” is both an open and a closed property; more generally, for
d ≥ 1, “being nilpotent of nilpotent class at most d” is both open and closed.
“Being nilpotent” is open and non-closed.

(ii) “Being soluble of solubility class at most k” is closed and non-open. “Being
soluble” is neither open nor closed .

(iii) “Being finite” and “having torsion” are open and non-closed.
(iv) If (G, S) ∈ Mk is a marking of a finitely presented group G, there exists a

neighbourhood of (G, S) in Mk containing only marked quotients of (G, S).
(v) A necessary condition for (G, S) to be an isolated point inMk is that G is finitely

presented. Finite groups and finitely presented simple groups are isolated.
(vi) There exists an isolated group that is 3-soluble and non-Hopfian; the group ̂G

mentioned in Remark 2.23.iii is isolated.
(vii) Amenability is neither open nor closed.
(viii) Kazhdan Property (T) is open in Mk .
(ix) Serre Property (FA) is not open in Mk .

On the proof Claims (i) to (v) are elementary; most of them appear explicitly in [47,
Section 2.6 and Lemma 2.3]. For (i), note moreover that “being nilpotent” is open by
(iv), because nilpotent groups are finitely presented. For (ii), note that “being soluble”
is non-open, because metabelian groups like Z � Z are limits of non-soluble groups
(see Example B.2, say).

“Being nilpotent”, “being soluble”, “being finite”, “being amenable” and “having
torsion” are non-closed properties, because non-abelian free groups are residually
finite p-groups, for any prime p (due to [89], see also [149]).

For (v), observe that a finitely generated infinitely presented group G is always a
limit of finitely presented groups Gn ; more precisely

G = 〈s1, . . . , sk | (ri )i≥1〉 = lim
n→∞Gn

with Gn = 〈s1, . . . , sk | r1, . . . , rn〉.
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Necessary and sufficient conditions for isolated points are known in terms of the
existence of “finite discriminating subsets”; we refer to [53, Proposition 2]; see also
[73, Theorem 2.1]. The class of isolated groups contains considerably more groups
than the finite groups and the finitely presented simple groups [53].

The first part of Claim (vi) is [53, Proposition 10]; the second part is implicit in
[133], and explicit in [53, Proposition 5.18]). “Being amenable” is non-open, again
because Z � Z is a limit of groups with non-abelian free subgroups (Example B.2).
Claim (viii) is a result of [137], and (ix) of [57]. �


The Chabauty topology on Mk plays an important role in connection with many
group properties including “Property LEF” and “soficity”. The two latter properties
define subspaces inMk that are closed [43, Propositions 7.3.7 and 7.5.13].

Note the contraposition of (v): for (G, S) ∈ Mk with G infinitely presented,
there exists a sequence ((Gn, Sn))n≥1 of pairwise distinct points in Mk such that
limn→∞(Gn, Sn) = (G, S).

The simplest examples of converging sequences in Mk are of the following kind.
Let

N1 ⊂ · · · ⊂ Nn ⊂ Nn+1 ⊂ · · · ⊂ N :=
⋃

n≥1
Nn

be a nested sequence of normal subgroups in Fk . Let S0 be a free basis of Fk . Denote
by pn : Fk −→ Gn := Fk/Nn (n ≥ 1) and p : Fk −→ G := Fk/N the canonical
projections. Set Sn = pn(S0) and S = p(S0). Then ((Gn, Sn))n≥1 is a sequence inMk

converging to (G, S). In this case we often suppress the emphasis on the generating
sets and write simply that the sequence (Gn)n≥1 converges to G inMk .

Converging sequences inMk need not be of this special kind, with G a quotient of
Gn for all n large enough. See below, Proposition 4.2.vi.

The following observation about Mk and covers, basic for us, is well-known; see
e.g. [54, Proposition 3.3]. We provide a proof for the convenience of the reader.

Proposition 3.3 Let ((Gn, Sn))n≥1 be a converging sequence in Mk; set (G, S) =
limn→∞(Gn, Sn). Let 
 be a finitely presented group; assume there exists a cover
π : 
 � G.

Then 
 is a cover of Gn for n large enough.

Note. In case G itself is finitely presented, this lemma is an immediate consequence
of Proposition 3.2.v.

Proof Denote as above by (s1, . . . , sk) an ordered free basis of Fk . Let pn : Fk � Gn

and p : Fk � G be the free covers corresponding to (Gn, Sn) and (G, S) respectively.
Set Nn = ker(pn) and N = ker(p). Let (t1, . . . , t�) an ordered generating set of 
.
Consider the free group F� on an ordered basis U = (u1, . . . , u�) and the free cover
q : F� � 
 defined by q(u j ) = t j for j = 1, . . . , �.

Since
 is finitely presented, there exists a finite subset R ⊂ F� of words v1, . . . , vm

in the letters of U ∪U−1 such that ker(q) is the normal subgroup of F� generated by
R, namely such that 〈U | R〉 is a presentation of 
. For j ∈ {1, . . . , �}, choose a word

123



96 M. G. Benli et al.

w j in the letters p(s1), . . . , p(sk) and their inverses such that π(t j ) = w j . Let w̃ j be
the word in {s1, s−11 , . . . , sk, s−1k } obtained by substitution of s±1i in place of p(si )

±1;
observe that p(w̃ j ) = w j = π(t j ). Consider the homomorphism

h : F� −→ Fk defined by h(u j ) = w̃ j (1 ≤ j ≤ �).

Then ph(u j ) = p(w̃ j ) = w j = π(t j ) = πq(u j ) for all j , so that ph = πq, and
therefore h(R) ⊂ N .

The last inclusion means that the open subset

O′ := {M � Fk : h(R) ⊂ M} =
m
⋂

i=1
O∅,{h(ri )}

is a neighbourhood of N in Mk . Hence, for n large enough, we have Nn ∈ O′ and
therefore h(R) ⊂ Nn .

Denote by 〈〈T 〉〉 the normal subgroup of a group H generated by a subset T ⊂ H .
Let

h1 : 
 = F�/〈〈R〉〉 −→ Fk/〈〈h(R)〉〉

be the cover induced by h, and

h2 : Fk/〈〈h(R)〉〉 −→ Fk/Nn = Gn

that defined by the inclusion 〈〈h(R)〉〉 ⊂ Nn (for n � 1). The composition h2h1 is a
cover 
 � Gn , and this concludes the proof. �


An immediate consequence of the previous proposition is the following corollary,
of very frequent use in our work.

Corollary 3.4 Consider the three following group properties:

(NA) non-amenability,
(Fr) containing non-abelian free groups,
(La) being large.

Let k ≥ 2 and ((Gn, Sn))n≥1 be a converging sequence in Mk , with limit (G, S).
If, for all n large enough, Gn has one of the three properties above, then any finitely

presented cover of G has the same property.

Proof The point is that a group that has a quotient with one of the properties (NA),
(Fr), (La) has itself the same property. �


4 The analogue of Theorem 1.6 for the family (Gω)ω∈� of [68]

Let�be theCantor space {0, 1, 2}N of all sequences of 0’s, 1’s and 2’s,with the product
topology. Denote by �− the countable subspace of eventually constant sequences,
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by �+ its complement, and by �0 the subspace of sequences with infinitely many
occurrences of each of 0, 1, 2; thus

�0 ⊂ �+ ⊂ � = �+ 
�−.

We denote by σ the shift on �, defined by (σ (ω))n = ωn+1 for all n ≥ 1.
We will recall the construction of [68], which is a generalisation of that of Section

2. It associates with each point ω ∈ � a marked group (Gω, Sω) with Sω consisting of
4 generators of order 2; for example, G = G012, where 012 stands for the 3-periodic
sequence 012012012 · · · . In this section, set

X = {0, 1}

and identify X∗ with the 2-regular rooted tree. We proceed to define for all ω ∈ � a
marked group (Gω.Sω) ∈M4 of automorphisms of X∗.
Definition 4.1 The flip a ∈ Aut(X∗) is defined by

a(0v) = 1v and a(1v) = 0v for all v ∈ X∗.

Set

aβ(0) = a aβ(1) = a aβ(2) = 1
aγ (0) = a aγ (1) = 1 aγ (2) = a
aδ(0) = 1 aδ(1) = a aδ(2) = a.

Define for each ω = (ωn)n≥1 ∈ � a set Sω = {a, bω, cω, dω} of four automorphisms
of X∗ by

bω =
(

aβ(ω1), bσ(ω)

)

cω =
(

aγ (ω1), cσ(ω)

)

dω =
(

aδ(ω1), dσ(ω)

)

.

It is easy to check that

acωa = (

bσ(ω), aβ(ω1)

)

adωa = (

cσ(ω), aγ (ω1)

)

abωa = (

dσ(ω), aδ(ω1)

)

a2 = b2ω = c2ω = d2
ω = bωcωdω = 1. (18)

We define the group

Gω = 〈a, bω, cω, dω〉

generated by Sω; it is a subgroup of Aut(X∗). It follows from the last line of (18) that
any element of Gω can be written as
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(∗)a ∗ a ∗ · · · a(∗) (19)

with ∗ ∈ {bω, cω, dω}, (∗) ∈ {1, bω, cω, dω}, and n ≥ 0 occurrences of a.

Observe that any permutation τ of {0, 1, 2} induces a permutation of �, again
denoted by τ ; the groups Gτ(ω) and Gω are isomorphic.

In [68, Section 6], there is moreover a modified construction providing a marked
group (˜Gω,˜Sω); we refer to the original paper. Note that (v) below holds for the
modified groups, but not for the groups Gω.

Proposition 4.2 Let � = {0, 1, 2}N. For ω ∈ �, let Gω and ˜Gω be as above.

(i) For ω ∈ �, the groups Gω and ˜Gω are both infinite, and ˜Gω is infinitely presented.
(ii) For ω ∈ �+, the marked groups (Gω, Sω) and (˜Gω,˜Sω) are isomorphic; the

group Gω is of intermediate growth.
For ω ∈ �0, the group Gω is an infinite 2-group, and is just infinite.9

(iii) For ω ∈ �−, the group Gω is virtually free abelian, and consequently finitely
presented of polynomial growth, while the group ˜Gω is virtually metabelian and
of exponential growth.

