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Recent discoveries of hundreds of common susceptibility SNPs
from genome-wide association studies provide a unique opportu-
nity to examine population genetic models for complex traits. In
this report, we investigate distributions of various population
genetic parameters and their interrelationships using estimates of
allele frequencies and effect-size parameters for about 400
susceptibility SNPs across a spectrum of qualitative and quantita-
tive traits. We calibrate our analysis by statistical power for
detection of SNPs to account for overrepresentation of variants
with larger effect sizes in currently known SNPs that are expected
due to statistical power for discovery. Across all qualitative disease
traits, minor alleles conferred “risk” more often than “protection.”
Across all traits, an inverse relationship existed between “regres-
sion effects” and allele frequencies. Both of these trends were
remarkably strong for type I diabetes, a trait that is most likely
to be influenced by selection, but were modest for other traits
such as human height or late-onset diseases such as type II diabe-
tes and cancers. Across all traits, the estimated effect-size distri-
bution suggested the existence of increasingly large numbers of
susceptibility SNPs with decreasingly small effects. For most traits,
the set of SNPs with intermediate minor allele frequencies (5–20%)
contained an unusually small number of susceptibility loci and
explained a relatively small fraction of heritability compared with
what would be expected from the distribution of SNPs in the gen-
eral population. These trends could have several implications for
future studies of common and uncommon variants.
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Large meta-analyses of genome-wide association studies
(GWAS) have now identified more than 1,000 susceptibility

loci for complex traits. Nevertheless, for most complex traits, the
fraction of heritability explained by common variants remains
below 10–15%, even for traits for which large numbers of loci have
been detected [e.g., dozens to over 200 (1–3)]. We and others (4,
5) have projected that complex traits are likely to have an in-
creasingly large number of susceptibility loci that have corre-
spondingly smaller individual contributions to heritability. A
fraction of these loci could be detected in future GWAS with
large, but realistic, sample sizes, but they are still unlikely to fully
explain a large fraction of missing heritability (4). The spectrum of
genetic variation is greater than originally anticipated and sug-
gests that the underlying genomic architecture of many diseases
and traits could be more complex. Availability of newer-genera-
tion genotyping chips and sequencing technologies has raised the
hope that future studies of uncommon and rare variants could
increase the rate of discovery and explain an additional fraction of
heritability, and eventually approach clinically useful discrimina-
tory performance for genetic risk models.
The discoveries generated from GWAS provide important

insights into the genetic architecture of complex traits while also

providing new opportunities to understand the biology of com-
plex diseases. Analyses of the distribution of susceptibility single-
nucleotide polymorphism (SNPs) in relation to various genomic
features and pathways (1, 3) have suggested clues for the biologic
basis of genetic susceptibility for a number of traits. The distri-
bution of various population genetic parameters across suscep-
tibility loci may provide further insight into population genetic
models with important implications for future studies. A major
challenge, for example, for future studies of low-frequency sus-
ceptibility variants is that statistical power for their discovery may
be low unless they have relatively larger effects. Although pop-
ulation genetic models suggest that such a trend is expected
under purifying selection (6, 7), the implications are often un-
clear for traits, such as late-onset diseases, that are not directly
related to fitness. Availability of a large number of susceptibility
loci across many traits now provides the research community
with the opportunity to test such hypotheses empirically.
A complication for investigating any population genetic hy-

pothesis using only known susceptibility loci is that such a set
may not be representative of the spectrum of underlying sus-
ceptibility loci for which the inference is desired. Based on sta-
tistical power considerations, for example, variants with lower
allele frequencies and small effects on the trait are expected to
be systematically underrepresented in the current set of known
loci. Thus, an inverse relationship between allele frequencies and
effects may be observed simply due to the nature of ascertain-
ment of the current set of known loci.
In this report, we use data from about 400 susceptibility loci

across 13 different traits to examine the distribution of allele
frequencies, effect-size parameters, and heritability explained by
common susceptibility loci. In these evaluations, we account for
differential probabilities for ascertainment for different SNPs
based on estimates of their statistical power for detection in the
original discovery studies. We evaluate the relationship between
allele frequencies and regression effects, such as log odds ratios
and linear regression coefficients, that have been typically
reported to summarize association strength in existing studies. In
addition, we provide estimates for the number of underlying
susceptibility loci and their contribution to genetic variance
within categories of allele frequencies for different traits. These
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analyses provide empirical insights into the genetic architecture
of select complex traits. Several implications for future discoveries
are discussed.

