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We present quantum-mechanical density-matrix formalism for calculating the nonlinear optical
response of magnetized graphene, valid for arbitrarily strong magnetic and optical fields. We show
that magnetized graphene possesses by far the highest third-order optical nonlinearity among all
known materials. The giant nonlinearity originates from unique electronic properties and selection
rules near the Dirac point. As a result, even one monolayer of graphene gives rise to appreciable
nonlinear frequency conversion efficiency for incident infrared radiation.
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Graphene, a two-dimensional monolayer of carbon
atoms arranged in a hexagonal lattice, holds many
records as far as its mechanical, thermal, electrical, and
optical properties are concerned; see. e.g. [1] for the
review. With this Letter we would like to add yet an-
other distinction to this list of superlatives: we show that
graphene in a strong magnetic field has the highest in-
frared optical nonlinearity of all materials we know.

Strong optical nonlinearity of graphene, like most of its
unique electrical and optical properties, stems from linear
dispersion of carriers near the K,K’ points of the Brillouin
zone. As a result, the electron velocity induced by an in-
cident electromagnetic wave is a nonlinear function of
induced electron momentum. Nonlinear electromagnetic
response of classical charges with linear energy disper-
sion has been studied theoretically in [2]. Recently, four-
wave mixing in mechanically exfoliated graphene flakes
without magnetic field has been observed at near-infrared
wavelengths [3]. Effective bulk third-order susceptibility
was estimated to have a very large value, χ(3) ∼ 10−7

esu. This is comparable in magnitude to the resonant in-
tersubband χ(3) nonlinearity observed in the mid-infrared
range for low-doped quantum cascade laser structures [4],
which are essentially asymmetric coupled quantum well
heterostructures.

Nonlinear cyclotron resonance in graphene was consid-
ered theoretically in [5], again in the classical limit, by
solving the equation of motion F = dp/dt for a mass-
less charge. Classical approximation can be applied to
electrons in low magnetic field that are occupying highly
excited Landau levels n � 1, when energy and momen-
tum quantization are neglected. Here we present rigorous
quantum mechanical description of the nonlinear opti-
cal response of magnetized graphene, which is valid for
arbitrary magnetic fields and electron distributions over
Landau levels (LLs). After finding matrix elements of the
optical transitions between LLs, we calculate the third-
order nonlinear susceptibility using the density-matrix
formalism and then evaluate the efficiency of the four-
wave mixing process. The magnitude of χ(3) turns out
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to be astonishingly large, of the order of 10−1 esu at
mid/far-infrared wavelengths in the field of several Tesla.
This leads to a surprisingly high four-wave mixing effi-
ciency of the order of 10−4 W/W3 per monolayer.

Linear (one-photon) absorption in monolayer and bi-
layer graphene in arbitrary magnetic fields has been cal-
culated in [6] using Keldysh Green’s function formalism.
This approach is inconvenient when it comes to calculat-
ing the nonlinear optical response. The density matrix
formalism adopted in this paper provides a rigorous, intu-
itive, and straightforward framework for calculating the
hierarchy of nonlinear optical susceptibilities and inter-
action of strong multi-frequency EM fields or ultrashort
pulses with graphene. Expressions for one-photon ab-
sorbance obtained in [6] can be retrieved by calculating
the linear susceptibility in the limit of a weak monochro-
matic field.

In the absence of the optical field, the effective-mass
Hamiltonian [7–9] for a graphene monolayer (in the xy
plane) in the magnetic field Bẑ, in the vicinity of K
and K’ points [10] in the nearest-neighbor tight-binding
model is given by

Ĥ0 = υF

 0 π̂x − iπ̂y 0 0
π̂x + iπ̂y 0 0 0

0 0 0 π̂x + iπ̂y
0 0 π̂x − iπ̂y 0


(1)

where υF is a band parameter (108 cm/s) [11, 12], ~̂π =

~̂p + e ~A/c, ~̂p is the electron momentum operator, and ~A
is the vector potential, which is equal to (0, Bx) here.

To simplify notations, we write down the solutions to
the Schrödinger equation Ĥ0Ψ = εΨ separately near the
K and K’ point. For example, near the K point the
Hamiltonian is Ĥ0 = υF~σ · ~π, where ~σ = (σx, σy) is
a vector of Pauli matrices. The eigenfunction is spec-
ified by two quantum numbers, n and ky, where n =
0,±1,±2, · · · , and ky is the electron wave vector along y
direction [8]:

Ψn,ky (r) =
Cn√
L

exp(−ikyy)

(
sgn(n)i|n|−1φ|n|−1

i|n|φ|n|

)
(2)
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with Cn = 1 when n = 0, Cn = 1/
√

2 when n 6= 0, and

φ|n| =
H|n|

(
(x− l2cky)/lc

)√
2|n||n|!

