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ABSTRACT

We evaluate some constraints on the construction of Grand Unified Super-
string Theories (GUSTs) using higher level Kac-Moody algebras ca the world-
sheet. We demonstrate that in the free fermionic formulation of the heterotic
string in four dimensions, there are no SU(5),$0(10) or Eg GUT models at any
level. Even in more general formulations, an analysis of the basic GUST model-
building constraints, including a realistic hidden gauge group, reveals that there
are no Eg models and any SO(10) models can only exist at level 5. Also, any
such SU(5) models can exist only for levels 4 < k < 19. These SO(10) and
SU(5) models risk having many large, massless, phenomenogically troublesome
representations. We also show that with a suitable hidden sector gauge group,
it is possible to avoid free light fractionally charged particles, which are endemic
to string derived models. We list all such groups and their representations for
the flipped SU(5) x U(1) model. We conclude that a sufficiently binding hidden
sector gauge group becomes a basic model-building constraint.
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Although many particle theorists are convinced that string is the Theory of
Everytlnng, there is no consensus on the right road to four-dimensional experi-
mental reahty At the level of string perturbation theory, there appears to exist
a myriad of consistent vacua which have yet to be enumerated. Non-perturbative
string effects may eventually give us grounds for favoring some subset of vacua
(perhaps one single vacuum) over all the others, but purely theoretical criteria are
not yet sufficient to fix the choice of string vacuum. Under these circumstances,
one must appeal to phenomenological criteria to help select the appropriate vac-

uum.

One step in this choice is the decision whether to favor grand unification
within the context of the low-energy effective field theories. The attractions of
‘the GUT framework are well-known [1]: they include the prospect of observable
baryon decay at a rate that is neither excessively rapid nor too slow to be de-
tected, and a natural framework for obtaining very light neutrino masses. Both
of these features are known to be problematic in a.wide class of string vacua that

do not contain a form of four-dimensional GUT gauge symmetry [2].

However, there is a well-known obstacle to the construction of GUTs in
the string framework, namely their apparent reliance on adjoint and higher-
dimensional Higgs representations [1]. For example, conventional SU(5) needs an
adjoint 24 Higgs representation to break the gauge symmetry down to the § U(3)
x SU(2) x U(1) of the Standalrd Model, and higher dimensional representations
such as 50, 50 and 75 are often invoked [3] to split naturally the light Higgs
doublets from their heavy triplet partners, whilst a 45 would be required to give
realistic quark and lepton masses [4] unless one postulates nonrenormalizable
interactions [5]. In SO(10) GUTs, adjoint 45 and higher-dimensional 54, 120,
126, and 210 representations are commonly introduced [6] to play analogous
roles, and Eg models often include 78, 351, and 351’ representations (7]. On
the other hand, one GUT is known that avoids adjoints and higher-dimensional
Higgs representations, namely flipped SU(5) x U(1) [8,9]. No representations
larger than 10 and 10 are required to bre&i: the GUT symmetry and split Higgs
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doublets and triplets naturally [9], whilst realistic quark and lepton mass matri-
ces may be realized [10,11] by nonrenormalizable interactions 'if the GUT scale is
one or two orders of magnitude below the string unification scale [12]. Also, the
pattern of SU(5) x U(1) symmetry breaking to SU(3) x SU(2) x U(1) is unique.
This is to be contrasted with the above GUT models where a large number of de-
generate vacua are possible leading to severe cosmological problems in the early
Universe {13].

Adjoint and higher-dimensional representations are known [14] to be absent
from the low-energy spectrum of string models whose gauge symmetry is under-
lain by a current algebra realized at the lowest Kac-Moody level k = 1 (as shown
below). However, it is known [15] that they can in principle be obtained in string
theories with higher-level Kac-Moody algebras: k > 1. So far no realistic string
model with k > 1 has been constructed and this is known not to be an easy task
[16). As an aid to those contemplating such a task, we compile in this paper some
of the constraints that such a Grand Unified Superstring Theory (GUST) must

satisfy and point out some of the principal obstacles to its construction.

Another important constraint on models derived from the superstring is the
absence of free light fractionally charged particles. These can in principle be
confined by hidden sector gauge interactions, but this must be checked for each
model. We characterize possible choices of the hidden sector for level-one flipped
SU(5) x U(1) models. These are the only consistent GUSTs known at present.