Results
We selected a set of traits that include both quantitative [height
(1) and lipid levels (2)] and qualitative phenotypes [type I (8) and
II (9) diabetes, common cancers (10–15), and Crohn’s disease
(3)]; the traits also occur as early- (type I diabetes) and late-onset
diseases (type II diabetes, certain forms of cancer, and Crohn’s
disease), and so far have demonstrated a diverse range of heri-
tability (Table 1). For each trait, we only analyzed independent
susceptibility SNPs, typically observed from distinct genomic
regions, so that all results can be correspondingly interpreted in
the context of the underlying set of independent susceptibility
SNPs. We included traits that have a minimum of 20 suscepti-
bility SNPs identified from recent GWAS in subjects of Euro-
pean background so that sufficient statistical power exists for
investigating the underlying trends. For cancers, we considered
a pooled analysis for six different sites (breast, prostate, colon or
rectum, bladder, pancreas, and brain), as numbers of reported
loci for some of the individual outcomes were small. We chose
these specific sites for pooling because they are known to have a
similar degree of familial aggregation (sibling recurrence risk =
2–3), and recent GWAS have indicated that these sites may have
similar numbers of susceptibility loci in a similar range of
effect sizes.

Distribution of Allele Frequency for Susceptibility SNPs. Investigation
of the distribution of minor-allele frequencies (MAF) suggests
(Fig. 1) that for all traits, except possibly for HDL level, the
distribution of observed susceptibility SNPs is skewed toward
higher minor-allele frequencies (MAF >20%) rather than in-
termediate frequencies (MAF 5–20%) in comparison with SNP
allele-frequency distributions in general human populations or
among tagging SNPs that have been included in common gen-
otyping platforms. Overall, out of 387 SNPs included in the
analysis for all traits combined, the fraction of SNPs with in-
termediate-frequency categories was only 23.0%, which was
significantly lower than the corresponding fraction of 55.0%
among independent representative SNPs (any pairwise r2 ≤ 0.1)
from the HapMap (hapmap.ncbi.nlm.nih.gov) database (P =
2.05 × 10−30). The power-weighted analysis also estimated a rel-
atively small fraction (26.4%) of susceptibility SNPs for
the intermediate-frequency category, and thus indicated that
the observed clustering of common susceptibility SNPs toward
higher frequencies is unlikely to have resulted from the artifacts
of study power.
Next, we investigated the frequency distribution of “risk”

alleles (Fig. S1). For disease traits, we define risk alleles as
variants that correspond to a disease odds ratio greater than one.
For lipid level, we define risk alleles as variants that are positively
associated with total cholesterol and LDL, the increased level of
which is known to confer risk of heart disease, but negatively

associated with HDL, the increased level for which is considered
protective. For height, although such definitions are more am-
biguous, we considered variants that are positively associated
with height as a risk allele because increased mortality has been
previously reported for taller subjects (16–19).
For all disease traits, the risk variants tended to be minor

alleles (frequency <50%) rather than major alleles in pop-
ulations of European background (Fig. S1 and Table S1). The
pattern is most profound and statistically significant for type I
diabetes, for which 72.4% of the risk variants were minor alleles
(P = 0.004 for testing π ≤ 0.5 vs. π > 0.5). No such pattern was
apparent for quantitative traits. We further investigated the
distribution of minor versus major alleles among variants that
conferred the highest risk for each trait. Among SNPs with risk
coefficients (log odds ratio for disease trait and linear regression
coefficient for continuous trait) in the highest quartile of coef-
ficients, the likelihood for the risk variant being the less preva-
lent allele increased for all traits except for height, Crohn’s
disease, and type II diabetes (Table S1).