√
πlc

exp

[
−1

2

(
x− l2cky

lc

)2
]
,

where lc =
√
c~/eB and Hn(x) is the Hermite Polyno-

mial. The eigen energy is εn = sgn(n)~ωc
√
|n|, where

ωc =
√

2υF /lc.
In the presence of the incident classical optical field

~E = (1/2)êEωe
−iωt polarized along the vector ê in the

x-y plane (êLHS = [x̂− iŷ]/
√

2 and êRHS = [x̂+ iŷ]/
√

2,
which denote left-hand and right-hand circularly polar-
ized light), we add the vector potential of incident optical

field, ~Aopt = ic
ω
~E, to the vector potential of the mag-

netic field in the generalized momentum operator ~̂π in
the Hamiltonian. This results in adding the interaction
Hamiltonian Ĥint to Ĥ0, where

Ĥint = υF~σ ·
e

c
~Aopt (3)

This linear in ~Aopt expression for the interaction
Hamiltonian is exact, unlike the case of the kinetic en-
ergy operator quadratic in momentum, where the term
proportional to A2 is usually neglected. Note also that
Eq. (3) does not contain the momentum operator and
its matrix elements are simply determined by the matrix
elements of ~σ. This immediately gives the selection rules
[6] for the transitions between the LLs: êLHS photons are
absorbed when |nf | = |ni|+1, whereas êRHS photons are
absorbed when |nf | = |ni| − 1. Here ni and nf indicate
initial and final energy quantum numbers of LLs.

Now we can write a standard time-evolution equation
for the density matrix of Dirac electrons in graphene cou-
pled to an arbitrary optical field:

∂ρ̂

∂t
= − i

~
[Ĥ0 + Ĥint, ρ̂] + R̂(ρ̂). (4)

Here R̂(ρ̂) describes incoherent relaxation due to disor-
der, interaction with phonons, and many-body carrier-
carrier interactions. Equations Eq. (4) have to be solved
together with Maxwell’s equations that contain the opti-

cal polarization ~P (~r, t) = (1/V )Tr(ρ̂ · ~µ) (average dipole
moment 〈~µ〉 per unit volume) as a source term. In the
perturbative regime, they give rise to the hierarchy of the
optical susceptibilities χ(n) [13], but they are also valid
for describing non-perturbative coupling to strong fields,
interaction with ultrashort pulses etc.

Since graphene is essentially a 2D system, it makes
sense to introduce a surface (2D) polarization Ps deter-
mined as an average dipole moment per unit area rather
than unit volume. Below we will use 2D susceptibilities
unless specified otherwise.

For a weak monochromatic field one can retain only

the term ρ
(1)
mn = (ρ

(0)
nn−ρ(0)mm)〈m|Ĥint|n〉/(εm−εn−~ω−

i~γmn) linear with respect to the field and take the sum

∑
m,n ρnm~µmn to obtain an expression for the linear sus-

ceptibility:

χ(1)(ω) =
∑

n≥1;α,α′

2C2
n−1e

2υ2F
πl2c~ωωc(α

√
n− α′

√
n− 1)

× (νn,α − νn−1,α′)

(α′
√
n− 1ωc − α

√
nωc − ω − iγ)

. (5)

Here we used 〈m|Ĥint|n〉 = −(i/ω)eυF 〈m|~σ|n〉 ~E(ω)
and 〈m|~µ|n〉 = (i~/(εn − εm))eυF 〈m|~σ|n〉. Note that
the matrix element of the interaction Hamiltonian can
be written as −~̃µmn ~E, where ~̃µmn = (i/ω)eυF 〈m|~σ|n〉,
and ~̃µmn = ~µmn when εn − εm = ~ω.

We assumed for simplicity that the relaxation term
for the off-diagonal density matrix elements Rmn =
−γmnρmn and all γ’s are the same. For easy comparison,
we used the same notations for LLs as in [6]: α, α′ = ±
denote whether the corresponding state belongs to the
conduction (+) or valence (-) band and νn,α are the fill-
ing factors of LLs; a complete occupation corresponds to
ν = 2. The degeneracy of a given LL is 2/(πl2c) including
both spin and valley degeneracy. After calculating the di-
mensionless linear absorbance as (2πω/c)Im[χ(1)(ω)] we
obtain the same result as in [6].