We start our analysis of GUST model-building by compiling our phenomeno-
logical desiderata.
Natural doublet-triplet splitting: The Weinberg-Salam Higgs doublets hz, hs
required for breaking SU(2)r X U(l)y symmetry must have mass parameters
< 100GeV. In any GUT model these doublets come from multiplets containing
color triplet fields hs, h3 that couple to quark pairs and to antilepton-antiquark
combinations. They could therefore mediate baryon-number-violating interac-

tions, and consistency with the observed le:-xgth of the proton life-time requires
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My, §y < 108 to 10" GeV. The large h2 — h3 mass difference could be imposed by
fiat, and would then not be renormalized in a theory with approximate supersym-
metry, but one would prefer a natural mechanism for doublet-triplet splitting. A
general philosophy for achieving this is to couple via a Yukawa interaction the
GUT Higgs multiplets to another multiplet which contains a color triplet that
mix via a Dirac mass term with hg, h3, but no corfesponding doublet to give &

large mass to hg, hy — the missing partner mechanism [3].

The lowest dimensional such multiplets in an SU(5) GUT are the 50 and 50,
which can couple to the 5 and § representations via a self-adjoint 75 represen-
tation. The latter can also be used to break SU(5) to SU(3) x SU(2) x U(1),
thereby obviating the need for an adjoint 24 of Higgs. If one wishes to use
discrete symmetries to exclude all couplings that could invalidate this simple
mecha.msm, more 75, 50, and 50 representations are required. However, we ob-
. tain as our minimum requirement the presence of one of each of the 75, 30, and

50 representations.

In the case of SO(10) GUTs, the minimum representations containing a 50
of SU(5) is a 126, and the smallest containing a 75 of SU(5) is a 210. Natural
mechanisms for doublet-triplet splitting in § 0(10) have indeed been proposed in
Ref. [17], using a combination of the 126, 126, and 210 representations. We are
not aware of any detailed studies of natural doublet-triplet splitting mechanisms
in E¢ GUTs, but 351/, 351', and 850 representations would be required at least.

Realistic fermion masses: It is well-known that the measured b and 7 masses
are consistent with equality at the GUT scale 118]. This occurs naturally in
the minimal SU(5) GUT with the Weinberg-Salam Higgs doublets contained
in 5 and 5 representations. However, mg/ms # mMe/my, which indicates the
need to complicate the GUT Higgs structure. Since 5 x 10 = 5 + 45, the
natural possibility would be to introduce 45 and 45 Higgs representations, which
give my/m; = 3 before renormalization [4], and combine those with the 5 and

§ Higgses to get a realistic mass spectrum. The corresponding choice in an
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§0(10) model would be a 126+126 pair of Higgs representations [6], and in Es
a 351'+ 351’ pair of representations [7].

We should, however, point out that it is possible to avoid postulating these
large representations for the quark and lepton mass matrices by advocating non-
renormalizable interactions {5). For example, in the SU(5) case a 5 x 10 x 45
coupling could in principle be replaced by B x 10 X § x 24 coupling. In point of
fact, most of these large representations are already required for natural doublet-

triplet mass splitting, as seen above.

Adequate hidden sector: Studies of supersymmetry breaking in string models
invariably lead one to consider hidden sector gauge groups that become strong at
an intermediate scale [19,20] . Some form of gaugino [19] and/or chiral multiplet
[20] condensation then triggers spontaneous breaking of local supersymmetry.
The most general constraint that one can impose is Ax > AgeD: where A} is
" the scale at which the hidden sector gauge group becomes strong. We recall that
the beta function for an asymptotically-free gauge theory is maximal for gauge
degrees of freedom only, and decreases with any matter field representations
added in. Hence, confining SU(n) hidden gauge groups with n = 2,3 will have
to have very limited or no matter representations to be feasible. However, it
is common for string-derived models to have a rich hidden matter spectrum.
Thus, we require SU(4) as a minimal hidden gauge group. A more restrictive
constraint on the hidden gauge group relates to the confinement of fractionally

charged particles, as discussed below.