(iv) For ω,ω′ ∈ �+, the groups Gω and Gω′ are isomorphic if and only if ω′ = τ(ω)

for some permutation τ of {0, 1, 2}.
(v) The mapping � −→M4, ω 
−→ (˜Gω,˜Sω) is a homeomorphism onto its image.
(vi) For a converging sequence (ω(n))n≥1 of points in �+ with a limit ω in �+, we

have limn→∞(Gω(n)
, Sω(n)

) = (Gω, Sω) in M4. If, moreover, ω(n) ∈ �0 for all
n ≥ 1 and ω /∈ �0, then, for all n ≥ 1, the group Gω is not a quotient of Gω(n)

.

On the proof Most of this is proved in [68]; more precisely:

(i) Gω is infinite [68, Theorem 2.1] and ˜Gω is infinitely presented [68, Theorem
6.2].

(ii) For ω ∈ �+, we have (Gω, Sω) = (˜Gω,˜Sω) [68, observation just before
Theorem 6.1], and Gω is of intermediate growth [68, Corollary 3.2]. For
ω ∈ �0, Gω is an infinite 2-group that is just infinite [68, Theorems 2.1 and
8.1].

(iii) Gω is virtually free abelian [68, Theorem 2.1.(3)], while ˜Gω is virtually
metabelian and of exponential growth [68, Theorem 6.1].

About (iv), see [118, Theorem 2.10.13]. A weaker statement is proved in [68,
Section 5].

For (v), see [68, Proposition 6.2].
For (vi), given any n ≥ 1, note that Gω is neither isomorphic to Gω(n)

, by (iv), nor
a non-trivial quotient of Gω(n)

, by (ii). �

For the main result of this section (Theorem 4.5), we will need an analogue in the

present context of the homomorphisms (2) and (3) of Section 2. Recall that we have

9 Let �1 be the subset of �+ of sequences containing infinitely many occurrences of two of 0, 1, 2, and
finitely many occurrences of the third, so that �+ = �0 
�1. For ω ∈ �1, the group Gω is not a 2-group,
indeed it has elements of infinite order.
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a natural isomorphism

�X : Aut(X∗) �−→ Aut(X∗) � S2.

We keep the notation of Definition 4.1.

Definition 4.3 Let ω ∈ �. The restriction to Gω of the isomorphism �X provides an
injective homomorphism

�(1)
ω = �ω : Gω −→ Gσ(ω) � S2.

On the generators, we have

�ω(a) = (1, 1)τ

�ω(bω) = (aβ(ω2), bσ(ω))

�ω(cω) = (aγ (ω2), cσ(ω))

�ω(dω) = (aδ(ω2), dσ(ω))

(recall that S2 = {1, τ }). The sequence of homomorphisms
(

�
(n)
ω

)

n≥1 is defined

inductively by

�(n)
ω : Gω

�
(n−1)
ω−→ Gσ n−1(ω) �n−1 S2

�
(1)
σn−1(ω)

�1dn−1
−→ Gσ n(ω) �n S2.

Lemma 4.4 (contraction in Gω) Let ω ∈ �. We keep the notation above.

(i) For each n ≥ 1, the homomorphism �
(n)
ω is injective.

(ii) For all g ∈ Gω, there exists an integer n ≥ 1 such that

�(n)
ω (g) =

(

(gv)v∈Xn , τ (n)
g

)

with gv ∈ {1, a, bσ n(ω), cσ n(ω), dσ n(ω)} ∀v ∈ Xn and τ
(n)
g ∈ S2.

Proof By induction on the length of g, in the sense of (19). �

In Theorem1.10 of the Introduction, the claim on intermediate growth is a repetition

of part of Proposition 4.2, and the claim on covers is the theorem below.

Theorem 4.5 For ω ∈ �+, any finitely presented cover of Gω is large.

Remark 4.6 (1) Let ω ∈ �−. Any finitely presented cover of the infinitely pre-
sented group ˜Gω contains non-abelian free groups, by Theorem 1.5. As recorded
in Proposition 4.2.iii, the group Gω is virtually free abelian, and finitely presented.
For example, if ω is the constant sequence 000 · · · , then Gω is the infinite dihedral
group.
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(2) If we replace “is large” by “contains non-abelian free subgroups” in Theorem
4.5, the resulting statement has a short proof. Indeed:

For any ω ∈ �, any finitely presented cover of ˜Gω has non-abelian free subgroups.
Indeed, let (ωn)n≥1 be a sequence of eventually constant sequences converging to
ω in �. Then ˜Gωn

is virtually metabelian and infinitely presented for all n ≥ 1
(Claims (i) and (iii) in Proposition 4.2), and (˜Gωn )n≥1 converges to ˜Gω (Proposition
4.2.v). Let E be a finitely presented cover of ˜Gω. Then E is a cover of Gωn for n large
enough (Proposition 3.3). Hence Bieri–Strebel Theorem 1.5 shows that E contains
non-abelian free subgroups.

From now on, we assume that

ω ∈ �+.

Our strategy for the proof of Theorem 4.5 is to adapt to the present context the steps
of Section 2.

The following definition should be compared with Definition 2.10. Note however
that G0 has not quite the same meaning here and there.

Definition 4.7 Set again

G0 = 〈a, b, c, d | a2, b2, c2, d2, bcd〉 � C2 ∗ V,

as in Example 2.16. Observe that any element of G0 can be written as

(∗)a ∗ a ∗ · · · a(∗) (20)

with ∗ ∈ {b, c, d}, (∗) ∈ {1, b, c, d}, and n ≥ 0 occurrences of a (compare with
Equation (19)).

For i ∈ {0, 1, 2}, set

ϕi (a) = (1, 1)τ for all i ∈ {0, 1, 2}

and
ϕ0(b) = (a, b) ϕ1(b) = (a, b) ϕ2(b) = (1, b)

ϕ0(c) = (a, c) ϕ1(c) = (1, c) ϕ2(c) = (a, c)
ϕ0(d) = (1, d) ϕ1(d) = (a, d) ϕ2(d) = (a, d).

It is easy to check that these formulas define homomorphisms

ϕi : G0 −→ G0 � S2 (i = 0, 1, 2).

Set ϕ(1)
ω = ϕω1 and define, inductively for n ≥ 2, homomorphisms

ϕ(n)
ω : G0

ϕ
(n−1)
ω−→ G0 �n−1 S2

ϕωn �12n−→ G0 �n S2.
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For n ≥ 1, set

Nω,n = ker(ϕ(n)
ω ) and Gω,n = G0/Nω,n .

We have natural homomorphisms

πω : G0 −→ Gω,

π̂ω = π̂ω,1 : G0 � S2 −→ Gσ(ω) � S2,

π̂ω,n : G0 �n S2 −→ Gσ n(ω) �n S2.

(Compare with (9), (10), and (13), but note that π̂ω,1 = πω � 12 does not hold here.)

The next lemma is about diagrams analogous to (11) and (14). Its proof uses an
argument similar to one in the proof of Proposition 2.7, and will be omitted.

Lemma 4.8 The diagram

(21)

commutes for each n ≥ 1.

The next lemma is analogous to Step 2 in the proof of Proposition 2.7.

Lemma 4.9 (contraction in G0) For all k ∈ G0, there exists an integer n ≥ 1 such
that

ϕ(n)
ω (k) =

(

(kv)v∈Xn , τ
(n)
k

)

with kv ∈ {1, a, b, c, d} ∀v ∈ Xn and τ
(n)
k ∈ S2.

Proof by induction on the length of k, in the sense of (20). �

Define now

Nω =
⋃

n≥1
Nω,n

(compare with Definition 2.10). The two following lemmas are appropriate modifica-
tions of Lemmas 2.12 and 2.13; we repeat the proof for the first one, and not for the
second one.

Lemma 4.10 We have

Nω = ker (πω : G0 −→ Gω) , namely Gω � G0/Nω,
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so that

lim
n→∞Gω,n = Gω

in the space of marked groups on 4 generators.

Proof Let g ∈ N . Let n ≥ 1 be such that g ∈ ker(ϕ(n)
ω ). Since �

(n)
ω πω(g) =

π̂ω,nϕ
(n)
ω (g), we have πω(g) = 1 by Lemma 4.4.i.

Conversely, let k ∈ G0. There exists n ≥ 0 such that
(

ϕ
(n)
ω (k)

)

v
∈ {1, a, b, c, d}

for all v ∈ Xn , by Lemma 4.9. Assume that k ∈ ker(πω). Then π̂ω,n(ϕ
(n)
ω (k)) = 1.

As π̂ω,n is injective “on generators” (in a sense similar to that of Remark 2.11), we
have ϕ

(n)
ω (k) = 1, and therefore k ∈ Nω,n ⊂ Nω.

(Note that the hypothesis “ω ∈ �+” is necessary for the previous argument. If ωn

were eventually constant, one of bσ n(ω), cσ n(ω), dσ n(ω) would be the identity of Gσ n(ω)

for n large enough). �

Lemma 4.11 In the situation of the previous lemma, we have for all n ≥ 1

ϕ(1)
ω (Nω,n) ⊂ N 2

ω,n−1 ⊂ G0 � S2 and
(

ϕ(1)
ω

)−1
(N 2

ω,n−1) ⊂ Nω,n .

It follows that ϕ
(1)
ω : G0 −→ G0 � S2 induces a homomorphism

ψ(n)
ω :

{

Gω,n −→ Gω,n−1 � S2
gNω,n 
−→

(

(

(ϕωn (g))x Nω,n−1
)

x∈X , τ
(1)
g

)

which is injective.

Proposition 4.12 For each ω ∈ �+ and n ≥ 0, the group Gω,n is large.

Proof The group G0 = C2 ∗ V has a free subgroup of finite index, indeed a subgroup
isomorphic to F3 of index 8. For n ≥ 1, because of the previous lemma and as in the
proof ofTheorem2.14, there exists a subgroupof index 2 inGω,n and a homomorphism
from this subgroup onto Gω,n−1. It follows by induction on n that Gω,n is large. �

End of proof of Theorem 4.5 Since Gω,n is large for n large enough, it follows from
Lemma 4.10 and Corollary 3.4 that any cover of Gω is large. �

Definition 4.13 For ω ∈ �, let Mω denote the kernel of the defining cover F4 � Gω;
in other terms, Mω is the inverse image of Nω by the epimorphism F4 � G0 mapping
the four generators of F4 onto a, b, c, d ∈ G0. For a subset � of �, the �-universal
group is the group

U� = F4/
⋂

ω∈�

Mω.