Distribution of Effect Sizes for Susceptibility SNPs.We define “effect
size” for susceptibility SNPs using two alternative criteria. In one,
we define it as the coefficient (β) for a SNP when its association
with the outcome is modeled through a regression model, such as
linear regression for a quantitative trait or logistic regression for
a qualitative trait, assuming a linear trend per copy of an allele.
In our analysis, the regression coefficients for quantitative traits
are presented in units of standard deviation (SD) of the trait so
that they are comparable across traits. In a second criterion, we
define effect size as the contribution of the SNP to genetic var-
iance of the trait, that is, gv = 2β2f(1 − f), where f is the allele
frequency for either of the two SNP alleles (4). It is noteworthy
that the power for detection of a susceptibility SNP for most
commonly used association tests that assume linear trend
depends on β and f only through the quantity gv (4). In figures and
tables, we present gv as a fraction of the total genetic variance σ2G
of a trait attributable to heritability. For qualitative traits, the
variance due to heritability is computed from estimates of sibling
recurrence risk (Table 1) using a log-normal model for risk (20).
Within trait (both quantitative and qualitative), the dis-

tributions of the absolute values of regression coefficients were
comparable except for type II diabetes, in which the distribution
of log-odds ratios was shifted toward lower absolute values
compared with other diseases (Fig. S2). When effect sizes are
expressed as a fraction of genetic variances explained by a sus-
ceptibility SNP, the loci for lipid levels and cancers appeared to
have larger contributions than those for other traits of the same
type (quantitative vs. qualitative) (Fig. S2). Smoothed non-
parametric estimates of the effect-size distribution (Fig. 2 and
Fig. S3) across susceptibility loci revealed a clear effect of ad-
justment for study power. Across all traits, the density of the
effect sizes for the observed SNPs initially increased with de-
creasing effect sizes, reached a peak, and then decreased at the
lowest range. The estimated power-adjusted density of effect
sizes for all underlying susceptibility SNPs, however, continued to
increase at an increasingly faster rate, as the effect size decreased.
This analysis suggests there are increasingly large numbers of
susceptibility loci with decreasing effect sizes for complex traits,
regardless of trait.
We also explored alternative parametric models that could

describe the effect-size distributions for the different traits. We
observed that an exponential model, which has been argued
based on population genetic theory (21–24), is often inadequate
for describing the distribution of genetic variances for the com-
mon susceptibility SNPs in complex traits (Fig. S3). In particular,
a single exponential distribution predicts more susceptibility SNPs
with larger effect sizes than observed in current GWAS. In-
terestingly, models based on mixtures of exponential distributions

Table 1. Traits, estimates of total heritability, and number of
known susceptibility SNPs used in reported analysis

Trait Height TC HDL LDL Cancer* CD T1D T2D

Estimate of heritability 0.8 0.275 0.275 0.275 ∼2 27.5 15 3
No. of independent SNPs 114 51 46 37 59 68 31 25

Heritability for quantitative traits is reported as the fraction of total var-
iance attributable to susceptibility, and that for qualitative traits is reported
as sibling recurrence risks. TC, total cholesterol; CD, Crohn’s disease; T1D,
type I diabetes; T2D, type II diabetes.
*Includes cancers of breast, prostate, colon or rectum, pancreas, bladder,
and brain.
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often provided a good description of underlying distribution of gv
because they allowed for a very large number of small effect sizes
and for a small number of relatively larger effect sizes. Analo-
gously, we observed that scale mixtures of normal distributions,
instead of a single normal distribution, can provide a stable de-
scription of distributions of regression coefficients (β) associated
with common susceptibility SNPs.

Relationship Between Allele Frequency and Effect Size. We explored
the relationship between allele frequency and effect size in dif-
ferent scales. An inverse relationship between the squared re-
gression coefficient and f(1 − f) was observed consistently across
different traits (Fig. 3). For a number of these traits, however,
the strengths of these relationships become less pronounced
after adjustment for ascertainment due to study power. The
strength of the trend, as captured by the slope of the fitted line
(Table 2), markedly varies between traits, with an almost 10-fold
change between the two extremes of distinct types of traits. After
adjustment, the most pronounced trend was seen for type I di-
abetes and Crohn’s disease among qualitative traits and LDL
level among quantitative traits. In exploring the relationship
between the frequency of the risk allele and the magnitude of the
associated risk coefficient (Fig. S4), we observed a quadratic
pattern that indicates increasing risk coefficients as the risk-allele

frequency diverges away from 0.50 either toward 0 or toward 1.
Thus, it appears that regression coefficients for common sus-
ceptibility SNPs increase in magnitude monotonically with de-
creasing minor-allele frequency, irrespective of whether the minor
allele confers risk or protection. However, for some traits, such as
type I diabetes, risk alleles were predominantly minor alleles, that
is, they had frequencies of less than 0.50.
The genetic variance explained by individual SNPs generally

remains constant over allele-frequency ranges (Fig. S5). Thus,
the increasing trend for the regression effects for SNPs with
decreasing f(1 − f) (Fig. 3) compensates for diminishing contri-
bution of a SNP to genetic variance due to its lower prevalence in
the population. For some traits that demonstrated stronger in-
verse correlation between regression coefficients and allele fre-
quencies, a slight increase was observed for genetic variance with
decreasing allele frequency (Fig. S5 and Table S2).