The origin of spacetime gauge symmetries in string theory is in the Kac-
Moody algebra on the world-sheet [21]. The so-called affine Kac-Moody algebra
G underlies the spacetime gauge symmetry G. Depending on the choice of world-
sheet currents, these algebras can be realized at different levels .pa.rametrized by
the positive integer k. All states in the theory fall into representations of this
algebra. However, fér a fixed level k, only a certain number of these representa-

tions are unitary and may appear in a sensible string model. The requirement
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that must be met is
S nimi<k, 1

where the n; are the Dynkin labels of the highest weight of the representation in
question and the m; are fixed positive integers for a given G (see Table 1°). The
conformal dimensions of the unitary representations r depend on the level k and

are given by
hr = 2k irC A @)
where C, is the quadratic Casimir of r, and C4 that of the adjajnt. For practical
purposes it is more convenient to work with the index of the representation,
defined as
dimr

I, = ——
T dimG

Cr, (3)

rather than with C,. Conformal symmetry also implies that massless states have
h < 1, while massive ones have h > 1. The final fact we need for our analysis is

the contribution to the central charge from the level & Kac-Moody algebra,

kdimG
c= —, (4)
k+h

where b is the dual Coexter number for the group G (see Table 1), and for
simply-laced Lie groups h= %C A

We first note that in the heterotic string ¢ < 22 and hence for gauge groups
with dim G > 22 there is an upper bound on the value of k,

22h
< mar E
k<k [dimG - 22] ’ (5)

where [z] is the integer part of z. For the unitary, orthogonal, and exceptional

groups these values are given in Table 2. For the common case in which G =

« In what follows we concentrate on the phenomenclogically appealing simply-laced groups.
The non-simply laced Lie groups, i.e., S0(2n + 1), Sp(r), G2, and Fy can be analyzed
analogously.



®,G("‘) the constraint Y, c; < 22 gives yet stronger constraints on the k;. Indeed,
the a.ddltlonal requirement of a minimal hidden sector gauge group Ghidden O
SU(4) reduces the contributionto c from the observable gauge group to ¢,p, < 19
(recall that rankG < ¢ < dimG), see Table 2. In Table 2 we also give the
corresponding results for a possible “maximal” Fy hidden gauge group. We
should point out that the results in Table 2 assume the minimal contribution to
¢ from the possible hidden gauge groups. This is the case at level 1. For hidden
gauge groups at levels k > 1, the results in Table 2 (column labelled k{g)“) are
further constrained. For example, with an SU(4), at k4 > 1, the SU(5) and

50(10) kzgi‘” entries get reduced from 19 to 12 and from 5 to 4, respectively.

Next we obtain all unitary massless representations that can occur at level
1. For S§0(2n) groups we find using (1) that only the singlet, vector, spinor and
conjugate spinor representations are allowed. Furthermore, these representations
have conformal dimensions:” hinglet = 05 Ruector = 1 /2, Rspinor = n/8, and hence
the spinor representation is massless for n < 8 only. For SU(n) groups we find
that at level 1 only the n — 1 totally antisymmetric representations (plus the
singlet) are unitary. These representations have dimension (:), 1< p<[n/2
and at level 1 are massless for'h = p(n — p)/2n < 1. The resulting unitary
massless representations are collected in Table 3. For Eg at level 1 we only
find the singlet, 27, and 27 representations (all massless); for E7 we find the
singlet and 58 (both massless); and for Es only the singlet representation. From
these results we infer that at level 1 there are no aliowed adjoint representatmns
Futhermore, we find a few massless representations of dimensionality higher than
the respective adjoints, namely the 70 of 5 U(8), the 84, 84 of SU(9) and the
128 of SO(16). These results have already been found in [14] where a restricted

+ We use (2) and [22] dimG = n{2n—-1)},Ca = 4n — 4 Lector = 2, Lipines = on-3,

t This follows from (2) after using {22]: dimG = n?—1,C4 =2n,and l ""f)

t This remark pertains to the chiral supermultiplets, the gauge supe:multxplets are always
present and are represented by the Kac-Moody currents themseives. Adjoint matter repre-
sentations of this kind can generally exist for N' > 1 but are forbidden for N = 1 spacetime

supersymmetry [14].



class of fonr-dimensional heterotic string models constructed in terms of free
world-sheet fermions was considered.

We now turn to the analysis of each of the traditional GUT groups (SU(5),
50(10), and Es) in the light of the phenomenological constraints advocated
above. w
SU(5): For the doublet-triplet splitting we need 50, 50, and 75 Higgs repre-
sentations, and for a realistic fermion mass spectrum also the 45, 45. All these
representations are unitary at level k > 2. At level k they have conformal dimen-

sions
32 42 8

h L = :
4588 = g 1 5)° 50507 5(k 4 5) h1s = T8

(6)

For these representations to be massless one needs: 45,45, k > 2; 50,50, k > 4;
75, k > 3. We also note that at level 4 the following are all the unitary massless
representations: 1,5,5,10,15,15,24,40,%,45,4_5, 50,50,70,75. Hence, a priort
there will be several exotic representations in the spectrum.