Now we consider a specific example of the nonlinear op-
tical interaction, namely the four-wave mixing. Consider

a strong bichromatic field ~E = (1/2)( ~E1 exp(−iω1t) +
~E2 exp(−iω2t) + c.c.) normally incident on the graphene
layer. Here ω1 is nearly resonant with the transition from

n = −1 to n = 2 and ~E1 has left circular polarization.
The frequency ω2 is nearly resonant with the transition

from n = 0 to n = ±1 and ~E2 has linear polarization,
so that it couples both to transition −1→ 0 and 0→ 1,
as shown in Fig. 1. As a result of the four-wave mixing

interaction, the right-circularly polarized field ~E3 at fre-
quency ω3 = ω1−2ω2 nearly resonant with the transition
from n = 2 to n = 1 is generated.

Efficient nonlinear mixing becomes possible due to
strong non-equidistancy of the LLs and unique selection
rules ∆|n| = ±1 which enable transitions with change in
n greater than 1, for example the transition from state
n = −1 to state n = 2. This transition would be for-
bidden in conventional LL systems with ∆n = ±1 selec-
tion rule. The effective dipole moments for all transitions
shown in Fig. 1b scale as υF /ω, i.e. they are similar to
each other within a factor of 2 and are very large: of
the order of 10-100 Å in the mid/far-IR range. This, in
combination with sharp peaks in the density of states at
LLs enables a strong nonlinear response.

For simplicity we assume that the incident field is
not strong enough to significantly modify populations
and all states below n = 0 are fully occupied. Then
the optical fields interact resonantly only with states
n = −1, 0, 1, 2, which we renamed to n = 1, 2, 3, 4 in Fig.
1b. The Hamiltonian can be truncated to a 4x4 matrix,
where (H0)mn is diagonal, with diagonal elements being
the energies of corresponding LLs, and the interaction
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êLHS







�
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FIG. 1: (a): Landau levels near the K point superimposed on
the electron dispersion without magnetic field E = ±υF |p|.
(b): A scheme of resonant four-wave mixing process in the
four-level system of LLs with energy quantum numbers n =
−1, 0,+1,+2. The case of exact resonance is shown. Polar-
ization of light corresponds to the allowed transitions.

Hamiltonian is given by the matrix −~̃µmn ~E as specified
above. This approximation is similar to the one adopted
in [4, 14–16] for analyzing resonant nonlinear processes
in coupled quantum-well heterostructures. The resulting
third-order nonlinear optical susceptibility at frequency
ω3 = ω1 − 2ω2 is

χ(3)(ω3) =
−(2/πl2c)µ43µ̃41µ̃32µ̃21

(i~)3Γ43

×
(
− ρ33 − ρ22

Γ∗31Γ∗32
+
ρ22 − ρ11
Γ∗31Γ∗21

+

ρ44 − ρ11
Γ42Γ41

+
ρ22 − ρ11
Γ42Γ∗21

)
(6)

Here the complex detuning factors are Γ21 = γ21+i((ε2−
ε1)/~ − ω2), Γ32 = γ32 + i((ε3 − ε2)/~ − ω2), Γ41 =
γ41+i((ε4−ε1)/~−ω1), and Γ43 = γ43+i((ε4−ε3)/~−ω3).

In deriving Eq. (6) from Eq. (4) we assumed that pop-
ulations ρmm are constant and solved for the off-diagonal
density matrix elements. To get an order-of-magnitude
estimate, we assume that all fields are in exact resonance
and all dephasing rates are the same, so that Γij = γ.
We also assume for definiteness that state 1 is fully oc-
cupied while states 2,3, and 4 are empty. Coming back
to original notations of LLs in Fig. 1a, this means that
the n = 0 LL is empty, i.e. the Fermi level is between
states n = 0 and n = −1. The magnitude of χ(3) will
be similar for any distribution of carriers as long as not
all population differences in Eq. (6) are zero. Then we
obtain

χ
(3)
2D ∼

(6/πl2c)µ43µ̃41µ̃32µ̃21

(~γ)3
∼ 3.6×10−8

1

B(T )
esu, (7)

where the magnetic field B(T ) is expressed in Tesla and
we took γ = 2× 1013 s−1 for the dephasing rates.

This is a 2D (surface) susceptibility. To compare
with bulk materials, we divide Eq. (7) by the mono-
layer thickness ∼ 3 Å to obtain the bulk susceptibility

χ
(3)
3D ∼ 1 (1/B(T )) esu. This is by far the strongest non-

linearity as compared to any material that we are aware
of. The frequencies involved in the four-wave mixing pro-
cess fall into the mid/far-IR range for the magnetic field
of a few Tesla, as shown in Fig. 2. In particular, at B = 1
T the generated nonlinear signal is at the wavelength of
about 82 µm.

The magnitude of the χ(3) nonlinearity scales roughly
as 1/γ3, i.e. it rapidly decreases with increasing line
broadenings. However, even in a very disordered mate-
rial with broadenings of the order of transition frequen-
cies ∼ 1014 s−1 the magnitude of χ(3) is still record-high:
above 10−5 esu.
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FIG. 2: Transition frequencies in the above 4-energy level
graphene system. ωij indicates the transition frequency be-
tween level i and j.