For example, U∅ = {1}, and U{ω} = Gω for all ω ∈ �.
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The terminology is justified by cases that have appeared in the literature, with �

large. For example, let� denote the subset of�0 of sequences that are concatenations
of blocks 012, 120, 201. Then U� has uncountably many quotients (a consequence of
Proposition 4.2.iv); it has intermediate growth, and therefore is amenable (established
in [75, Theorem 9.7]).

Suppose that � contains some ω ∈ �+. Then any cover of U� is a cover of Gω.
Theorem 4.5 implies:

Corollary 4.14 For any � ⊂ � such that � ∩ �+ �= ∅, the �-universal group U�

is infinitely presented, and any finitely presented cover of it is large.

In particular, this corollary solves the first part of Problem 9.5 in [73], by showing
that U� is infinitely presented.

5 The group of intermediate growth G

Let G be the self-similar group of degree 2 of Example 2.16. On the one hand, G is
a group of the family studied in the previous section: G = G012; thus Theorem 4.5
“contains” Theorem 1.6. On the other hand, in this particular case, we can describe
much more precisely a sequence of finitely presented covers converging toG, and this
is the subject of the present section. Note however that, even if the cover G−1 below
is the same as G0 in Example 2.16, the sequence (Gn)n≥0 is not the particular case
for G of the sequence (Gn)n≥1 (even shifted) of Section 2.

Immediately after its discovery it was observed thatG is infinitely presented. Then,
Lysenok found a presentation that we recall below.

Set

G−1 =
〈

a, b, c, d | a2 = b2 = c2 = d2 = bcd = 1
〉

� C2 ∗ V,

and denote by S the system of four involutions {a, b, c, d} generating G−1. Elements
in G−1 are in natural bijection with “reduced words” of the form

t0at1a · · · atk−1atk

with k ≥ 0, t1, . . . , tk−1 ∈ {b, c, d}, and t0, tk ∈ {∅, b, c, d}. Throughout the remain-
der of this section, we use the same symbol to denote an element ofG−1 and its image
in any quotient of G−1, in particular in G; thus, S = {a, b, c, d} denotes a set of
generators in G−1 and in any quotient of G−1.

The substitution σ defined by

σ(a) = aca, σ (b) = d, σ (c) = b, σ (d) = c

extends to reduced words, for example σ(abac) = acadacab, and the resulting map

σ : G−1 −→ G−1
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is a group endomorphism. Define

u0 = (ad)4 un = σ n(u0) ∀n ≥ 0

v0 = (adacac)4 vn = σ n(v0) ∀n ≥ 0.

Theorem 5.1 [108,109] The group G has a presentation

〈

a, b, c, d | a2 = b2 = c2 = d2 = bcd = 1, un = vn = 1 ∀n ≥ 0
〉

.

Note. It is moreover known that this presentation is minimal [71]. Lysenok’s presen-
tation if the prototype of what is now called an L-presentation [6].

Definition 5.2 For n ≥ 0, define a pair (Gn, S) ∈M4 by

Gn =
〈

a, b, c, d

∣

∣

∣

∣

a2 = b2 = c2 = d2 = bcd = 1
u0 = · · · = un = v0 = · · · = vn−1 = 1

〉

S = {a, b, c, d} ⊂ Gn .

Observe that limn→∞(Gn, S) = (G, S) inM4, and that there are natural surjections
G−1 � Gn � G for all n ≥ 0.

Theorem 5.3 For each n ≥ 0, the group Gn has a normal subgroup Hn of index
22

n+1+2 which is isomorphic to the direct product of 2n free groups of rank 3.

Remark 5.4 (i) A weaker result was first established in [78]: For each n ≥ 0, Gn

contains a subgroup of finite index isomorphic to the direct product of 2n copies
of finitely generated non-abelian free groups. This by itself implies that any finitely
presented cover of G contains non-abelian free subgroups.

(ii) The result of [78] was improved in [11]: For each n ≥ 0, the group Gn has a
normal subgroup Hn of index 2αn , where αn ≤ (11 · 4n + 1)/3, and Hn is a subgroup
of index 2βn in a finite direct product of 2n non-abelian free groups of rank 3, where
βn ≤ (11 · 4n − 8)/3− 2n .

(iii) Our proof of Theorem 5.3 is split in several lemmas, until 5.10.

If x, . . . , y are elements of a group H , we denote by 〈x, . . . , y〉H the subgroup
of H they generate, and by 〈〈x, . . . , y〉〉H the normal subgroup of H they generate.
Define first

B0 = 〈〈b〉〉G0 ,

�0 = 〈b, c, d, aba, aca, ada〉G0 ,

D0 = 〈a, d〉G0 ,

Ddiag
0 = 〈(a, d), (d, a)〉G0 .
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It is easy to check that Ddiag
0 ∩ (B0 × B0) = {1}, and that Ddiag

0 normalizes B0 × B0.
The assignment

b 
→ (a, c) aba 
→ (c, a)

c 
→ (a, d) aba 
→ (d, a)

d 
→ (1, b) aba 
→ (b, 1)

extends to a group homomorphism ψ0 : �0 −→ G0 × G0 [78, Proposition 1]. For
each n ≥ 0, define now

Nn = 〈〈u0, . . . , un, v0, . . . , vn−1〉〉G0; observe thatNn ⊂ �0;
Gn = G0/Nn and πn : G0 � Gn the canonical projection;
Bn = 〈〈b〉〉Gn = πn(B0);
�n = 〈b, c, d, aba, aca, ada〉Gn = πn(�0);

Ddiag
n = 〈(a, d), (d, a)〉Gn×Gn ;
σn : Gn−1 −→ Gn, gNn−1 
−→ σ(g)Nn (for n ≥ 1 only).

For the definition of the homomorphism σn , note that σ(Nn−1) ⊂ Nn .

Lemma 5.5 ([78], Lemma 3) Let B0 denote the normal subgroup of G0 generated by
b. Then:

(i) B0 is of index 8 in G0;
(ii) B0 is generated by the four elements

ξ1 := b, ξ2 := aba, ξ3 := dabad, ξ4 := adabada;
(iii) B0 has the presentation 〈ξ1, ξ2, ξ3, ξ4 | ξ21 = ξ22 = ξ23 = ξ24 = 1〉;
(iv) B0 contains Nn for all n ≥ 1.

Lemma 5.6 ([78], mostly Proposition 10)

(i) The kernel and the image of the homomorphism ψ0 are given by

ker(ψ0) = 〈〈u1, v0〉〉�0 ,

Im(ψ0) = (B0 × B0) � Ddiag
n of index 8 in G0 ×G0.

(ii) For n ≥ 1, the homomorphism ψ0 induces an isomorphism

ψn : �n
�−→ (Bn−1 × Bn−1) � Ddiag

n−1 <8 Gn−1 ×Gn−1

where <8 indicates that the left-hand side is a subgroup of index 8 in the right-
hand side.

Set K0 = 〈〈(ab)2〉〉G0 ; observe that K0 ⊂ B0.
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Lemma 5.7 (i) The subgroup K0 is of index 2 in B0. It is generated by

t = (ab)2 v = (bada)2 w = (abad)2

Moreover K0 contains Nn for n ≥ 1.
(ii) The group K0 is a free group of rank 3.

Proof (i) This follows from [93, p. 230]. Since B0 contains Nn and each un, vn is a
fourth power, necessarily Nn is contained in K0.

For (ii), see [11, Proposition 4], where the proof uses Kurosh’s theorem. Alterna-
tively one can use the Reidemeister–Schreier method to find a presentation for K0 and
see that it is indeed free of rank 3. �

Lemma 5.8 If g is an element of Bn−1 then

ψn(σn(g)) = (1, g) and ψn(aσn(g)a) = (g, 1).

Proof For the generators of Bn−1 that are images of those of Lemma 5.5 for B0, we
have

ψn(σn(b)) = ψn(d) = (1, b),

ψn(σn(aba)) = ψn(acadaca) = (d2, aba) = (1, aba),

ψn(σn(dabad)) = ψn(cacadacac) = (ad2a, dabad) = (1, dabad),

ψn(σn(adabada)) = ψn(acacacadacacaca) = (1, adabada),

and this shows the first equality. The second follows because, if ψn(h) = (h0, h1),
then ψn(aha) = (h1, h0). �


Let Kn = K0/Nn . It is a normal subgroup of Gn contained in Bn .

Lemma 5.9 Let n ≥ 1.

(i) We have σn(Kn−1) ⊂ Kn ⊂ Bn.
(ii) If Hn−1 is a subgroup of Kn−1, then ψ−1n (Hn−1 × Hn−1) ⊂ Kn.

Proof (i) Let t, v, w be now the canonical images in Kn of the elements of K0 denoted
by the same symbols in Lemma 5.7. On the one hand, we have ψn(σn(t)) = (1, t) by
Lemma 5.8. On the other hand, we have

ψn(w) = ψn(aba)ψn(d)ψn(aba)ψn(d) = (cc, abab) = (1, t)

by the definitions of ψn and w. Hence σn(t) = w ∈ Kn by Lemma 5.6.ii.
Let g1 ∈ Gn−1. From the definition of ψn , we see that the composition �n −→

Gn−1 ofψn with a projection onto one of the factors is onto. Hence there exists g ∈ �n

and g0 ∈ Gn−1 such thatψn(g) = (g0, g1).Wehave as above10 ψn(σn(t g1)) = (1, t g1)

and

10 Remember that th = h−1th.
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ψn(wg) = ψn(w)ψn(g) = (1, t)ψn(g) = (1, t g1),

and therefore σn(t g1) = wg . Since Kn is a normal subgroup of Gn containing w, we
have σn(t g1) ∈ Kn for all g1 ∈ Gn−1. The inclusion σn(Kn−1) ⊂ Kn follows, because
Kn−1 is generated by t as a normal subgroup of Gn−1.