SO(10): In this case we require the 128, 126, and 210 representations which
are all unitary starting at level 2. Their conformal dimensions are given by

25 12
T ) &

126,13

For these representations to be massless we would need: 126,126, & > 5; 210,
k > 4. At level 5 the folloﬁ*ing are all the unitary massless representations
available: 1,10,16,16,45,54,120,126,126,144, 144,210. Hence lots of exotic
states would again be expected.

Egs: We require 351’357 for realistic fermion mass matrices, and the 650 is
the smallest replacement of the adjoint which might admit a natural doublet-
triplet splitting mechanism. These are unitary at level & > 2 and have conformal

dimensions
. 56 18
' ; = h = —=,
h851 , 351 3(k + 12)’ 650 (k + 12) (8)

and hence will be massless for: 351',351', k > 7; 850, k > 6. Note that these
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values of k exceed the maximum allowed value for Eg (see Table 2).

The above results are summarized in Table 4. We conclude that phenomeno-
logically acceptable SU(5) GUT models could be attained at levels 4 < k <
19(12), for a level kg = 1 (ks > 1) minimal hidden gauge group. SO(10) GUT
models with minimal hidden sector could only be built at level 5, and even so only
if kg = 1. Higherflevel minimal hidden sector gauge groups and additional hidden
or observable gaﬁge groups contributing ¢ > 1.7 (i.e., anything larger than one
extra U(1) or SU(2) beyond SO(10)x SU(4)a), would eliminate the SO(10) GUT
possibility altogether. Both GUT models will likely have undesired massless ex-
otic states. These states could strongly affect the running of the couplings to low
energies and hence ruin the succesful GUT predictions for sin® Bw , mp/mr, etc.
Also, at such high levels a very large number of massive representations appear
as well” These will likely produce large threshold effects in the renormalization
| group equations of the gauge couplings at the string scale [23]. Note that an
E3 hidden sector gauge group, which is commonplace in Calabi- Yau compatifica-
tions of the heterotic string, would also (see Table 2) eliminate the 50(10) GUT
alternative and limit the SU(5) GUT scenario to levels 4 < k < 7. Finally, no
phenomenologically acceptable Eg GUT models appear to exist.

We end this section with a few remarks applicable to the restricted class of
models built in the free-fermionic formulation [24]. In this formulation, gauge
groups realized at levels k > 1 are constructed in terms of real fermions [15],
and hence all such conformal fields must have dimensions which are multiples of
1/18, i.e., the minimal conformal dimension in the Ising model! The conformal
dimensions of the indispensable lowest-dimensional representations of SU(5) at

level £ > 1,
| 12 18
"55 = 5k +5)’ Pt =5 rey ®)

+ For SU(5) at level 4 one gets massive tepresentations up to the 1178, and for SO(10) at
level 5 up to the 72765 representation.

t For gauge groups realized in terms of complex fermions, and hence at level 1 [15], the
conformal dimensions of the fields involved are not testricted to be multiples of 1/16 {25].
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are not multiples of 1/16, and hence cannot exist by themselves.” They must
be supplemented by additional quantum numbers, thus making the gauge group
not the traditional SU(5). This is precisely what happens in the case of flipped
SU(5) x U(1) and other U(5) embeddings [26]. In the case of SO(10), the con-
formal dimensions of the 16,16, and 45 at level k > 1 are

45 8

——

hlﬁ,l_e = S(k +8)? h45 = (k+8); (10)

Bearing in mind that in this case k™** = 7, one can see that even though for
k = 2,7 one can have 16,18 representations, the adjoint is never allowed in this

formalism. In Es we have

26
hat = 3%+ 12)’ (11)

which is never a multiple of 1/16. Hence these GUT groups at levels E>1
" could only be viable if combined nontrivially with other degrees of freedom on
the world-sheet. Clearly, flipped SU(5) x U(1) emerges at this point as the
unchallenged candidate for the construction of a realistic unified model in the

free fermionic formulation.

