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Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to
undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG).
Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which
makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light
Scattering studies for a microwave-pumped YIG film of thickness d 5 5 mm and field H 5 1 kOe find a
low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this
report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent
Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from
a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new
type of collective oscillation.

B
ose-Einstein condensation (BEC), one of the most intriguing macroscopic quantum phenomena, has been
observed in equilibrium systems of Bose atoms, like 4He1,2, 87Rb3 and 23Na4. Recent experiments have
extended the concept of BEC to non-equilibrium systems consisting of photons5 and of quasiparticles,

such as excitons6, polaritons7–9 and magnons10,11. Among these, BEC of magnons in films of Yttrium Iron Garnet
(YIG), discovered by the group of Demokritov11–17, is distinguished from other quasiparticle BEC systems by its
room temperature transition and two-dimensional anisotropic properties. In particular, the spin-wave energy
spectrum of a YIG film shows two energetically degenerate minima. Therefore it is possible that the system may
have two condensates in momentum space18. An experiment by Nowik-Boltyk et al.17 indeed shows a low-
contrast spatial modulation pattern, indicating that there is interference between the two condensates. Current
theories19–24 do not describe the appearance of coherence or the distribution of the two condensates.

This report points out that a complete description of BEC in microwave-pumped YIG films must account for
the 4th order interactions, including previously neglected magnon-non-conserving terms originating in the
dipolar interactions. The theory explains not only the appearance of coherence but also quantitatively explains
the low contrast of the experimentally observed interference pattern. Moreover, the theory predicts that, on
increasing the film thickness from a small value d, there is a transition from a high-contrast symmetric state for
d , dc, with equal numbers of condensed magnons filling the two minimum states, to low-contrast coherent non-
symmetric state for d . dc, with different numbers of condensed magnons filling the two minimum states. In
comparatively thin films (d , 0.2 mm) the same transition can be driven by an external magnetic field H. At
another critical thickness d*. dc, the sum of phases of the two condensates changes from p to 0; at this transition
point the system is in a completely non-symmetric state with only one condensate, for which there is no
interference. In the experiment of Ref. 17 the thickness of film was larger than d*. We suggest that the phase
transitions may be identified by measuring the contrast of the spatial interference pattern for various d and H. We
also predict a new type of collective magnetic oscillation in this system and discuss the possibility of domain walls
in non-symmetric states.

Results
Phase diagram. We consider a YIG film of thickness d with in-plane magnetic field H (see inset of Fig. 1). The 4-th
order interaction of condensate amplitudes reads25–27:

V̂4 ~ A c{Qc{QcQcQzc{{Qc{{Qc{Qc{Q

h i
z2Bc{Qc{{Qc{QcQzC c{QcQcQc{Qzc{{Qc{Qc{QcQzh:c:

h i
: ð1Þ

where, c6Q and c{+Q are the annihilation and creation operators for magnons in the two condensates located at the
two energy minima (0, 6Q) in the 2-D momentum space (see. Fig. 1). The coefficients in Eq.(1) are:
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with a1 5 u4 1 4u2v2 1 v4, a2 5 2u2v2 and a3 5 3uv(u2 1 v2). Here, u
and v are the coefficients of Bogoliubov transformation (see the
Methods section for details). S 5 14.3 is the effective spin, N the
total number of spins in the film, M the magnetization and
�hvM~c4pM with gyromagnetic ratio c 5 1.2 3 1025 eV/kOe. D
is proportional to the exchange constant and Fk 5 (1 2 e2kd)/kd.
Similar results for the coefficients A and B were obtained in Ref. 19.
Coefficient C, which violates magnon number conservation, was not
considered previously. Below we show that C is the only source of
coherence between the two condensates. The three coefficients A, B
and C, whose values as functions of H are shown in Fig. 2 for two
typical values of d, determine the distribution of condensed magnons
in the two degenerate minima. Ref. 19 assumed a symmetric state
with condensed magnons in both minima having equal amplitudes
and equal phases. Later, Ref. 20 assumed filling of only one
minimum. More recently Ref. 24 considered Josephson-like
oscillations by starting from two condensates with equal numbers
of magnons but different phases. Our theory predicts coherent
condensates and the ratio of their amplitudes without any
additional assumptions.

In terms of condensate numbers N6Q and phases w6, the con-
densate amplitudes are c+Q~

ffiffiffiffiffiffiffiffiffiffi
N+Q
p

eiw+. Substituting them into
eq.(1) we find:
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where we introduce the total phase W 5 w1 1 w2. To minimize this
energy, W must equal p for C . 0 and must equal 0 for C , 0. Fig. 2
shows that the sign of C changes for different d and H, which indi-
cates a transition of W between 0 and p. For both C . 0 and C , 0 a
coherence between the two condensate amplitudes is established. In
contrast to the Josephson-like interaction, the sum rather than the
difference of the two condensate phases is fixed.