(ii) Let (h0, h1) ∈ Hn−1 × Hn−1. We have

ψ−1n (h0, h1) = aσn(h0)aσn(h1)

by Lemma 5.8, and the right-hand side is in Kn by (i). �


Set H0 = K0. For n ≥ 1, define inductively

Hn = ψ−1n (Hn−1 × Hn−1).

The definition makes sense by Lemma 5.9.ii. The following lemma finishes the proof
of Theorem 5.3.

Lemma 5.10 Let n ≥ 0, and the notation be as above.

(i) Hn is a normal subgroup of Gn contained in Kn.
(ii) The group Hn is a direct product of 2n free groups of rank 3.
(iii) Its index is given by [Gn : Hn] = 2(2n+1+2).

Proof For n = 0, the three claims follow from Lemmas 5.5 and 5.7. We suppose now
that n ≥ 1 and that the lemma holds for n − 1.

(i) The group Hn is clearly normal in �n , by Lemma 5.6.ii. To show that Hn is
normal inGn , it suffices to check that aHna ⊂ Hn , becauseGn is generated by�n (of
index 2 inGn) and a. Let h ∈ Hn . Let h0, h1 ∈ Hn−1 be defined byψn(h) = (h0, h1).
Then ψn(aha) = (h1, h0) ∈ Hn−1 × Hn−1, and therefore aha ∈ Hn .

(ii) This is a straightforward consequence of the isomorphism Hn � Hn−1×Hn−1,
see again Lemma 5.6.

(iii) By the induction hypothesis, we have

[(Bn−1 × Bn−1) � Ddiag
n−1 : Hn−1 × Hn−1]

= [Gn−1 ×Gn−1 : Hn−1 × Hn−1]
[Gn−1 ×Gn−1 : (Bn−1 × Bn−1) � Ddiag

n−1]

= 22
n+2 × 22

n+1

23
= 22

n+1+1.
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Thus the commutative diagram

Gn Gn−1 ×Gn−1
| |
2 23

| |
ψn : �n

∼=−→ (Bn−1 × Bn−1) � Ddiag
n−1| |

2(2n+1+1) 2(2n+1+1)
| |
Hn −→ Hn−1 × Hn−1

shows that Hn has index 2(2n+1+2) in Gn . �

The proof of Theorem 5.3 is now complete.

Recall that a group G is called of type FPn if the trivialZ[G]-moduleZ has a projective
resolution, namely if there exists an exact sequence

· · · −→ Pj+1 −→ Pj −→ · · · −→ P1 −→ P0 −→ Z

where the Pj ’s are projective Z[G]-modules for all j ≥ 0, and finitely generated
projective Z[G]-modules for all j ≤ n. It is known that

(i) a group is of type FP1 if and only if it is finitely generated;
(ii) finitely presented groups are of type FP2;
(iii) Condition FP2 is strictly weaker than finite presentability;
(iv) a group is of type FP2 if and only if it is the quotient of some finitely presented

group by a perfect normal subgroup.

For (i) and (ii), see for example the notes in which “type FPn” was first defined [28];
see [27] for (iii) and [38, Section VII.5, Exercise 3] for (iv). The following question
is natural:

Does G have an amenable cover of type FP2?
The answer is due to Yves de Cornulier (unpublished). We reproduce it here, with our
thanks to him.

Proposition 5.11 (de Cornulier) Any cover of type FP2 of the group G is large.

Proof Let E � G be a cover, with E of type FP2. By (iv) above, there exists a finitely
presented group F and a perfect normal subgroup P of F such that F/P is isomorphic
to E . For n large enough and Gn as in Theorem 5.3, there exists by Proposition 3.3
a normal subgroup Kn of F such that F/Kn is isomorphic to Gn . Observe that the
group

F/P Kn � (F/Kn) / (P/P ∩ Kn) � Gn/ (P/P ∩ Kn)

is a quotient of Gn by a perfect normal subgroup.
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Since Gn has a subgroup of index a power of 2 which is a direct product of free
groups (Theorem 5.3, or [11]),Gn is residually soluble. It follows that the only perfect
subgroup of Gn is {e}, so that F/P Kn � Gn . Hence F/P Kn is large, and so is its
cover F/P � E . �


Appendix A: On soluble groups, metabelian groups, and finite presentations

The existence of groups that are finitely generated and infinitely presented was estab-
lished by B. H. Neumann in 1937. More precisely, he constructed uncountably many
2-generator groups [120, Theorem 14]; at most countably many of them are finitely
presented. Later it was checked that none of them is finitely presented (see the last
proof of Appendix C, as well as [26, Theorem C]).

Infinitely generated soluble groups are equally abundant, as we recall below after
having fixed some notation.

The groups of the derived series of a group G are defined inductively by D0G = G
and D�+1G = [D�G, D�G]. The free soluble group of rank k and solubility class
� is the quotient FSol(k, �) = Fk/D�Fk , where Fk stands for the free group of rank k.
Any k-generated soluble group of solubility class at most � is a quotient of FSol(k, �).
A group G is metabelian if D2G = 1, namely if it is a cover of an abelian group with
abelian kernel. The group FSol(k, 2) is the free metabelian group of rank k.

Philip Hall established the existence of uncountably many finitely generated soluble
groups. His result is much more precise [90, Theorem 6]: given any countable abelian
group A �= 1, there exist uncountably many groups G such that

d(G) = 2, Z(G) � A, [G, D2G] = 1.

Here d(G) stands for the minimal number of generators of G, and Z(G) for its centre.
The condition [G, D2G] = 1 can be translated in words: G is a centre-by-metabelian
group. It ismoreover known that there are uncountablymany finitely generated soluble
groups which are not quasi-isometric to each other [55, Corollary 1.8].

On the contrary, there are only countably many finitely generated metabelian
groups (this is repeated as Proposition A.3 below), and more generally11 abelian-by-
polycyclic groups ([90, Corollary 2 to Theorem 3], see also [107, Corollary 4.2.5]).
Before comparing soluble groups in general with metabelian groups in particular, we
collect some well-known facts in the following lemma.

Recall that a group G satisfies Max-n, the maximal condition for normal sub-
groups, if any increasing sequence of normal subgroups of G is ultimately stationary,
or equivalently if any normal subgroup of G is finitely generated as normal subgroup.

Lemma A.1 Let G be a finitely generated group, N a normal subgroup, and Z a
central subgroup.

(i) If G/N is finitely presented, there exists a finite subset S ⊂ N such that N is the
smallest normal subgroup of G containing S.

11 Let P and Q be group properties. A group G is P-by-Q if G has a normal subgroup N with Property
P such that G/N has Property Q.
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(ii) If G/Z is finitely presented, then Z is finitely generated.
(iii) If G has uncountably many normal subgroups, then G has uncountably many

pairwise non-isomorphic quotients.
(iv) Suppose that G is finitely presented and satisfies Max-n. Then G/N is finitely

presented.

Proof Claim (i) is [132, Lemma 14.1.3]. It is a simple consequence of the following
fundamental observation of B.H. Neumann: let S, S′ be two finite generating sets of a
group G; assume that G has a finite presentation 〈S | R〉 involving S and a finite set
R of relators; then there exists a finite set R′ of relators in the letters of S′ such that
〈S′ | R′〉 is also a finite presentation of G [121, Lemma 8].

Claim (ii) is the special case of (i) for a central subgroup.
For Claim (iii), consider an uncountable family (Nα)α∈A of distinct normal sub-

groups of G. Fix α ∈ A. Let B be a subset of A such that, for each β ∈ B, there exists
an isomorphism φβ : G/Nβ −→ G/Nα . It suffices to show that B is countable.

For β ∈ B, let πβ denote the composition of the canonical projection G −→ G/Nβ

with φβ . Since G is finitely generated and G/Nα countable, there are only countably
many homomorphisms from G to G/Nα . As Nβ = ker(πβ), the set B is countable.

For Claim (iv), consider a finite presentation of G, namely a free group F on a finite
set S and a normal subgroup M of F generated as normal subgroup by a finite subset
R of F , such that G = F/M . Since G satisfies Max-n, there exists a finite subset R′
of F of which the image in G generates N as a normal subgroup. Then 〈S | R ∪ R′〉
is a finite presentation of G/N .

Note that Claim (ii) is a special case of [90, Lemma 2]. Our argument for Claim
(iii) can be found in [90, p. 433], and that for Claim (iv) is “a well-known principle”
cited in [90, p. 420]. �


Finitely generated metabelian groups are “well-behaved” in many ways:

Proposition A.2 (Hall, Baumslag, Remeslennikov) Let G be a finitely generated
metabelian group.

(i) G satisfies Max-n. In particular, the centre of G is finitely generated.
(ii) If G is finitely presented, so is any quotient of G.
(iii) G is residually finite.
(iv) G has a soluble word problem.
(v) G can be embedded into a finitely presented metabelian group.
(vi) G is recursively presented.

References Claim (i) is [90, Theorem 3], Claim (ii) follows by Lemma A.1.iv, and
Claim (iii) is [91, Theorem 1].

For the particular case of free metabelian groups, Claim (iii) follows from linearity:
it is known that FSol(k, 2) is a subgroup of GL2(C).

This is a form of the “Magnus embedding theorem” ; see [110], and also [151,
Theorem 2.11]. (On the contrary, FSol(k, �) is not linear when � ≥ 3; see Remark
A.6.)

Claim (iv) can be found in [20]. It is also a consequence of (a particular case of)
a result of Wehrfritz: any finitely generated metabelian group is quasi-linear, namely
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is a subgroup of a group of the form
∏r

i=1 GLn(Fi ), where F1, . . . , Fr are fields
[152].More generally, several algorithmic problems are known to be soluble in finitely
generated metabelian groups [25].

Claim (v) was proved by Baumslag [19] and Remeslennikov [131], independently.
See also [107, Proposition 11.3.2].

Claim (vi) is [20, Corollary A1]; it also follows from Claim (v). Note that Claim
(vi) is contained in Claim (iv), but we add it for comparison with Proposition A.5. �

Proposition A.3 (P. Hall) There are countably many finitely generated metabelian
groups.