In general, an additional requirement that must be satisfied in a free fermionic
model is that the total contribution from the Kac-Moody currents to the central
charge must be an integer or half-integer. This imposes further constraints on the
levels of the gauge groups that can appearin a particular model. This constraint
is however trivially satisfied by level 1 simply-laced gauge groups which give

— rank G. For example, in the flipped SU(5) x U(1) model of (11], the complete
gauge group is SU(5) x U(1)% x SO(10) x SO(6), with all gauge groups realized
at level 1. We get cgauge =4+5-1+5+3 =17 which complemented by 10 Ising
models [11] gives ¢tor = 17 + 1-10=22. '

Up to now we have been considering constraints on GUT observable gauge
groups. We now turn our attention to constraints on possible hidden sector gauge

groups. Above we have outlined the minimal requirements for such a group in
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the light of supersymmetry breaking. Here we consider further constraints based
on the phenomenological need to have no free light fractionally charged particles.
This discussion can be made most efficiently in the language of “simple currents”
[27] of the Kac-Moody algebra underlying the gauge group. In the Standard
Model, the charge quantization condition can be summarized as follows [28]. For

any state transforming under SU(3) x SU(2) x U(1) as (R,r,Y), we must have
1 1
ay = gts(R) + Etz(r) +Yel, (12)

where t, is the n-ality” of the respective SU(n) represeatation. The Standard

Model fermionic content,

u 1 c.(m1 _2). (3 1 L.
(d)L.(s,z,g), u: (3,1,-3); @ :(3,1,3);

(:)L : (1,2,-%)-, e : (1,1,1), (13)
can be easily seen to obey rule (12). This rule states that any fractionally charged
particle must have nontrivial transformation properties under SU(3)c such that
physical color singlet states are integrally charged. For example, the quark dou-
blet has %tz +Y = 2/3 and hence we demand that the quarks have %t; =1/3,
i.e., are in the fundamental representation of SU(3)¢. This way physical color

singlets (i.e., hadrons) are guaranteed to have integral charge.

In the context of SU(n) level k, Kac-Moody algebras one can find {27} some
primary fields which have very simple fusion rules with all the other primary
fields in the conformal field theory. These are called simple currents J,(j"),
in =0,1,...,(n — 1) and have conformal dimension hy = inka(n — in)/2n. The

monodromy (i.e., charge under J) with some field & transforming under the R

« For a SU(n) tepresentation R with Dynkin labels {ax}, the n-ality is given by [22] ta (R} =
E:;: kay (modn). For SU(2), integer (half-integer) spin representations have t3 = 0(1}.
In general we have t,(n) = —ta(B) = 1; t.(n(n—1)/2) = 2; ta(1) = th(n?-1)=0.
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representation of SU(n) is @y = inte(R)/n. Similarly, level k» SO(2m) Kac-
Moody algebras possess simple currents J,(,f"‘) , Jm = 0,1,2,3, with conformal
dimensions: 0, jm = 0; 1km, jm = 2; Fkm, jm = 1,3. The charges of the fields
under these currents are: jm$, for m = odd; and ¢;,,, for m = even. Here cis the
conjugacy class label of the representation, and ¢;, is a similar representation-

dependent quantity {29], with &;,—o0 = 0.

| If the simple current J has integer monodromy with all fields ®, then J will
also belong to the conformal field theory, and in order not to violate modular
invariance J must have integral conformal dimension, i.e., by € Z [27,28]. In the
Standard Model, the simple current Joy = (J;l), J;(,l), J1). has this property due
to (12), and hence (28]

1, 1, 1 |
hy= 5’63 + Zkz‘i-zk] € Z < 4ka+ 3k2+ 3k =0(m0d12). (14)
The U(1) current J; has arbitrary Kac-Moody level and has been defined as
having hj, = ¢*/k1, with ¢(J;) = k1/2, hence hj, = k1/4. The value of k; can
be fixed in cases where the [/(1) is embedded in a larger group, but is arbitrary
otherwise. Recalling that at levels k > 1 the string gauge coupling constant is

rescaled by vk, i.e., g — g/v'k, we find

k2

a2
sin 0wy = ————,
Y=k + ke

(18)

at the string scale. For level 1 SU(3) and SU(2) Kac-Moody algebras we then
get

5 17 29
kl—gs?a?s"', (16)
3 3 3
- 2 v v .
sin’ 0W_8’20'32’ (17)

The choice k3 = 5/3 gives the succesful SU(5) prediction for sin’ 8. However,
in this case the gauge group extends to SU(5) (28] (since h; = 1) and there is no
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way to break this group down to the Standard Model. For this reason, in Ref. [28]
it was argued that one cither had to construct higher-level Kac-Moody algebras
for the Standard Model gauge groups, or do away with the charge quantization
rule (12).