Estimates for Number of Underlying Susceptibility SNPs and Their
Contribution to Heritability. As a by-product of the weighted
analysis for distribution of allele frequencies and effect sizes, we
obtained estimates for the total number of underlying suscepti-
bility loci for the different traits with effect sizes in the range that
is observed in current studies (Table 3). These estimates show
that for all traits there are a large number of additional loci that

Fig. 2. Smoothed estimate of distribu-
tion of regression coefficients associated
with minor alleles for susceptibility loci,
shown with (red) and without power
adjustment (blue). OR, odds ratio.

Fig. 1. Distribution of frequencies for
minor alleles across an estimated num-
ber of susceptibility SNPs (yellow), ob-
served susceptibility SNPs (green), and
independent representative SNPs in the
HapMap project (blue).
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are currently undetected but might be discovered in larger
GWAS. However, the total genetic variance explained by all of
these SNPs, including those yet undetected, remains modest.
Estimates for the total number of susceptibility SNPs for specific
MAF categories correspond to the pattern we described earlier
(Fig. 1), namely that susceptibility variants tend to cluster toward
more common allele-frequency (MAF >20%) than intermediate-
frequency (MAF =5–20%) categories. Consequently, our analysis
indicates that although the contributions of individual SNPs to
heritability are similar over different allele frequencies, collec-
tively the contribution of SNPs with intermediate-frequency cat-
egories is substantially smaller than those in more common
frequency categories.

Discussion
In this report, we used estimates of regression coefficients, mi-
nor-allele frequencies, and study power for a large number
of recently reported susceptibility SNPs across a wide variety of
traits to obtain empirical insight into the genetic architecture of
SNPs related to complex traits. Our analysis is unique in that we
draw inferences not only for the observed set of loci but also for
an underlying “population” of susceptibility loci, many of which
are not yet detected due to limited statistical power of current
studies. In this regard, our results bear important implications
discussed below.

Selection. Our analysis provides empirical support for a long-
standing population genetic model that effect sizes for suscepti-
bility variants should be inversely related to their allele frequen-
cies. As the underlying theory is based on purifying selection, it is
remarkable that among all of the different traits we studied it was
type I diabetes, a disease of early onset that is most likely to be
subject to selection pressure, that showed the strongest trend both
in terms of correlation between allele frequencies and regression
coefficients and the proportion of risk alleles that were less
common (frequency <50%). For most other traits, including late-
onset diseases such as cancers and type II diabetes, these trends,
although consistently present, were modest. It is also noteworthy
that for all traits, the absolute value of the regression coefficient
showed an increasing trend with decreasing minor-allele fre-
quency irrespective of whether the minor allele conferred risk or
protection (Fig. S4). Such a pattern is consistent with a pleiotropic
model (7) under which susceptibility variants could have effects in
opposite directions for different traits, for example, across an
underlying “fitness” trait that drives selection pressure and
a specific trait we study.

Future Discovery and Prediction Based on Common Variants. We
observed that commonly assumed models of effect sizes, that
is, an exponential distribution for genetic variances or a normal
distribution for regression coefficients, predict higher numbers of
susceptibility SNPs with relatively larger effects than has been
seen with current GWAS data. The distribution of effect sizes
has important implications for future discoveries as well as for
genetic prediction. For example, a fitted exponential distribution
to genetic variances for susceptibility SNPs for height predicts
that a total of 1,485 SNPs would be needed to explain 45% of
variance of height, the fraction of heritability that was recently
attributed to common susceptibility SNPs using a variance com-
ponent analysis (5). In contrast, a mixture of two exponential
distributions, which provided a much better fit to the data, es-
timated that at least 7,244 SNPs would be needed to explain the
same fraction of heritability. The number of discoveries expected
in the future and their contribution to heritability could be quite
different under these two models. GWAS of 500,000 subjects, for
example, could expect to discover a total of 1,216 and 2,333 loci
explaining 44.1% or 32.9% of the heritability of height under the
single-exponential versus mixture-exponential models, respectively.
The distribution of effect sizes also has implications for risk