Since the total number of condensed magnons Nc 5 NQ1N2Q is
uniquely determined by the pumping (see Methods), the energy is
minimized only by the so far unspecified difference d 5 NQ 2 N2Q.
In terms of Nc and d the condensate energy eq.(3) is:

V4~
1
2

AzBð ÞN2
c { B{Að Þd2{2 Cj jNc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c {d2
q� �

: ð4Þ

The ground state of the condensates depends on the criterion
parameter:

D~A{Bz Cj j: ð5Þ

When D . 0, d 5 0 minimizes the energy, so the two minima are
filled with equal number of condensed magnons. This is the sym-
metric state with NQ 5 N2Q. When D , 0, the minimum shifts to
d2

N2
c

~1{
C2

B{Að Þ2
. This is the non-symmetric state with NQ ?

N2Q. The transition from symmetric to non-symmetric state at
D 5 0 is of the second order. There is no metastable state of these
states. At C 5 0 one finds d 5 6Nc, which corresponds to a com-
pletely non-symmetric state with only one condensate. The ground
state of the non-symmetric state is doubly-degenerate, correspond-
ing to the two possible signs for d. Fig. 3 shows that for a film
thickness of about 0.05 mm, the symmetric state is energy favorable
up to H 5 1.2 T. For d 5 0.08 mm, on increasing H to about 0.6 kOe,
there is a transition from symmetric to non-symmetric state. For a
larger thickness d 5 0.1 mm or d 5 1 mm, the ground state is non-
symmetric for H . 0.3 kOe.

Fig. 4 shows that the phase diagram in (d, H) space has three
different regions, separated by two critical transition lines, dc(H)
and d*(H), corresponding to D 5 0 and C 5 0, respectively. For
d50.1320.16 mm, the system possesses re-entrant behavior (NS W5p,
to NS W50, to NS W5p). As shown below, measurement of the
contrast, or modulation depth17, of the spatial interference pattern
permits identification of the different condensate states.

Zero sound. In two-condensate states the relative phase dw 5 w1 2

w2 is a Goldstone mode. Its oscillation, coupled with the oscillation
of the number density dn 5 nQ 2 n2Q represents a new type of
collective excitation, which we call zero sound (as in Landau’s
Fermi liquid, this mode is driven by the self-consistent field rather
than collisions). Solving a properly modified Gross-Pitaevskii

Figure 1 | The magnon spectrum in the kz direction for d 5 5 mm and
H 5 1 kOe. The inset is a schematic diagram of YIG film.

Figure 2 | The interaction coefficients A, B and C (in units of mK/N,
with N the total number of spins in the film) as a function of magnetic
field H for film thickness (a) d 5 1.0 mm and (b) d 5 0.1 mm.
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equation (see Methods), we find its spectrum. In the symmetric state
it is:

v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2k4

4m2
zNcD

k2

m

r
: ð6Þ

The magnon effective mass is of the order of the electron mass. The
density of condensed magnons nc 5 Nc/V is about 1018 cm23 andD<
10 mK/N. The sound speed for small k in this case is v0s~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcD=m

p
,

which is about 100 m/s. Near the transition point D 5 0, the velocity
of this zero sound goes to zero. For the non-symmetric state, the
spectrum is:

v~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2k4
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m

r
, ð7Þ

where k:
B{Að Þ2

C2
. In the experiment of Ref. 17, k , 104 and B 2 A

5 8.4 mK/N. An estimate of the sound speed gives 3 3 103 m/s. The
dispersions of zero sound for symmetric and non-symmetric states

are shown in Fig. 5. Note that the range of applicability of the linear
approximation strongly shrinks at small C since the density of one
of the condensates becomes very small and the phase fluctuations
grow.

Domain wall. Since the ground state of the non-symmetric state is
doubly degenerate, it can consist of domains with different signs of d
separated by domain walls. The width w of a domain wall is of the

order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2

2mNc Dj j

s
. For the data of Ref.17, w < 10 mm. The domain

wall energy per unit area is < 1029 J/m2.

Discussion
The ground state wave function Y(z) generally is a superposition of
two condensate amplitudes Y zð Þ~ cQeiQzzc{Qe{iQzð Þ

	 ffiffiffiffi
V
p

, where
c+Q~

ffiffiffiffiffiffiffiffiffiffi
N+Q
p

eiw+ and V is the volume of the film. The spatial struc-
ture of Y(z) can be measured by Brillouin Light Scattering (BLS).
The BLS intensity is proportional to the condensate density
Yj j2~nQzn{Qz2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nQn{Q
p

cos 2Qzzwz{w{


 �
.