In view of the above difficulties in constructing higher-level observable sectors,
we now present a generalization of the charge quantization rule that allows level
1 Kac-Moody algcbras without jeopardizing the succesful prediction for sin? Ow .
As a pilot example, we consider the Jevel-one flipped SU(5) x U(1) model which
has electric charge operator @ = T3 - v+ %17, where U(1)7 is the U(1) outside
SU(5). The charge quantization condition is now extended to include the extra
U(l)y plusa contribution from a hidden sector SU (n)ﬁ" x5 O(Zm)ﬁ"‘ gauge group.
That is, we require that any fractionally charged particle transform nontrivially
under SU(3)¢ or SU(n)y x SO(2m)i such that physical singlet states under
these groups have integral charges. Clearly, this can be generalized to multiple
non-abelian gauge groups. For a particle transforming under SU(5) x U(1)g X
SU(n)n x SO(2m), D SU(3)c x SU2)L x U(l)y xU(1)g SU(n)x x SO(2m)x
as (R,r,Y,Y,Ra, Rnn) we write

ime(Rn)/4; m=odd

Eim(Rm )i m = even

(18)

We now explore the conseqﬁc'nces of enforcing this rule on the spectrum of a

2

1 1 . |
ajy = Et;(n) + -2-‘52(1‘) - EY + 5

-  in
Y+ ;tn(an) + {

string-derived model. This will constrain the possible forms of the charge quan-
tization condition (i.e., values of in and jm) and the hidden gauge groups to
which it can be applied. We do this by considering the simple current Jrps =
(ng),Jgi);Jl,Ji, ,(:.'),J,gn'.")), which due to (18) must have integral conformal
dimension,
0, Im=0
+ 1bmy, jm=2 €2.(19)
Bkm, Jm= 1,3

Lo b

1 inkn(n - in)
hy =gk 3% ¥ 100

(k1+4ki)+ on

We take k3 = k3 = 1, and k1 = 5/3 as required by SU(5). Also, kj = 10 is fixed

12
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by the embedding of SU(5) X U(l)y in $0(10) in the usual way. We can now
explore thfpossible hidden gauge groups, their representations and allowed levels
compatible with a7, hy € Z. Note that by construction these representations will
have ¢3 = t3 = Y = 0, and hence Q= %l? With the above values the conditions

to be satisfied reduce to

‘ | it jmec/4, m=odd
a,=Q+-’-‘—’-'-+{_'" ¢z, (20)
L Cim) m = €VEN
P LR
hy=1+ inkn(n —in) [ 1k jm=2 €B. (21)

2n .
%km, Jm = 1,3

Note that to avoid symmetry enhancement to S0(10) we must not have in =
jm = 0, t.e, hy = 1. We start with (21). The number of solutions to this

Diophantine equation is very large in general. However, one can search for solu-
| tions with ks = km = 1, which could most easily be implemented in a fermionic
construction. Furthermore, the requirement (S U(5) x U(1)) + (S U(n)==1) +
e(S O(2m)==1) < 22 gives n+m < 18. In this way we get a manageable number
of solutions. For rank(Ghidden) < 8 the solutions are

SU(4)i,=2 x SO(10)5,=2, (22)
SU(2)iue1 x SO(12)54=13, | (23)
SU(4)iy=1,3 X SO(10);,=1,3- (24)

We have thus obtained the allowed charge quantization conditions (i.e., values of
in and jn) and the hidden-sector gauge groups which can exist in a string-derived

model at level 1.

One can now use the-constraint (20) to determine the allowed representations
and their electric charges. The results for the phenomenologically relevant 5 U(4)
case are given in Table 5. We should point out that the hidden sector massless
spectrum obtained in Ref. [11] in an analysis of a superstring derived flipped
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SU(5) x U(1) level 1 model, falls precisely within the SU(4)i=2 X S0(10)j,=2
cage. A detailed study of the phenomenological consequences of these states is
in preparation [30].