Remark A.4 (a) Let G be a finitely generated metabelian group G; let k ≥ 0 be such
that G can be generated by k elements, so that G is a quotient of the free metabelian
groupFSol(k, 2). Though it need not befinitely presented (examples are shownbelow),
the group G is finitely presented as a metabelian group, because FSol(k, 2) satisfies
Max-n; in other terms, we can write

G = FSol(k, 2)/〈〈r1, . . . , rn〉〉,

where the notation 〈〈· · · 〉〉 indicates a normal subgroup generated as such by elements
r1, . . . , rn in FSol(k, 2). Proposition A.3 follows.

Note that Proposition A.3 is also a straightforward consequence of Claim (vi) in
the previous proposition.

(b) Some of the claims in Proposition A.2 can be improved. For example, (i) holds
for finitely generated abelian-by-polycyclic groups, and (iii) holds for finitely gener-
ated abelian-by-nilpotent groups (Hall).Moreover (iii) holds for abelian-by-polycyclic
groups, as shown by Roseblade and Jategaonkar in 1973 and 1974 (see [134], or Chap-
ter 7 and in particular Theorem 7.2.1 in [107]).

(c) Until the early 70’s, there were rather few known examples of finitely presented
metabelian groups. The 3-generator 3-relator group

H = 〈a, s, t | at = aas, [s, t] = 1 = [a, as]〉

appeared independently in papers by Baumslag [18] and Remeslennikov [131]; see
also [145, Theorem A]. It is metabelian, its derived group is free abelian of infinite
rank, and it contains the wreath product Z � Z as a subgroup [20, Pages 72–73]. It
was quite a surprise at this time [18, first lines] to find a finitely presented group
containing a normal abelian subgroup of infinite rank. More recently, the quotient
group H/(a2 = 1) was the main character in [77].

For groups of higher solubility degrees, the picture is substantially different, even
under the stronger hypothesis of finite presentability. Each of the claims of the next
proposition is meant to be compared with the corresponding claim of Proposition A.2.

Proposition A.5 Let G be a finitely presented soluble group.

(i) G need not satisfy Max-n. Indeed, the centre of G need not be finitely generated.
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(ii) G may have uncountably many quotients, and in particular infinitely presented
quotients.

(ii’) Any metabelian quotient of G is finitely presented.
(iii) G need not be residually finite.
(iv) G need not have a soluble word problem.

Let G be now a finitely generated soluble group.

(v) G need not be recursively presented.
(vi) G need not embed into any finitely presented group.

On the proof Let p be a prime. For n ≥ 2, consider the group An of n-by-n triangular
matrices of the form

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · ∗ ∗
0 0 · · · 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

with upper-triangular entries ai, j , 1 ≤ i < j ≤ n, in Z[ 1p ], and diagonal entries

a2,2, . . . , an−1,n−1 in pZ. This group is soluble. Its center Z(An) is isomorphic to
Z[ 1p ], that is to A2, and therefore is not finitely generated; it follows that An does not
satisfy Max-n. It is easy to check that An is finitely generated when n ≥ 3.

For n ≥ 4, the group An is finitely presented ([1] for n = 4 and [2] for n ≥ 4). This
justifies Claim (i). The existence of a finitely presented soluble group without Max-n
solves a problem of P. Hall; Remeslennikov had an earlier claim for this [130] which
was apparently unjustified [148].

Note that A3 is infinitely presented. This was most likely known to P. Hall, and can
be found in [2]. But it is also a consequence of Bieri–Strebel Theorem 1.5; indeed,
since Z(A3) is not finitely generated, A3/Z(A3) is infinitely presented (Lemma A.1),
and the soluble group A3 cannot be a finitely presented cover of the metabelian group
A3/Z(A3).

Since Z(An) � Z[ 1p ] is not finitely generated, the quotient An/Z(An), with n ≥ 3,
is finitely generated non-finitely presented, byLemmaA.1.ii.Whenn ≥ 4, this justifies
the second part of Claim (ii).

Claim (ii’) follows from Theorem 1.5.
For n ≥ 3, the quotient of An by the central subgroup

{

(zi, j )1≤i, j≤n ∈ An

∣

∣

∣

∣

zi, j = δi, j for (i, j) �= (1, n)

z1,n ∈ Z

}

� Z

(where (δi, j )1≤i, j≤n denotes the unit matrix) is finitely generated non-Hopfian12 (the
argument of [92] for n = 3 carries over to all n ≥ 3), and therefore non-residually
finite. When n ≥ 4, this justify Claim (iii).

12 A group G is non-Hopfian if there exists a surjective endomorphism of G onto itself that is not injective.
A finitely generated residually finite group is Hopfian [111].
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Still for n ≥ 4, it is known that the quotient An/Z(An) does satisfy Max-n and
does not have any minimal presentation [35, Lemma 3.2 and Corollary 3.6]. The
last statement means that any presentation of An/Z(An) contains redundant relators;
in particular, the finitely related group An has a quotient that is not finitely related.
The group An itself has only countably many quotients; see [109, Theorem 1] and
[35, Corollary 3.4].

Concerning Claim (iv), finitely presented soluble groups with unsoluble word prob-
lems have been constructed by Kharlampovich in [102] and by Baumslag, Gildenhuys
and Strebel in [24]. Groups in [24] have centers that are not finitely generated, and
therefore have infinitely presented quotients (see again Claim (ii)).

Earlier,Meskin had constructed a finitely generated recursively presented residually
finite soluble group with unsoluble word problem [116].

For any prime p, there exists a finitely presented soluble group G with centre
(C p)

(∞), an infinite direct sum of cyclic groups of order p (see [103], as well as [104,
Lemma 4.14]). Hence G has uncountably many quotients, by Lemma A.1. iii. This
justifies the first part of Claim (ii).

Claim (v) follows from the existence of uncountablymanyfinitely generated soluble
groups, because there are only countably many recursively presented groups.

(Digression: Let G be a finitely generated soluble group. Assume that G is of finite
Prüfer rank, namely that there exists an integer d ≥ 1 such that any finitely generated
subgroup of G can be generated by d elements. Then G is recursively presented if
and only if G has a soluble word problem. For this, and for examples of G with and
without soluble word problem, see [41].)

Claim (vi) follows fromClaim (v) because a finitely generated subgroup of a finitely
presented group is recursively presented. (This is straightforward; see the first page
of [95], where Higman establishes the famous non-trivial converse; alternatively, see
[117, Lemma 2.1].) �


Remark A.6 As noted parenthetically just after Proposition A.2, free solvable groups
FSol(k, �) are not linear when k ≥ 2 and � ≥ 3 [141,142]. Here is a proof.

For k ≥ 3, here is first a short reduction to a more standard result. Let C denote
the class of (nilpotent-by-abelian)-by-finite groups; observe that quotients of groups
in C are in C. The Lie-Kolchin-Mal’cev theorem (see for example [132, Section 15.1])
establishes that soluble linear groups are in C. If FSol(k, �) were linear, hence in C,
so would be any quotient, in particular the iterated wreath product (Z �Z) �Z; but this
is not [132, 15.1.5].

The following argument, shown to us by Ralph Strebel, holds for any k ≥ 2. Denote
by x1, . . . , xk a set of free generators of FSol(k, �). Let H be a subgroup of finite
index in FSol(k, �); there exists an integer m ≥ 1 such that xm

1 , xm
2 ∈ H ; let U denote

the subgroup of FSol(k, �) generated by xm
1 and xm

2 , so that U ⊂ H ⊂finite index
FSol(k, �). The group U is isomorphic to FSol(k, �), by a result due independently to
Gilbert Baumslag [17, Theorem 2] and Shmel’kin [138, Theorem 5.2].

If FSol(k, �) was linear, it would have a nilpotent-by-abelian subgroup of finite
index, say H . By the lines above, FSol(2, �) would be nilpotent-by-abelian. Hence
any 2-generated soluble group of solubility class at least 3 would be nilpotent-by-
abelian. But this is not true.
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Indeed, consider the symmetric group S4 on four letters. It is generated by two
elements, a transposition and a 4-cycle. It is soluble of class 3, with D1S4 = A4
(the alternating group on four letters), D2S4 = V (the Klein Vierergruppe), and
D3S4 = {1}. It is not nilpotent-by-abelian, namely A4 is not nilpotent: [A4, V ] = V .

The argument of Smirnov is different. It relies on the bi-orderability of the groups
FSol(k, �).

Appendix B: On wreath products and lamplighter groups

Permutational wreath products have been defined in the beginning of Section 2. The
standard wreath product G �H H refers to the action of H on itself by left multipli-
cations.

Proposition B.1 Consider two groups G, H, a non-empty H-set X, and the permu-
tational wreath product G �X H. We assume that G �= {1}.
(i) G �X H is finitely generated if and only if G, H are finitely generated and H has

finitely many orbits on X.
(ii) G �X H is finitely presented if and only if G, H are finitely presented, the Hx ’s

(x ∈ X) are finitely generated, and there are finitely many orbits in X × X for
the diagonal action of H (where Hx = {h ∈ H | h(x) = x}).

(iii) In particular, as soon as H is infinite, the standard wreath product G �H H is not
finitely presented.

References Claim (i) is standard, and easy; if necessary, see [52, Proposition 2.1]. For
Claim (ii), see [52, Theorem 1.1]. Claim (iii) is the main result of [16]. �


As a particular case of PropositionB.1, ifG is finitely-generated abelian andG �= 1,
the group G � Z is metabelian, finitely generated, and infinitely presented. When G is
finite abelian and H � Z infinite cyclic, we will call G �Z the lamplighter group for
G. (For this terminology, precise assumptions on G and H vary from one author to
the other; some ask that G = Z/2Z.)

Proposition B.2 Consider two finitely presented groups G, H, an H-set X such that
H has finitely many orbits on X and infinitely many orbits on X × X, and the permu-
tational wreath product G �X H. We assume that G �= {1}.
(i) G �X H is finitely generated and is infinitely presented.
(ii) For any finitely presented cover π : E � G �X H, the group E has non-abelian

free subgroups.

Proof Claim (i) is a particular case of Proposition B.1. In Proposition 2.10 of [52], it
is shown that the kernel of π contains non-abelian free subgroups. �


Note that, in the particular case of two abelian groups G and H , Claim (ii) is also
a consequence of Theorem 1.5.