prediction using polygenic models that may include additional
loci based on a more liberal significance threshold than com-
monly used for discovery in GWAS (25). Again assuming that
45% of the heritability of height can be explained by common
variants, for example, we estimated that a polygenic model built
on a training dataset of about 100,000 subjects could achieve
a maximum out-of-sample predictive power (maximized over
different significance levels) corresponding to an R2 value about
27.8% under the single-exponential model, 23.7% under a two-
component mixture model, and only 17% under a three-com-
ponent mixture model. The reduction in predictive power under
the later models occurs because more precise estimates of as-
sociation coefficients are needed when the true coefficients are
smaller for SNPs to contribute positively to the performance of
risk models. Thus, even if in theory common susceptibility SNPs
could explain a large fraction of heritability for complex traits,
the distribution of effect sizes indicates that, in light of practical
constraints for sample size in future GWAS, a large fraction of
the remaining SNPs may have effects that are too small to be
detected individually or to make a major contribution collec-
tively in predictive models.

Implications for Power for Future Studies of Uncommon Variants.
Assuming that the observed trend will continue for lower allele-

Fig. 3. Scatter plots for the 2D distri-
bution of regression effects and minor-
allele frequencies for observed suscep-
tibility SNPs. The analysis is performed
in the scale of squared regression
coefficients β2 and f(1 − f), which are
the components that define the con-
tribution of a SNP to genetic variance.
In the background of each plot, the
power of the original discovery study
is shown in gray scale over different
regions of the parameter space. The
weight for each SNP, which is the in-
verse of its power for detection, is
proportional to the area of the purple
circle surrounding it. Fitted lines with
(red lines) and without weights (blue
lines) are shown.
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frequency ranges, our analysis provides insight into what kind of
effect sizes we might expect for future studies of uncommon
variants, such as those with MAF in the range of 1–5%; what
their statistical power for detection from association studies
could be; and how much they may contribute to heritability.
Although our analysis provides some support that less common
alleles are likely to have larger effects, the trend appears to be
quite modest after adjusting for lower power for discovery of loci
with smaller effect sizes. Based on the fitted lines shown in Fig. 3,
for example, we estimated that for a disease like Crohn’s disease,
the average regression effects correspond to an odds ratio of 1.08
for MAF = 0.45, 1.13 for MAF = 0.15, and 1.16 for MAF =
0.05. Such trends, although modest, suggest that the genetic
variance due to individual susceptibility SNPs, on average,
remains fairly constant over different ranges of allele frequency
(Fig. S5 and Table S2). This indicates that the strength of an
association test statistic, which is closely related to genetic vari-
ance, could also be expected to remain similar, on average, for
common (including intermediate and perhaps uncommon) var-
iants. Still, the power for detecting an individual uncommon
susceptibility SNP, using a completely agnostic approach, may be
reduced by a multiple-testing penalty as the number of markers
increases in future studies for comprehensive coverage for the
lower spectrum of allele frequencies.

Contribution to Heritability of Uncommon Variants. We observed
that the contribution of individual SNPs to genetic variance is
similar on average over different ranges of allele frequency. This
raises the possibility that susceptibility SNPs in uncommon al-
lele-frequency categories may explain a large fraction of herita-
bility if such variants are present in larger proportions and follow
the distribution of SNPs that are currently annotated in human
populations. We observed, however, that for several different
traits, both the number of susceptibility SNPs and their collective
contribution to genetic variance were highest for more common
MAF categories, 30–40% or 40–50%, and dropped substantially
for lower allele-frequency categories, 5–10% or 10–20%. Our
power-adjusted analysis confirmed that such observed patterns
are not caused by lower statistical power for detection of asso-
ciation for SNPs with lower frequencies. Thus, trends in data
from current GWAS do not suggest that susceptibility loci with
intermediate and uncommon allele frequencies could explain a
large fraction of missing heritability.
Certain population genetic models predict that in the future

a large fraction of missing heritability for complex traits could be
explained by loci that contain classes of rare (MAF <1%) sus-
ceptibility variants (7, 26). Our analysis of common susceptibility
SNPs does not provide evidence for or against such a hypothesis,
because we cannot extrapolate our results to loci that have
complex allelic architecture and are not currently represented in
our analysis.