It is well known that constructing a GUST is not very easy. No examples
exist at level 1, except for flipped SU(5) x U (1). We have indicated in this paper
some of the obstacles to constructing higher-level superstring GUTs, which may
not be insuperaBIe. On the other hand, it has been shown that level-1 models
have in general problems with charge quantization. The flipped SU(5) x U(1)
model avoids this trap by confining the fractionally charged particles, and we
have shown in this paper how this solution to the confinement: constraint could
be generalized. It remains to be seen whether other viable superstring GUTs will

survive the model-building constraints outlined in this paper.

 Acknowledgement: We would like to thank A. Schellekens and I. Antoniadis
informative discussions. J.L.L. would like to thank L. Durand and D. Reiss for
useful discussions at the early stages of this work.

14



10.

11.

12.

13.

REFERENCES

. For a review see e.g., P. Langacker, Phys. Rep. 72 (1981) 185; C. Kounnas,

A. Masiero, D. V. Nanopoulos, and K. Olive, Grand Unification with and
without Supersymmetry and Cosmological Implications, (World Scientific,
1984).

For a review, see L.E. Ibaiiez, CERN Preprint TH. 5405/89 (1989) and

references therein.

A, Masiero, D. V. Nanopoulos, K. Tamvakis, and D. Yanagida, Phys. Lett.
B 115 (1982) 380; B. Grinstein, Nucl. Phys. B 206, (1982) 387.

. B. Georgi and C. Jarlskog, Phys. Lett. B 88 (1979) 297.

_ J. Ellis and M. K. Gaillard, Phys. Lett. B 88 (1979) 315; D. V. Nanopoulos
" and M. Srednicki, Phys. Lett. B 124 (1983) 37.

. H. Georgi and D. V. Nanopoulos, Nucl. Phys. B 155 (1979) 52.

R. Barbieri and D. V. Nanopoulos, Phys. Leit. B 91 (1980) 369.

. S. Barr, Phys. Lett. B 112 (1982) 219; J. Derendinger, J. Kim,and D. V.

Nanopoulos, Phys. Lett. B 139 (1984) 170.

1 Antoniadis, J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. B
194 (1987) 231.

1. Antoniadis, J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. B
205 (1988) 459; Phys. Lett. B 208 (1988) 209.

1. Antoniadis, J. Ellis, J. Hagelin, and D. V. Nanopoulos, Phys. Lett. B
231 (1989) 65.

J. Ellis, J. Hagelin, S. Kelley, and D. V. Nanopoulos, Nucl. Phys. B 311
(1989) 1.

T. Hiibsch, S. Meljanac, S. Pallua, and G. Ross, Phys. Lett. B 181 (1985)
122.

15



14.

15.
16.

17.

18.

19.

20.

21.

22.
23.

24,

25.

26.

H. Dreiner, J. Lopez, D. V. Nanopoulos, and D. Reiss, Phys. Lett. B 216
(198‘} 283;: University of Wisconsin report MAD/TH /89-2 (unpublished).

D. Lewellen, SLAC preprint SLAC-PUB-5023.
A. Font, L. Ibdiiez, and F. Quevedo, CERN preprint CERN-TH.5666/90.

3. Pulido and Maalampi, Phys. Lett. B 133 (1983) 197; J. Pulido, Phys.
Lett. B 150 (1985) 163; K. Tamvakis, Phys. Lett. B 201 (1988) 95.

A. Buras, J. Ellis, M. K. Gaillard, and D. V., Nanopoulos, Nucl. Phys. B
135 (1978) 66; D. V. Nanopoulos and D. Ross, Nucl. Phys. B 157 (1979)
273; Phys. Lett. B 108 (1982) 351; Phys. Lett. B 118 (1982) 99.

J. Derendinger, L. Ibafiez, and H. Nilles, Phys. Lett. B 155 (1985) 65; M.
Dine, R. Rohm, N. Seiberg, and E. Witten, Phys. Lett. B 186 (1985) 55.

I. Antoniadis, J. Ellis, A. Lahanas, and D. V. Na.nopoulos, CERN preprint
CERN-TH. 5604/89.

For a review see e.g., P. Goddard and D. Olive, Int. J. Mod. Phys. A1
(1986) 303.

See e.g., R. Slansky, Phys. Rep. 79 (1981) 1.