On other proofs of Proposition B.2 in the case of W := Z �Z Z. (We have G = H = Z
and X = Z.) We have a presentation

W = 〈s, t | [sti
, st j ] ∀i, j ∈ Z〉;
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indeed, any element in the right-hand side can be written as

sm1 tn1sm2 tn2sm3 tn3 · · · sm� tn�

= sm1
(

st−n1
)m2

(

st−n1−n2
)m3 · · ·

(

st−n1−···−n�−1)m�

tn1+···+n�

for some m1, n1, . . . , m�, n� ∈ Z, and therefore as

(

st j1
)i1 (

st j2
)i2 · · ·

(

st jk
)ik

t N

for appropriate i1, j1, . . . , ik, jk, N ∈ Z with t1 < t2 < · · · < tk . It follows that the
natural homomorphism

〈s, t | [sti
, st j ] ∀i, j ∈ Z〉 −→ W

is an isomorphism.
Since t i [s, stk ]t−i = [sti

, sti+k ], we have a second presentation

W = 〈s, t | [s, sti ] ∀i ∈ N〉.

For a positive integer n, define

Wn = 〈s, t | [s, sti ], i = 0, . . . , n〉.

Note that limn→∞ Wn = W inM2. We have a third presentation

Wn =
〈

s0, . . . , sn, t

∣

∣

∣

∣

[si , s j ], 0 ≤ i, j ≤ n,

st
k = sk+1, 0 ≤ k ≤ n − 1

〉

.

Indeed, it can be checked that the assignments

ϕ1 : s 
−→ s0, t 
−→ t

ϕ2 : si 
−→ sti
, t 
−→ t (0 ≤ i ≤ n)

define, between the groups of the two previous presentations, isomorphisms that are
inverse to each other.

Let Hn be the free abelian subgroup of Wn generated by s0, . . . , sn . Denote by Kn

the subgroup of Hn generated by s0, . . . , sn−1, and by Ln that generated by s1, . . . , sn ;
observe that Kn � Ln � Zn . Let ψn : Kn −→ Ln be the isomorphism defined by
ψ(si−1) = si for i = 1, . . . , n. Then Wn is clearly the HNN-extension corresponding

to the data (Hn, ψn : Kn
�→ Ln). By Britton’s lemma, Wn contains non-abelian free

subgroups.
It follows from Corollary 3.4 that any finitely presented cover of W contains non-

abelian free groups.
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Let us finally allude to another argument showing that W is infinitely presented.
Let H denote the subgroup of GL3(C) generated by the three matrices

⎛

⎝

1 0 0
0 t 0
0 0 1

⎞

⎠ ,

⎛

⎝

1 1 0
0 1 0
0 0 1

⎞

⎠ , and

⎛

⎝

1 0 0
0 1 1
0 0 1

⎞

⎠

where t is some transcendental number. The centre Z(H) of H is free abelian of
infinite rank, and the quotient H/Z(H) is isomorphic to M := Z[t, t−1]2 � Z , where
� refers to the action of the generator 1 ∈ Z by

( t 0
0 t−1

)

. There is an isomorphism of
M onto a subgroup of index 2 in Z [t, t−1]�t Z � Z �Z, given by (P(t), Q(t), n) 
→
(P(t2)+t Q(t−2), 2n). It follows fromLemmaA.1.ii thatZ�Z is not finitely presented.
We are grateful to Adrien Le Boudec for correcting an earlier version of our argument
at this point.

The isomorphism of H/Z(H)with a subgroup of index 2 in Z �Z is essentially due
to P. Hall. See [90, Theorem 7] and [42, Lemma 3.1]. �


Concerning Proposition B.2, let us add one more remark about the particular case
W = (Z/hZ) � Z, with h ≥ 2: it is known that any finitely presented cover of W is
large [21, Section IV.3, Theorem 7].

Recall that the free soluble group FSol(k, �) = Fk/D�Fk of rank k and solubility
class � has been defined in Appendix A.

Corollary B.3 For k, � ≥ 2, the group FSol(k, �) is infinitely presented, and any
finitely presented cover of it contains non-abelian free subgroups.

Note. (i) That FSol(k, �) is infinitely presented is a result due to [139]. See also [52,
Proposition 2.10 and Corollary 2.14].

(ii) Corollary B.3 and our proof carry over to free polynilpotent groups

FPolynilp(k, �1, . . . , �n) := Fk/C�k (C�k−1(· · ·C�1(Fk) · · · ))

for any k ≥ 2, n ≥ 2, and �1, . . . , �n ≥ 2 (where C�G denotes the �th group of the
lower central series of a group G, defined by C1G = G, and C�+1G = [G, C�G]).
These groups are the subject of [138].

Proof Since Z � Z is a two-generator metabelian group, we have an epimorphism
FSol(2, 2) � Z � Z. Indeed, we have a sequence of natural epimorphisms

FSol(k, �) � FSol(k, 2) � FSol(2, 2) � Z � Z.

Hence any finitely presented cover of FSol(k, �) is also one of Z �Z. If FSol(k, �) was
finitely presented, it would contain non-abelian free subgroup by Proposition B.2, but
this cannot be in a soluble group. �


In the situation of Proposition B.2, suppose moreover that H is infinite residually
finite, G has at least one non-trivial finite quotient, and consider the standard wreath
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product (X = H ). The following strengthening of Claim (ii) is shown in [54, Theorem
1.5]: any finitely presented cover of G � H is large. In particular:

any finitely presented cover of Z � Z is large.

By the proof of Corollary B.3, it follows that,

for k, � ≥ 2, any finitely presented cover of FSol(k, �) is large.

The following notion provides interesting examples of metabelian groups, as we
will illustrate with Baumslag-Solitar groups.

Definition B.4 The metabelianization of a group G is the metabelian quotient group
G/D2G.

Definition B.5 ([22]) For �, m ∈ Z � {0}, the Baumslag-Solitar group is defined by
the two-generators one-relator presentation

BS(�, m) = 〈s, t | t−1s�t = sm〉.

We collect three well-known properties of these groups as follows.

Proposition B.6 Let �, m ∈ Z � {0} and BS(�, m) be as above.

(i) BS (�, m) is abelian if and only if BS (�, m) is nilpotent, if and only if � = m = ±1.
(ii) BS (�, m) is metabelian if and only if BS (�, m) is soluble, if and only if BS (�, m)

does not contain non-abelian free subgroups, if and only if |�| = 1 or |m| = 1.
(iii) If �, m satisfy �, m ≥ 2 and are coprime, then BS (�, m) is non-Hopfian.
(iv) For �, m as in (iii), the group BS (�, m) contains non-abelian free groups, but is

not large.

On the proof It is easy to check that the four groupsBS(�, m), BS(m, �), BS(−�,−m),
BS(−m,−�) are isomorphic. For simplicity, let us assume from now on that � and m
are positive. (For the general case, with all details, we refer to [143]).

It is an exercise to check that BS(1, m) � Z
[ 1

m

]

�m Z for any m ≥ 1. It follows
that BS(�, m) is metabelian if � = 1 or m = 1, and abelian if and only if � = m = 1. If
m ≥ 2, note that BS(1, m) is not nilpotent, because its subgroup Z

[ 1
m

]

is not finitely
generated. If � ≥ 2 and m ≥ 2, the subgroup generated by s−1ts and t is free of rank
2, by Britton’s Lemma.

Claim (iii) is the main reason for the celebrity of these groups. It is straightforward
to check that the assignments ϕ(s) = s� and ϕ(t) = t define an endomorphism ϕ of
BS(�, m). The image of ϕ contains t and s�, hence t−1s�t−1 = sm , and therefore s;
hence ϕ is onto. On the one hand, ϕ([t−1st, s]) = [t−1s�t, s�] = [sm, s�] = 1; on the
other hand, [t−1st, s] = t−1stst−1s−1ts−1 �= 1, where the last inequality holds by
Britton’s Lemma; hence ϕ is not one-to-one.

More generally, we know necessary and sufficient conditions on �, m for BS(�, m)

to be non-Hopfian; see [22,50,51].
The first part of Claim (iv) is standard (it also follows from Theorem 1.5, see B.8.ii

below). For the second part, see Example 3.2 and Theorem 6 in [58]. �
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Definition B.7 For two coprime positive integers �, m, not both 1, let

Met(�, m) =
(

(

�
m

)Z
Z
[ 1

�m

]

0 1

)

� Z
[

1

�m

]

��/m Z

be the group of triangular matrices generated by

(

1 1
0 1

)

and

(

�
m 0
0 1

)

.

Let

μ�,m : BS(�, m) � Met(�, m)

denote the epimorphism defined by

μ�,m(s) =
(

1 1
0 1

)

and μ�,m(t) =
(

�
m 0
0 1

)

.

The following proposition collects facts on BS(�, m) and Met(�, m). Claims (iii)
to (v) constitute a digression from our theme.

Proposition B.8 Let the notation be as just above, and �, m be two coprime positive
integers, not both 1. For (ii) to (v), assume furthermore that min{l, m} ≥ 2.

(i) μ�,m is an isomorphism if and only if � = 1 or m = 1.
(ii) Met(�, m) is infinitely presented.
(iii) The multiplicator group H2(Met(�, m), Z) is trivial.
(iv) Met(�, m) is of cohomological dimension 3.

(v) For x ∈ C transcendental, the matrices

(

1 1
0 1

)

and

(

x 0
0 1

)

generate a group

isomorphic to Z � Z.

On proofs Claim (i) has already been given as an exercise, in the proof of Proposition
B.6. Claim (ii) is a consequence of a particular case of the main result of [23], or
a consequence of [30, Theorem C]; see also [107, Proposition 11.4.3]. Claim (iv) is
[65, Theorem 4]. Claim (v) is [107, Proposition 3.1.4].

For (iii), see [23, No 1.8]. Recall that, if a group G is finitely presented, then its
multiplicator group H2(G, Z) is finitely generated; this is a simple consequence of
the so-called Schur-Hopf Formula, for a group G = F/R presented as a quotient of a
free group F , which reads “H2(G, Z) = (R ∩ [F, F])/[R, F]”. Claim (iii) is one of
the standard examples showing that the converse does not hold. �


Let �, m be coprime positive integers, with �, m ≥ 2. We denote by p�,m : F2 �
BS(�, m) the defining cover of the corresponding Baumslag-Solitar group, namely the
cover mapping a basis of the free group of rank 2 onto {s, t}. Let ϕ : BS(�, m) �
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BS(�, m) be the usual non-injective surjective endomorphism, as in Proposition B.6.
For n ≥ 1, set

Mn = ker(ϕn), Nn = ker(ϕn pm,l), Gn = BS(�, m)/Mn = F2/Nn .