Limitations. Some caveats of the current analysis merit discussion.
It is noteworthy that our inference is based on common SNPs
(MAF ≥5%) that are expected to have high coverage in current
genotyping platforms used in existing GWAS. We cannot readily
extrapolate the observed trends to uncommon and rare variants.
It is possible, for example, that a stronger inverse correlation
exists between regression effects and allele frequencies for the
more rare variants than would be predicted based on common
susceptibility SNPs included in our analyses. Nevertheless, we
believe that the observed trends over a wide spectrum of allele
frequencies provide clues to patterns that might emerge from
future studies of less common variants.
It is also noteworthy that our analysis cannot be generalized to

the population of all common susceptibility SNPs. It is likely that
there are many common SNPs that have effect sizes so small that
they virtually did not have any power to be detected and hence
represented in current studies. Our power analysis marks the
regions of parameter space for which the current studies have no
representation of the underlying susceptibility SNPs (Fig. 2).
Despite such truncation, the power-adjusted analyses provide
useful population-based interpretation of the results for genetic
architecture of complex traits. Moreover, given the large sample
sizes for some of the existing studies, it seems that the effect sizes

Table 2. Linear regression analysis between squared regression
coefficients (β2) and minor-allele frequencies for susceptibility
SNPs

Unweighted Weighted

Trait Slope P value Slope P value

Qualitative
Type I diabetes −2.20E-01 6.24E-02 −2.15E-01 1.03E-02
Crohn’s disease −1.14E-01 3.02E-02 −8.06E-02 8.21E-02
Cancers −1.64E-01 8.85E-03 −3.05E-02 5.30E-01
Type II diabetes −3.90E-02 1.83E-01 −2.00E-02 3.49E-01

Quantitative
LDL −2.05E-02 1.66E-02 −2.75E-02 9.45E-04
Total cholesterol −3.20E-02 7.09E-03 −1.57E-02 2.54E-01
Height −9.22E-03 1.78E-04 −4.80E-03 1.43E-02
HDL −2.20E-02 5.99E-02 −1.80E-03 7.99E-01

The slopes are for the regression of squared regression coefficients
against f(1 − f), where f is allele frequency. These variables are the compo-
nents that define the contribution of a SNP to genetic variance. The
weighted and unweighted analyses are performed with and without ad-
justment for study powers, respectively. The traits are sorted by the
strength of power-adjusted slope estimates, a measure of the strength of
linear relationship.

Table 3. Estimates for the total number of underlying loci and their contribution to genetic variance for the
underlying traits

MAF range

Height TC HDL LDL Cancer CD T1D T2D

Est. no. GV* Est. no. GV Est. no. GV Est. no. GV Est. no. GV Est. no. GV Est. no. GV Est. no. GV

0.05–0.1 55.3 1.3 2.0 1.2 113.4 5.2 4.0 0.9 17.4 3.2 29.4 1.2 1.0 0.2 52.3 2.5
0.1–0.2 50.1 1.9 24.9 4.3 63.8 8.4 5.0 2.0 7.1 2.3 29.1 1.8 4.7 0.9 6.7 1.1
0.2–0.3 224.2 5.7 22.6 7.8 6.8 1.5 12.7 5.0 12.1 3.2 27.5 2.6 31.1 3.5 54.4 3.9
0.3–0.4 172.6 4.7 24.9 5.0 16.9 3.8 74.7 6.4 18.2 9.4 233.8 8.7 20.4 2.4 63.6 4.2
0.4–0.5 140.5 4.9 8.8 2.2 35.8 2.4 30.1 3.1 12.0 4.3 107.1 5.4 17.1 2.5 62.7 5.1
Total 642.7 18.9 83.3 20.5 236.6 21.3 126.5 17.4 66.9 22.5 426.9 19.8 74.4 9.5 239.7 16.8