From wave equations, the electric field amplitude
E3(ω3) of the generated nonlinear signal is given by

E3 = i(2πω3/c)χ
(3)
2D(ω3)E1E

2
2 . Assuming that all beams

ideally overlap within the area A of the graphene sample,
the power of the nonlinear signal from one monolayer is

P (ω3) =

(
16π2ω3

c2A

)2 (
χ(3)

)2
P1(ω1)(P2(ω2))2. (8)

For the illuminated area A = 10−4 cm2, the power
conversion efficiency for the nonlinear signal generation
scales as ∼ 10−4(1/B(T )) W/W3. This is a remarkably
large efficiency for one monolayer of material. It can be
further increased by stacking several layers of graphene,
e.g. by fabricating non-Bernal stacked epitaxial graphene
layers as in recent demonstration of light amplification in
graphene [17].

The above expression for the nonlinear power becomes
invalid at very high optical fields, when the effective Rabi
frequencies µ̃mnE/~ of the optical fields become of the or-

der of
√
γ/τmn, where τmn is population relaxation time
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between states m and n. For the magnetic field of sev-
eral Tesla and τ ∼ 1 ps, this corresponds to intensities
of about 104 W/cm2. At higher incident fields, popu-
lation differences in Eq. (6) become optically saturated
and eventually decrease as 1/E2. As a result, the growth
of the nonlinear power with increasing incident power
slows down. At even higher optical fields, when the Rabi
frequencies exceed the line broadenings γ, the broaden-
ing factors Γ’s at the transitions driven by strong optical
fields increase as E2 and the nonlinear power decreases
with increasing incident power P1 ∼ P2 ∼ P as 1/P . To
analyze the strong-field case quantitatively, one needs to
solve Eq. (4) for both diagonal and off-diagonal density
matrix elements, which is more tedious but straightfor-

ward.
In conclusion, graphene in a strong magnetic field

possesses record-high optical nonlinearity due to unique
properties of quantized Landau levels near the Dirac
point and selection rules for the optical transitions be-
tween Landau levels. High nonlinearity leads to signif-
icant nonlinear frequency conversion efficiency even for
one monolayer of material. The nonlinearity is expected
to be ultrafast, enabling response to THz modulation.
These unique properties of magnetized graphene may
have important implications for coherent nonlinear gen-
eration and detection in the mid-infrared and THz range.

This work was supported in part by NSF Grants ECS-
0547019, OISE-0968405, and EEC-0540832.

[1] K.S. Novoselov, Rev. Mod. Phys. 83, 837 (2011).
[2] S. A. Mikhailov and K. Ziegler, J. Phys.: Condens. Mat-

ter 20, 384204 (2008).
[3] E. Hendry, P.J. Hale, J. Moger, and A.K. Savchenko, S.A.

Mikhailov, Phys. Rev. Lett. 105, 097401 (2010).
[4] T.S. Mosely, A. Belyanin, C. Gmachl, D.L. Sivco, M.L.

Peabody, and A.Y. Cho, Optics Express 12, 2972 (2004).
[5] S. A. Mikhailov, Phys. Rev. B 79, 241309(R) (2009).
[6] D.S.L. Abergel and V. I. Fal’ko, Phys. Rev. B 75, 155430

(2007).
[7] T. Ando, J. Phys. Soc. Jpn. 74, 777 (2005).
[8] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[9] T. Ando, J. Phys. Soc. Jpn. 76, 024712 (2007).

[10] P. R. Wallace, Phys. Rev. 7, 622 (1947).
[11] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang,

M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A.
Firsov, Nature 438, 197 (2005).

[12] Y. Zhang Y, Y-W. Tan, H.L. Stormer, and P. Kim, Na-
ture 438, 201 (2005).

[13] Y.R. Shen, The Principles of Nonlinear Optics, J. Wiley
& Sons, Hoboken (2003).

[14] C. Gmachl, A. Belyanin, D.L. Sivco, Milton L. Peabody,
N. Owschimikow, A. M. Sergent, F. Capasso, and A.Y.
Cho, IEEE Journal of Quant. Electron., 39, 1345 (2003).

[15] M. Troccoli, A. Belyanin, F. Capasso, E. Cubukcu, D. L.
Sivco, and A.Y. Cho, Nature, 433, 845 (2005).

[16] M. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y.
Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, Na-
ture Photonics, 1, 288 (2007).

[17] H. Karasawa, T. Komori, T. Watanabe, A. Satou, H.
Fukidome, M. Suemitsu, V. Ryzhii, and T. Otsuji, J.
Infrared, Mill. THz Waves 32, 655 (2011).


	 References