Observe that the sequence (Mn)n≥1 is strictly increasing, yet Gn is isomorphic to
BS(�, m) for each n ≥ 1.

Proposition B.9 Let �, m be coprime integers, with �, m ≥ 2, and Met(�, m) as in
Definition B.7. Let (Gn)n≥1 be as above.

(i) Met(�, m) is isomorphic to BS(�, m)metab.
(ii) With the notation above, we have an isomorphism

Met(�, m) � F2/
(
⋃

n≥1
Nn

)

,

so that limn→∞ Gn = Met(�, m) in M2.
(iii) Any finitely presented cover of Met(�, m) contains non-abelian free subgroups.

Proof Claim (i) is part of [20, Theorem G].
Claim (ii) is [23, see 1.8] or [76, Theorem 3], there for (�, m) = (2, 3), but the

argument carries over to the case stated here. (When working on [76], the authors were
not aware of [23].)

Since BS(�, m) contains non-abelian free subgroups by Proposition B.6.ii, and
since limn→∞ Gn = Met(�, m), Claim (iii) follows by Corollary 3.4. �


Appendix C: On Bieri–Neumann–Strebel invariants

Example C.1 Consider the two metabelian groups

Met(1, 6) = BS(1, 6) = Z [1/6] �1/6 Z

Met(2, 3) = BS(2, 3)metab = Z [1/6] �2/3 Z.

The first group is finitely presented. By contrast, the second group is infinitely pre-
sented (Propositions B.8). This spectacularly different behavior of two superficially
similar-looking groups was the initial motivation of Bieri and Strebel (later joined by
Neumann and others) for the work that lead to the �-invariants; see [29], as well as
[20, Problem 1]. We come back to these two examples in Example C.3.

Let G be a finitely generated group, S a finite generating set, and Cay(G, S) the
corresponding Cayley graph, with vertex set G and edge set {{g, h} | g−1h ∈ S ∪
S−1}. The set of characters, namely of group homomorphisms from G to R, is a real
vector space Hom(G, R) isomorphic to Rn , where n is the torsion-free rank of the
abelian group G/D1G. Let S(G) denote the character sphere of G, quotient of the
set of non-zero characters by the natural action of the group of positive reals; we have
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S(G) ≈ Sn−1, and we write [χ ] the class in S(G) of a character χ �= 0 in Hom(G, R).
(The sign≈ indicates a homeomorphism; Sk denotes the k-sphere, and S−1 = ∅.) For
such a [χ ], set

G[χ ] = {g ∈ G | χ(g) ≥ 0} ,

and let Cay[χ ](G, S) be the subgraph of Cay(G, S) spanned by G[χ ]. The Bieri–
Neumann–Strebel invariant, or shortly BNS-invariant, of G is defined to be

�1(G) = {[χ ] ∈ S(G) | Cay[χ ](G, S) is connected
} ⊂ S(G).

The superscript indicates that �1 is just one out of many “geometric invariants” (see
[33,146]).

Observe that there is an antipodal map [χ ] 
−→ −[χ ] := [−χ ] defined on S(G).
Let G0 be a finitely generated group and p : G0 � G an epimorphism; then p induces
a map p∗ : S(G) −→ S(G0) which is a homeomorphism onto its image and which
intertwines the antipodal maps.

On the one hand, the invariant of [32] involves one more group A on which D1G
acts in an appropriate way; here, we particularize to A = D1G. On the other hand, the
definition above is a reformulation of the original definition, see for example [146].

Theorem C.2 Let G be a finitely generated group, and �1(G) ⊂ S(G) as above.

(i) �1(G) is independent of the choice of S.
(ii) �1(G) is open in S(G).
(iii) �1(G) = S(G) if and only if the derived group D1G is finitely generated.
(iv) Suppose that G is metabelian. Then G is finitely presented if and only if �1(G)∪

(−�1(G)) = S(G), and G is polycyclic if and only if �1(G) = S(G).
(v) If G is finitely presented and has no non-abelian free subgroup, then �1(G) ∪

(−�1(G)) = S(G).
(vi) If G0 is a finitely generated group and p : G0 � G an epimorphism, then

�1(G0) ∩ p∗(S(G)) ⊂ p∗(�1(G)). In particular:

�1(G) ∪ (−�1(G)) � S(G)  ⇒ �1(G0) ∪ (−�1(G0)) � S(G0).

On the proof For (i) see [146, Theorem A2.3].
For (ii), see [32, Theorem A] and [146, Theorem A3.3].
(iii) If D1G is finitely generated, then �1(G) = S(G), [146, Proposition A2.6].

For the “iff”, see [32, Theorem B1].
For (iv), see [31, Theorem A] and [146, Subsection B3.2c].
For (v), see [32, Theorem C] and [146, Theorem A5.1].
Claim (vi) is rather straightforward from the definitions [146, Proposition A4.5]. �


Example C.3 (i) �1(G) = S(G) ≈ Sn−1 for G a finitely generated abelian group
of torsion-free rank n.

(ii) �1(Fn) = ∅ ⊂ S(Fn) ≈ Sn−1 for the non-abelian free group Fn of rank n ≥ 2;
see [146, Item A2.1a].
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(iii) For the soluble Baumslag-Solitar group BS(1, n), the invariant �1(BS(1, n)) is
one of the two points of the sphere S(BS(1, n)) ≈ S0; the argument of [146,
Item A2.1a] for n = 2 carries over to n ≥ 2.

(iv) For two coprime integers �, m ≥ 2, we have �1(Met(�, m)) = ∅ ⊂ S0 [146,
Item A3.6].

(v) If G is a semi-direct product H � Z of an infinite locally finite group H by an
infinite cyclic group, then �1(G) = ∅ ⊂ S0 [146, Lemma B3.1].

(vi) For any n ≥ 1 and any rational polyhedral subset P of Sn−1, there exists a finitely
presented group G with S(G) ≈ Sn−1 and a homeomorphism p∗ : Sn−1 −→
S(G) such that �1(G) = p∗(S(G) � P).

Some comment is in order for (vi), cited here to show that the invariant �1(G)

can be more complicated than those of Examples (i) to (v). For a finitely generated
group G, a non-zero character χ ∈ Hom(G, R) is rational if χ(G) is an infinite cyclic
subgroup of R. Denote by Hom∗Q(G, R) the set of non-zero rational characters on G,
and by SQ(G) its image in S(G); then SQ(G) is a dense subset of S(G) [146, Lemma
B3.3].

Consider a positive integer n and the sphere Sn−1 = S(Zn). A rational hemisphere
of Sn−1 is the closure of the image of the half-space {χ ∈ Hom∗Q(G, R) | χ(z) ≥ 0},
for some z ∈ Zn

� {0}. A rational convex polyhedral subset of Sn−1 is a finite
intersection of rational hemispheres. A rational polyhedral subset of Sn−1 is a finite
union of rational convex polyhedral subsets.

Given an integer n ≥ 1 and a rational polyhedral subset P ⊂ Sn−1, there is a finitely
presented group G and an epimorphism p : G � Zn such that p∗ : S(Zn) −→ S(G)

is a homeomorphism, and �1(G) = p∗(S(Zn) � P). See [32, Corollary 7.6] and
[34, Chapter IV, Section 1.1].

Corollary C.4 Let G be a finitely generated group and E a finitely presented cover
of G. If �1(G) ∪ (−�1(G)) � S(G), then E contains non-abelian free subgroups.
This holds in particular:

when G is metabelian and infinitely presented,
when G = H � Z with H infinite locally finite, as in Example C.3.v.

Proof This is straightforward fromClaims (iii) to (v) of TheoremC.2 and from Exam-
ple C.3.v. �


In Corollary C.4, the claim concerningmetabelian groups is precisely Theorem 1.5.

Example C.5 (B.H. Neumann) Let V = {2 ≤ v1 < v2 < v3 < · · · } be an infinite
increasing sequence of integers. Set

XV = {(i, j) ∈ Z2 | i ≥ 1,−vi ≤ j ≤ vi }.

For each i ≥ 1, denote by XV, i the subset {(i, j) ∈ XV | −vi ≤ j ≤ vi }, of cardinal
2vi + 1. Define two permutations αV , βV of the set XV as follows: for each i ≥ 1,
they preserve XV, i , and

(αV ) the restriction of αV to XV,i is the (2vi + 1)-cycle
((i,−vi ), (i,−vi + 1), . . . , (i, vi )),
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(βV ) the restriction of βV to XV, i is the 3-cycle ((i,−1), (i, 0), (i, 1)).
The Neumann group corresponding to V is the group GV of permutations of XV
generated by αV and βV .

Let Alt f (Z) denote the group of permutations of finite supports of Z that are even
on their support. Let Alt f (Z) �shift Z denote its semi-direct product with Z, where
Z acts on itself by shifts, the generator 1 acting by α : j 
−→ j + 1. Observe
that Alt f (Z) �shift Z is generated by α and the 3-cycle β = (−1, 0, 1). It is easy
to check that the assignment αV 
−→ α, βV 
−→ β extends to an epimorphism
πV : GV � Alt f (Z) �shift Z. Neumann has shown that the kernel of πV is the
restricted product

∏′∞
i=1Alt(2vi + 1); see [121], as well as [93, Complement III.35].

This has two straightforward consequences. On the one hand, any minimal finite
normal subgroup of GV is one of the Alt(2vi + 1). Thus, for two distinct sequences V
and V ′, the groups GV and GV ′ are not isomorphic. In particular, there are uncount-
ably many pairwise non-isomorphic 2-generator groups; hence these are infinitely
presented, except possibly for a countable number of them (but see below). On the
other hand, the groups GV are elementary amenable.

Corollary C.6 Let V be a sequence of integers as in Example C.5. Any finitely pre-
sented cover of GV contains non-abelian free subgroups.

In particular GV is not finitely presented.