All projections are restricted to the effect-size ranges that are observed in current studies.
*All genetic variances (GVs) are shown as the percentage of the total variance of the trait attributable to heritability. For qualitative
traits, the variance due to heritability is computed from estimates of sibling recurrence risk shown in Table 1 using a log-normal model
for risk.
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that remain completely undetectable would be so small that they
are unlikely to be discovered in large proportion in future studies
with realistic sample sizes. Thus, our analysis reveals those trends
and patterns for susceptibility loci that are likely to be detectable
in association studies.
Based on our estimates of statistical power for discovery of

known susceptibility SNPs and the presentation of our statistical
framework, our analysis of the distributions of allele frequencies
and effect-size parameters for a large number of common sus-
ceptibility SNPs provides insight into the population genetic ar-
chitecture of complex traits. Future studies with additional array
content for lower allele-frequency SNPs together with sequencing
will certainly discover new loci, and will provide an additional
opportunity to investigate different population genetic models for
further understanding of the differences and similarities we already
observe in the genetic architecture across diverse complex traits.

Methods
SNP Selection. We attempted to follow a general algorithm for selecting the
susceptibility SNPs to be included in our analysis across different traits. For
each trait, we identified the largest GWAS reported to date. From published
reports, we identified independent susceptibility SNPs that reached genome-
wide significance (Table S3). In some multistage studies, susceptibility SNPs
that had been reported in previous studies were not pursued beyond the
first stage (or GWA meta-analysis). We only included previously reported
SNPs if their association P values from the first stage reached the study’s
threshold for follow-up to subsequent stages. The underlying rationale here
is that if the current study followed up all SNPs that met their first-stage
selection criterion irrespective of results from previous studies, then our
analysis would have included only those previously reported SNPs that
reached the required significance at first stage.

Estimation of Effect Size and Powers. To avoid overestimation of effect size
due to the problem of the winner’s curse (27), we attempted to obtain
estimates of regression coefficients and minor-allele frequencies from in-
dependent replication studies whenever such data were included as part of
the original report. In the absence of such data, we obtained estimates of
these parameters from the final stage of the studies if a multistage design
was reported. For single-stage studies with no independent replication data,
we used a statistical technique (27) to correct for the winner’s curse and
compared analyses with and without such correction. We evaluated the

power of each of the original studies at the estimated values of effect-size
parameters following the exact design of these studies (Table S3).

Power-Adjusted Analysis. In each power-adjusted analysis, a SNP is included
with a weight as the inverse of its power of detection in the corresponding
discovery study (see Fig. 3 and Figs. S4 and S5 for pictorial representations of
weights). Intuitively, the set of observed susceptibility SNPs represents
a random sample from the underlying population of susceptibility SNPs,
where different SNPs are selected with different sampling probability due to
their different effect sizes. By weighting each observed SNP by the inverse of
its sampling probability, which in this case is its statistical power for de-
tection, we allow it to represent the underlying population of SNPs that
have similar effect sizes and hence have similar probabilities of sampling. For
example, if a SNP has an effect size that corresponds to a statistical power of
25%, then the weight of the SNP is 1/0.25 = 4, implying that it is considered
to represent four susceptibility SNPs with similar effect sizes from the un-
derlying population. The use of inverse-probability weighting methods for
unbiased estimation of population parameters is motivated by methods used
in statistical sample surveys (28, 29), where unequal probability sampling is
commonly used to increase study efficiency.

The weighted analysis of the SNPs allows generalization of inference only
to the section of the population for which the sampling probability is non-
zero. To reduce instability associated with SNPs with very low power and
consequently large associated weights, we restricted our analysis to SNPs that
had at least 1% power in the current studies. Thus, the conclusion we draw
from our analysis should be taken as holding for the part of the parameter
region where the current studies have ≥1% power. For ease of visualization
of this region, we have shown how the power of the different studies varies
over the parameter space in the background of Fig. 3 using a gray scale.

We assessed the statistical significance of linear relationship between
allele frequencies and effect-size parameters by bootstrap resampling
methods. In each bootstrap run, we randomly select a set of SNPs from the
observed SNPs with replacement. For each such sample, we repeat the
original analysis with the associated weights for the sampled SNPs. We
evaluated the SE for the slope of the fitted line over 1,000 bootstrap samples
to obtain an estimate of uncertainty of the underlying relationship that is due
to randomness of the underlying sampling mechanism for observed SNPs.
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