In their recent experiment, Nowik-Boltyk el al17 observed the
interference pattern associated with the ground state. They found
that the contrast of this periodic spatial modulation is far below
100%; of the order 3%. The present theory can quantitatively explain
this result. In the experiment of Ref. 17, d 5 5.1 mm and H 5 1 kOe,
eq.(2) for A, B and C then gives A 5 20.168 mK/N, B 5 8.218 mK/N
and C 5 20.203 mK/N, so D , 0. This corresponds to the non-
symmetric state, where the ratio of the numbers of magnons in the

two condensates is
N{Q

NQ
<

C2

4 B{Að Þ2
(assume d . 0). The contrast is

b~
Yj j2max{ Yj j2min

Yj j2maxz Yj j2min

. Since C=B and N{Q=NQ, b<2

ffiffiffiffiffiffiffiffiffiffi
N{Q

NQ

s
<

Cj j
B{Aj j . For the above values of A, B and C, b is of order 2.4%, in

good agreement with experiment. The smallness of C (and A) in
comparison to B is associated with a large parameter d/l where

l~

ffiffiffiffiffiffiffiffiffiffi
D

pcM

s
is an intrinsic length scale of the system and l ,

1026 m. In terms of this parameter,
Cj j
B

*
l
d

� �2=3

.

Experimentally17 the contrast b reaches the saturation value at a
comparatively small pumping power, corresponding to the appear-
ance of BEC. This agrees with our expression for b, which depends

Figure 3 | The criterion of transition from non-symmetric to
symmetric phase, D (in units of mK/N), as a function of magnetic field H
for different values of thickness d.

Figure 4 | The phase diagram for different values of thickness d and
magnetic field H.

Figure 5 | Dispersion of zero sound as a function of wave vector in the
direction of external magnetic field for symmetric and non-symmetric
states, respectively. For the non-symmetric state, we choose H 5 1 kOe

and d 5 5 mm.
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only on film thickness d and magnetic field H. By varying d and H,
the contrast can be changed. Specifically, in the symmetric state,
b 5 1; in the non-symmetric state, b , 1; and in the completely
non-symmetric state with only one condensate, b 5 0. Therefore,
measurement of the contrast for different values of d and H can give
complete information on the phase diagram of the system, for com-
parison with the present theory.

Fig. 6 plots C, D and b as functions of the film thickness d at fixed
magnetic field H 5 1 kOe. For small d as H increases the system is in
the high-contrast symmetric state. At a larger thickness dc 5

0.07 mm, the sign of D changes, indicating a transition from the
symmetric to the low-contrast non-symmetric state. As d further
increases, to d* 5 0.17 mm, C changes sign, where the total phase
W changes from p to 0. Only at this point d* does the zero-contrast
state (with only one condensate) appear. Correspondingly, a char-
acteristic cusp in the contrast b appears near d*.

To conclude, we have calculated the 4-th order magnon-
magnon interactions in the condensate of a film of YIG, including
magnon-non-conserving term responsible for the coherence of two
condensates. We predict a phase transition from symmetric to
non-symmetric state that happens at a reasonable magnetic field
. 0.2 kOe in sufficiently thin YIG films d , 0.1 mm. We also predict
that within the non-symmetric state there is a thickness d*(H) where
the modulation in the observed interference pattern should totally
disappear.

Methods
Magnon spectrum. In a YIG film with an in-plane external magnetic field H, the
magnon dispersion has been studied extensively28–30. At low energies, YIG can be
described as a Heisenberg ferromagnet with effective large-spin S 5 14.319,24 on a
cubic lattice. The Hamiltonian consists of three parts:

H~{J
X

i,jh i
Si
:SjzHD{cH

X
i

Sz
i , ð8Þ

the nearest neighbor exchange energy, the dipolar interaction and the Zeeman energy.
We take y to be perpendicular to the film and the magnetic field to be in the plane
along z. It is convenient to characterize the exchange interaction by the constant
D 5 2JSa2 5 0.24 eVÅ2. The dipolar interaction can be calculated using the method
indicated in Refs. 20,30. The competition between the dipolar interaction and
exchange interaction leads to a magnon spectrum vk with minima located at the two
points in 2D wave-vector space given by k 5 (0, 6Q) (i.e. along z), with an energy gap
D0. For film thickness d 5 5 mm and magnetic field H 5 1 kOe, we find
Q 5 7.5 3 104 cm21 and D0 5 2.7 GHz. In the experiment17 the wave vector Q was
found to be about 3.5 3 104 cm21, i.e. about half the predicted value. The reason for

this may be associated with a rather shallow minimum. In such a situation small
corrections to our approximate formula can have a large effect on the value of Q. The
lowest band of the magnon spectrum can be calculated with the help of the Holstein-
Primakoff transformation32 expressing the spin operator S in terms of boson
operators a and a{.