Proof The claimofCorollaryC.4 concerning H �Z applies to the groupAlt f (Z)�shift
Z. Since any cover of GV is a cover of Alt f (Z) �shift Z, Corollary C.6 follows from
Corollary C.4. �


Let us also indicate how the last statement of Corollary C.6 is a straightforward
consequence of the first paper [30] on BNS-invariants.

Proof that GV is not finitely presented. It follows from the definition of GV that
the kernel NV of the composition GV � Alt f (Z) �shift Z � Z is locally finite.
Suppose (ab absurdo) that GV is finitely presented. By [30, Theorem A], we have

GV = HNN(H, ϕ : K
�→ L) for a finitely generated subgroup H of NV and an

isomorphism ϕ between two subgroups K , L of H . Since non-ascending extensions
contain non-abelian free subgroups (by Britton’s lemma), GV is an ascending HNN-
extension;wemayassume that K = H . Since NV is locallyfinite, thefinitely generated
subgroup H of NV is finite. It follows that K = H = L . Hence GV = H �ϕ Z and
the kernel of GV � Z is finite. This is preposterous, and the proof is complete. �


Appendix D: On growth and amenability

Let G be a group generated by a finite set S. For an integer n ≥ 0, let BG
S (n) denote

the “ball of radius n around the origin”, namely the set of those elements g ∈ G that
can be written as words g = s1 · · · sn , with s1, . . . , sn ∈ S ∪ S−1 ∪ {1}. Let γ G

S (n)

denote the cardinality of BG
S (n). Then G is said to be

(pol) of polynomial growth if there exist constants a, d > 0 such that γ G
S (n) ≤ and

for all n > 0,
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(exp) of exponential growth if there exist a constant c > 1 such that γ G
S (n) ≥ cn

for all n ≥ 0,
(int) of intermediate growth in other cases.

It is easy to check that this trichotomy depends only on G, not on the finite generating
set S. For information on the growth of groups, we refer to the books [93] and [113].

A group G is amenable if there exists a left-invariant finitely additive probability
measure defined on all subsets of G (there are many other equivalent definitions). Two
basic results are important here: (i) amenability of groups is preserved by the four
operations of taking subgroups, quotients, directs limits, and extensionswith amenable
kernels (already in [123]), and (ii) groups of intermediate growth are amenable (this
goes back to [3], and is also a straightforward consequence of Følner’s Criterion [63]).
These results make it natural to define three classes of groups:

AG is the class of amenable groups, defined in [123].
EG is the class of elementary amenable groups, defined in [56]; it is the smallest
class of groups containing the easiest examples, that are finite groups and abelian
groups, and stable by the four operations listed above.
SG is the class of subexponentially amenable groups (see below for an histor-
ical comment on this definition); it is the smallest class of groups containing EG
and the next easiest examples, that are the groups of intermediate growth.

We have a partition

AG = (AG � SG) 
 (SG � EG) 
 EG.

Let us mention a few groups in each of these three parts.

The class EG contains all virtually soluble groups and all locally finite groups; other
examples are cited in Section 1.A.

There are finitely generated groups in EG which are not virtually soluble: for exam-
ple all Neumann groups GV discussed in Example C.5, or an example in [97]. As
already mentioned in Section 1.D, any countable elementary amenable group embeds
in a finitely generated elementary amenable group; the same hold for “amenable”
instead of “elementary amenable” [128, Corollary 1.3].

Let us describe a family of finitely presented elementary amenable groups that are
not virtually soluble.

Example D.1 Consider an integer n ≥ 1, the set

Sn = {( j, k) ∈ Z2 | j ≥ 0, 1 ≤ k ≤ n}

of n parallel half-intervals in the square lattice, and the Houghton group Hn of all
permutations h of Sn such that, for each k ∈ {1, . . . , n}, there exists a translation tk ∈ Z
such that h( j, k) = ( j + tk, k) for all j large enough [98]. Denote by Sym f (Sn) the
group of permutations of Sn with finite supports, clearly a normal subgroup of Hn ,
and set
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A =
{

(t1, . . . , tn) ∈ Zn

∣

∣

∣

∣

∣

n
∑

k=1
tk = 0

}

.

We have a short exact sequence

1 −→ Sym f (Sn) −→ Hn
π−→ A −→ 1

where, with the notation above, π(h) = (t1, . . . , tn). Since Sym f (Sn) is locally finite
and A abelian, Hn is elementary amenable.

It is known that the group Hn is of type FPn−1 but not FPn [39, Theorem 5.1]. In
particular, for n ≥ 3, the group Hn is finitely presented.

Finitely generated groups in the class EG are either of polynomial growth or of
exponential growth [48]; this has been sharpened: a finitely generated group in the
class EG has either polynomial growth or uniform exponential growth [129] (see also
[37]). By a famous theorem of Gromov [87], a finitely generated group of polynomial
growth is virtually nilpotent, and in particular finitely presented.

The class SG � EG contains the class of finitely generated groups of intermediate
growth. Historically, the groupG of Theorem 1.6 and Example 2.16was the first group
shown to be of intermediate growth [67]. This class also contains finitely presented
groups, such as the group with 5 generators and 11 relators of [70], later shown
to have another presentation with 2 generators and 4 relators (due to Bartholdi, see
[44, Number 12]).

The history of early papers on the class SG is worth a few lines. This class was
first implicitly introduced in a paper on 4-manifold topology, more precisely on
4-manifold surgery and 5-dimensional s-cobordism theorems, [64] (see also [106]),
and then explicitly in [70]. Freedman and Teichner introduce a class of groups that they
call “good”, defined as the groups for which the “π1-Null Disk Lemma” holds; this
lemmaestablishes the existenceof 2-discs bounding someclosed curves in 4-manifolds
of a certain kind. Good groups include finitely generated groups in the class SG
[64, Theorem 0.1 and Lemma 1.2].

The class AG � SG contains the Basilica group B of Example 2.17, which was
first shown to be not in SG [80], and later shown to be amenable [10]. The method
of Bartholdi and Virag was streamlined and generalized by Kaimanovich in [101],
in terms of entropy and the legendary “Münchhausen’s trick”. This and later papers
show the amenability of B and of many other non elementary amenable groups (see
[5,13], building among other things on [140]). The class AG � SG contains also the
finitely generated amenable simple groups that appear in [100], and in Problem 1.12.

Non-amenable groups include non-abelian free groups, more generally groups con-
taining non-abelian free subgroups [123].

We conclude this report by Question D.2, due to Tullio Ceccherini-Silberstein.
Before this, we recall some background.
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A group G has a paradoxical decomposition if there exist integers p, q ≥ 2,
subsets X1, . . . , X p, Y1, . . . , Yq of G, and elements g1, . . . , gp, h1, . . . , hq in G such
that

G = X1 
 · · · 
 X p 
 Y1 
 · · · Yq

= g1X1 
 · · · 
 gp X p = h1Y1 
 · · · 
 hqYq ,

where 
 denotes disjoint union. Tarski has shown that G is non-amenable if and
only if G has a paradoxical decomposition [147]; see also [150] and [94]. For G
non-amenable, the Tarski number T (G) of G is the minimum of the sum p + q,
over all paradoxical decompositions of G. When G has non-abelian free subgroups,
it is easy to show that T (G) = 4; in particular, if G is a non-elementary Gromov-
hyperbolic group, then T (G) = 4. As a student of Tarski in the 1940’s, Jonsson has
shown that, conversely, T (G) = 4 implies that G has non-abelian free subgroups. It
is also easy to show that T (G) ≥ 6 for a non-amenable torsion group G. See [150] or
[44, Propositions 20 and 21]. We do not know any example of a non-amenable group
G without non-abelian free subgroups for which the exact value of T (G) has been
computed.

LetMna
m be the subspace ofMm of those pairs (G, S) with G non-amenable. For

m ≥ 2, the Tarski number function

Mna
m −→ N, (G, S) 
−→ T (G)

is not continuous. Indeed, there are sequences of non-elementary Gromov-hyperbolic
groups (with Tarski number 4) converging in Mm to non-amenable torsion groups
(with Tarski number at least 6). See [46, Théorème 1.3], or one of the following
classes of examples.

(1) For integers m, n ≥ 2, let B(m, n) denote the free Burnside group of rank
m and exponent n, that is the quotient of the free group Fm by the set of relators
(wn = 1)w∈Fm . For n odd and n ≥ 665, Adyan has shown that B(m, n) is non-
amenable [4]; moreover, it is known that 6 ≤ T (B(m, n)) ≤ 14 [44, Theorem 61].

Such groups are limits inMm of non-elementaryGromov-hyperbolic groups.More
precisely, for n odd and large enough, the groupB(m, n) is a limit inMm of a sequence
(B(m, n, i))i≥1 of non-elementaryGromov-hyperbolic groups. A similar fact is shown
by Ivanov in [99, see Lemma 21.1], in the much more difficult case of n even, with
n ≥ 248 and n divisible by 29; his proof adapts to the case needed here, with important
simplifications (compare with [85], in particular Theorems 1.10 and 1.7, and recall
that a finitely presented group with a subquadratic Dehn function is hyperbolic). In
particular, for m ≥ 2 and n odd large enough, the free Burnside group B(m, n), of
Tarski number between 6 and 14, is a limit in Mm (indeed in Mna

m ) of groups of
Tarski number 4.

(2) Ol’shanskii has worked out several “Tarski monster groups”. In particular, for
any prime p large enough, he has constructed a 2-generated non-amenable torsion
groupTM(p) inwhich anyproper non-trivial subgroup is of order p.MoreoverTM(p),
of Tarski number≥ 6, is a limit inM2 of non-elementary Gromov hyperbolic groups,
of Tarski number 4 [124, Lemma 10.7a].
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In several other papers byOl’shanskii and co-authors, there are several other classes
of examples of such Burnside type limits of hyperbolic groups. Let us only quote one
paper [127], and the book [125].

Question D.2 For an integer k ≥ 4 and a finitely generated non-amenable group G
with T (G) = k, does there exist a finitely presented cover E of G with T (E) = k ?

The answer is clearly positive when T (G) = 4 (with E free). If we define T (G) =
∞ when G is amenable, the previous question for k = ∞ coincides with Question
1.1, and the answer is negative.
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