V. Kaplunovsky, Nucl. Phys. B 307 (19-88) 145. °

1. Antoniadis, C. Bachas, and C. Kounnas, Nucl. Phys. B 289 (1987) 87;
I. Antoniadis and C. Bachas, Nucl. Phys. B 208 (1988) 586; H. Kawai,
D.C. Lewellen, and S.H.-H. Tye, Phys. Rev. Lett. 57 (1986) 1832; Phys.
Rev. D 34 (1986) 3794; Nucl. Phys. B 288 (1987) 1; R. Bluhm, L. Dolan,
and P. Goddard, Nucl. Phys. B 309 (1988) 330; H. Dreiner, J. L. Lopez,
D. V. Nanopoulos, and D. Reiss, Nucl. Phys. B 320 (1989) 401.

S. Kalara, J. L. Lopez, and D. V. Nanopoulos, Texas A & M University
preprint CTP-TAMU-34/90. -

L Antoniadis and C. Bachas in Ref. [24].

16



97. A. Schellekens and S. Yankielowicz, Nucl. Phys. B 327 (1989) 673; CERN
preprint CERN-TH.5622/90.

28. A. Schellekens, Phys. Lett. B 237 (1990) 363.
29. A. Schellekens, private communication.

30. J. Ellis, J. Lopez, and D. V. Nanopoulos, in }')reparation.

Table 1: List of values of the m; used in (1) for the simply-laced Lie algebras.
The dual Coexter number h is also given. Note that b = 1+ 3, mi.

Lie Group m; h
SO(2n) |(1,2,2,...,2,1,1) |2 —2
SU(n) (1,1,...,1) n

Es (1,2,3,2,1,2) 12
" Eq (2,3,4,3,2,1,2) | 18
B 1(2,3,4,5,6,4,2,3)] 30
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Table 3t Maximum values of k compatible with ¢ < 22 for the simply-laced Kac-
Moody nlgebru. The different values of k™* apply when ecither (a) no hidden
sector constraint is imposed, or (b) a minimal SU(4)s hidden sector is required,

or (¢) an Ey hidden sector exists.

SU(n) | k7o® | kpee | k7 $0(2n) | kme® | ko= | kTe= | Exceptional | k7it® | K5 | Ky
5 |ss|19] 7 10 | 7)|5]3 Es s | 3| 2
6 |lwol| 7] 4] 12 |5]4]2 Er 3 | 3|2
: ts | a4t 14 | 3]3]2 Es 2 ] 2|1
s | a|l3l2] 16 |38 |2]|1 \

o |3 |2t 1 20| 2]2]}:1

witl 2 {2l 1] 22 [ 2|1 |1
2 | 2 11 |1 {2811 |1
315 1 11| 1 |ses8| 11| -
w201 1 | 1| - laoaaf 1 |- |-
s1-23| 1 | - | -

Table 3: Unitary, massless representations at level 1 for SU(n) groups.

SU(n) Representation

n=2 1,2

n=3 1,33

n=4 1,4,4,6

n=>5 1,5,5,10,10

n=2=6 1,6,6,15,15,20

n="T 1,7,7,21,21,35,35

n=28 1,8,8,28,28,56,56,70
n=9 1,9,9,36,36,84,84

10<n <23|1,nAn(n— 1)/2.n{(n - 1)/2
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Table 4: Summary of phenomenclogical constraints on the level of the Kac-
Moody algebras for the various GUT groups. The different values of k™%% have

the same meaning as in Table 2. The values in parenthesis under columa k™
refer to the case in which SU(4)s is realized at level ky > 1.

GUT k(':i" ﬁ‘;"‘ km’ Adjoints | 2-3 splitting | fermion masses | Exotica
SU(5) | 55 |1912)| 7 k>2 k>4 k>2 yes
So(10)| 7 5(4) 3 k>2 k>5 E>5 yes

Es 4 | 3 | 2| k>2 k> T k>7 yes

AR

Table 5: Allowed electric charges for the flipped SU(5) x U(1) model with
level 1 hidden sector SU{4) x §0(10). Here 14 is the quadrality of the SU (4)
representation and c is the conjugacy class of the SO(10) representation. The

notation -}t-Z indicates that the charges are odd multiples of %

ty | ¢ |Qii=j=2{Qiss=13 SU(4) x SO(10) Reps.
0,2/0,2| Z // {1,6,15,...} x {1,10,45,...}
+110,2| 31Z e/ {4,3,...} x {1,10,45,...}
0,21 +1| 1Z 1z {1,6,15,...} x {16,186,...}
+1 z 1z {4,%,...} x {16,186,...}
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