To second order in a and a{, the Hamiltonian eq.(8) is:

H0~
X

k

Aka{
kakz

1
2
Bkaka{kz

1
2
B�ka{

ka{{k

� �
, ð9Þ

with

Ak ~ cH0zDk2zc2pM 1{Fkð Þsin2hzc2pMFk

Bk ~ c2pM 1{Fkð Þsin2h{c2pMFk

ð10Þ

where Fk ; (1 2 e2kd)/kd and M is the magnetization of the material (4pM 5

1.76 kG). Here, h is the angle between the 2D wave vector k and the direction of
magnetic field (z). H0 of eq.(9) is diagonalized by the Bogoliubov transformation

ak~ukckzukc{{k with uk~
Akz�hvk

2�hvk

� �1=2

and uk~sgn Bkð Þ
Ak{�hvk

2�hvk

� �1=2

,

leading to the magnon spectrum:

�hvk~ A2
k{ Bkj j2


 �1=2
: ð11Þ

Fig. 1 gives the magnon spectrum along kz for typical values of thickness d and
magnetic field H.

Number of condensed magnons. Nc 5 NQ 1 N2Q. Experimentally, the spin lattice
relaxation time is of order 1 ms, whereas the magnon-magnon thermalization time is
of order 100 ns; the magnons are long-lived enough to equilibrate before decaying,
thus making BEC possible11. After the thermalization time the pumped magnons go
to a quasi-equilibrium state with a non-zero chemical potential m. The number of

pumped magnons Np 5 N(T, m) 2 N(T, 0), where N T,mð Þ~
P

k
1

e vk{mð Þ=T{1
, is

determined by the pumping power and the magnon lifetime. m is a monotonically
increasing function of Np but cannot exceed the energy gap D0. Therefore, on further
increase of pumping some of the pumped magnons fall into the condensate. The
equation Npc 5 N(T,D0) 2 N(T, 0) thus defines the critical line of condensation. Since
D0 = T and Np = N(T, 0) this equation can be satisfied at a rather high temperature.
The total number of condensed particles is11.31

Nc~Np{N T,D0ð ÞzN T,0ð Þ~N T,mð Þ{N T,D0ð Þ: ð12Þ

In exactly 2D systems BEC formally does not exist since in the continuum
approximation the sum in N(T, m) diverges. However, for strong enough pumping the
chemical potential approaches exponentially close to the energy gap: D0 2 m < D0

exp(2Np/N0), where N0~VTm=�h2. For Np/N0 . ln(T/D0) all pumped magnons
occupy only one or two states 6Q.

Eq.(12) determines only the total number of particles in the condensate. The
distribution of the condensate particles between the two minima remains
undetermined in the quadratic approximation. To resolve this issue it was necessary
to consider the fourth order terms in the Holstein-Primakoff expansion of the
exchange and dipolar energy. Terms of third order in this expansion occur due to the
dipolar interaction, but they vanish for the condensate values of momentum (0, 6Q)
since in the third order the total momentum cannot be zero.

Zero sound. Here we provide details in calculating the zero sound spectrum. Let us
consider small deviations from the static symmetric solution nQ 5 n2Q 5 nc/2,
w1 5 p 2 w2 5 0 so that n6Q 5 nc/2 1 dn6 with dn1 5 2dn2 5 dn/2 and
dw1 5 2dw2 5 dw/2. Then

E~

ð
dr

�h2

2m
+Yzj j2z +Y{j j2

 �

zAV Yzj j4z Y{j j4

 ��

z2BV Yzj j2 Y{j j2zCV YzY{zY�zY�{

 �

Yzj j2z Y{j j2

 �

,

On linearizing, the energy reads:

E~

ð
dr

�h2

4mnc
+dnj j2z �h2nc

4m
+dwj j2zDV

2
dn2

� �
: ð13Þ

Using the commutation relation [dw, dn] 5 i, and the equation of motion
i�hD _w~ Dw,H½ �, we obtain:

�h
Ldw

Lt
~{

�h2

2mnc
+2dnzDVdn, ð14Þ

�h
Ldn
Lt

~
�h2

2m
nc+2dw: ð15Þ

Taking Fourier transforms of the above two equations in coordinate and time, one
arrives at dispersion relations Eq.(6).
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